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RESUME

On étudie des estimateurs de phase rapi
des en utilisant la méthode presentée en [1].
L'idée centrale est la représentation du soit
disant facteur d‘observation par un train ap-
proprié de fonctions de Gauss. Le démodula-
teur qui en resulte a une structure trés simple
vis 3 vis des techniques alternatives pour la
mise en oeuvre de filtres non linéaires. La
performance, mésurée par l'erreur carrée
moyenne est comparable d celles du filtre de
masses ponctuelles [2] et du filtre de Fourier
[3].De l'autre cbté, il n'a pas les problémes
associés au filtre de Fourier, & savoir: 1)
la negativitée introduite guand on trongque la
série; 2) le besoin de calculer des fonctions
de Bessel; et, 3) la sensibilitée aux varia-
tions du rapport signal-bruit, ce que se tra-
duit par la croissance du nombre de coéffi-
cients de Fourier quand ce rapport la devient
plus fort [4].

SUMMARY

The paper studies fast Cyclic phase
demodulators. They are derived by using Tthe_‘
method presented in [1]..The central idea in.
volves the representation of the so called’  ”
sensor factor by a suitable train of Gaussiaﬁ?:‘
functions. The resulting demodulator is of a
very simple structure when compared with al-.
ternative techniques for the implementation,f“
of the optimal nonlinear filter. The mean
square performance compares to the ones of
filter of [2] and of the
Fourier filter of [3]. However, it does not

the point mass

exhibit the drawbacks associated with the
Fourier filter, namely, i) the considerable
negativity introduced by the truncated series
ii) the requirement of complex arithmetic and
Bessel function evaluation, and iii) the un-
consistent behavior for high signal to noise
ratio, where the Fourier filter requires a

larger number of Fourier terms to be retained

(4]. |
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I - INTRODUCTION

A common practice in nonlinear estima-
tion linearizes the model nonlinearities about
the last estimate. By assuming a Gaussian a
priori probability density function, the re-
sulting structure is the Extended Kalman-Bucy
Filter. The Phase Locked Loop (PLL) is an
example of such a class of filters applied to
the phase estimation problem. If the mean
square estimation error is kept below the typ
ical value of 0.25 radz, this device can be
considered a near optimal estimator. Above
that threshold there is a performance degrada
tion. It is due to the fact that, for larger
errors (i.e. for stronger noise conditions),
the probability density function of the phase
process conditioned on the observations can
no longer be considered Gaussian. The density
becomes multimodal, being impossible to take
this information into account by linearizing

techniques.

If optimal nonlinear filtering is caxr-
ried out, by implementing the Bayes's Law,
better performance is expected. Previous stud
ies have corroborated, by means of Monte Carlo
simulation, the preceding assertion. Direct
implementation of Bayes's Law leads however
to:r estimation structures that are more complex
than the PLL. This complexity, requiring a
larger computational effort, is the tradeoff
payed for the performance improvement. As will
be shown, the scheme proposed buys the per-
formance gains without the computational penal

ties of more complex structures.

IT - MODEL
A discrete scalar Brownian motion is
taken as the phase process.

x = X + u
n+1 n n

(1)

where {un} is a white Gaussian sequence of
variance g, which is related to the parameter
d. of the contihuous corresponding process by
g= A d.- The sampling interval A must be suf-
ficiently small in order to guarantee that
the continuous and the discretemodels describe
essentially the same phenomenum. The initial

condition xq is a random variable independent

of {un} and has probability density function
p(c).

The observation model is the vector

stochastic difference equation

1n cos Xn + Vln

N
il

H

i +
Zyn sin x Von .

where {vln} and {v2n} are two mutually inde-
pendent white Gaussian sequences of equal
variance r. They are alsc assumed to be inde-
pendent of {un} and c. The variance r is re-
lated to the equivalent continuous variance

r, by r= rc/A.

III -~ FILTER ALGORITHM

The problem consists on constructing an
estimate of X by processing the set of obser
vations 7,= {Ek’ 1g<kgn}. The estimate is
defined by choosing a suitable cost function
L(x~%). The solution requires, at each time
step, knowledge of the conditional density
function p(xn/Zn). We shall denote p(xn/Zn)
by F(n) and call it the filter density.

The main task lies in the propagation
of F(n). This is recursively accomplished by

implementing the eguations
Prediction P(n+l)= S(n)* F(n) (3)
Filtering F(n) = C(n) H(n). P(n) (4)

The symbol * in (3) denotes convoluticn,

The convolution kernel S(n), depending exclu-

sively on the phase dynamics, apart a nor-
malizing constant, is
_ 1 _ 2 5
S(n)= exp[- 3g Fne1” Xn) 1. (5)

The result of convolution,P(n+l), is the
predictor density. The symbol . in (4) repre
sents a pointwise multiplication of H(n) by
P(n). The function H(n) is called the sensor
factor.It takes into account the observation

structure, being given by the expression

H{(n)= exp[(zln cos X + 2z, sin x)/r] . (8)

The term C(n) in (6) is a normalization con-
stant. The a priori knowledge about the phase

process is given by P(l)= p(c).

In order to implement (3) and (4) in a

digital computer a suitable representation
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of the densities has to be used. In [1], a
Gaussian sum description of H(n) has been

proposed. The procedure is as follows:

1. Sensor Factor Representation

Represent H(n) as an infinite set of

Gaussian terms given by

+ ®
H)= £ exp [- —x(x-nf)?] . (7)
j=— 20

The means ngn are computed according to

H H

n0n+ 2ri i=...,-1,0,+1,... (8)

where ngn, the abcissa of the maximum of H(n)

in the interval [‘ﬂ,+ﬂ), is given by

z
H _ -1 “2n
on~ 9 Zin

(9
The variance cg is obtained by fitting one
Gaussian function to each period of H(n) as

shown in fig. 1. Its value is

1224'22
n

1

oB= n2r/8 (10)

2n °

FIG. 1 - Fitting one Gaussian function (---)

to each period of the sensor factor (—)

As a consequence of this representa-
tion of H(n) and from the fact that S(n) is
Gaussian,all the densities will be Gaussian
sums, provided P(1l), the initial condition,

has the same form.

2. Filtering

2.1 - Multiplication

Assume P(n) is given by
NP
n

P(n)= % K
i=1

P

1 P .2
in exp[— ;_ﬁ(x_nin) ] ’
on

(11)

where Kin are the predictor weighting factors,

P . . . P
o, 1is the predictor common variance and Nin

are the predictor means.

In order to build a finite representa-
tion of F(n), each term of P(n) multiplies
only the J nearest terms of H(n). The integer
J, herein referred to as the multiplication
parameter, is adjusted experimentally. The

result of multiplication is

Ni 2
= F _ 1, _F
Fn)= I Ky exp[- —F(x ”in)] , (12)
i=1 20
n
% n
with o = (13)
0P+cH ’
n n
oF P
F P n H
n;.= Ny.+ (n,_-n ) (14)
in 2n 0P+0H n 4.n ’
n
F 1 P H 2
XK. _«K,  exp [- (s - n, )] . (15)
i 4n 2(0P+ oH 2n an
i= J(2=1) + 3
g=1,..., N
n
J= ll IJ
The meaning of Ny 5 is explained in fig. 2.
B]
P
Mon
I
i
i
]
i — —
. : . J tt it
w
Rln kJn

2m(J/2) 21 (J/2)

FIG. 2 - Explaining the meaning of ng n*
]

2.2 - Agglutination

After multiplication, some of the modes

of F(n) fall very near each other. When

lnin— n?nl<ﬁl, the modes i and j are aggluti-
nated. The resulting mean is the weighted
average, the weighting factor being the sum
of the weights. The variance remains un-
changed. The threshold Bl, referred to as the
agglutination parameter, is adjusted experi-

mentally.
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2.3-Elimination

Modes of F(n) such that K§n<82 are elimi
nated. The constant 82 is also set by simula-
tion and is designated by the elimination

parameter.

The elimination and agglutination proce-

dures lead to a final number of terms of F(n)

N_ € N.J . (16)

The number N

o}
S = B

is called the filter dimension.

3 - Prediction

Convolution of F(n) by S(n) leads to the

predictor density

NP
P(n+l)=;§j-K§(n+l)eXp[- 20; (x—nf(n+l))2],
n+l (17)
where N£+l= Ni , (17.a)
N5 ) i (ne1) (17.¢)
o§+l= 0§+l+ q . (17.4)
Formulae (16) and (17.a) indicate the possi-

ble change of the filter dimension at each

iteration - an increase or a decrease.

4 - Estimation Criterion

Our interest lies on the cyclic phase
demodulation. The loss function is periodic.
The function L(x -% )= 2[l-cos(xn—xn)]"is a
suitable choice [2].

By minimizing the conditional especta-
tion
- +e
E[L(xn- x)/2 1= 1 L(x - % )F(n)dx

- 00

(18)

with F(n) given by (14), one is conducted to

the optimal estimate

Ny
z K? sin n?
. -1 i-1 im in
xn—tg 3 (19)
Nn
z KF cos n?
. in in
i=1

IV - EXPERIMENTAL EVALUATION

The filter behavior is to be observed

for different noise conditions.

The filter performance is quantified in
terns of the mean square estimation error
modulo 2m. The noise condition is measured in
terms of the theoretical performance that would
be achieved if the observations were linear.
This performance is the error variance in
steady state, R, which is supplied by the
Ricati equation corresponding to the lin-

earized continuous model. It is computed by

R= /r g .
cic

The linearized filter time constant T is

T= »/rc/qc .
The sampling interval A, on the basis of
which the discrete model is built, is such

that A= 0.1t, see [2] for details.

For agiven value of R, the mean square

E;, are computed by running
500 sample functions, each one with 130 points.

errors modulo 2w,

The first 30 points of each run are discarded

in order to measure only the steady state

errors.
The value of E; is obtained through
(20) and (21)
— 500
2_ 1 o= 2
€1= 555 iEl[(xin %;,) modulo 2m) (20)
— 130 —x5
2 1 2
gr= === L € . (21)
M 100 n=31 ™

The PLL and the NLF are evaluated simultane-
ously and start with the same initial condi-

tion.

1. A Simulation Result

Fig. 3 summarizes the results obtained
for R= 0(dB) and the following filter parame-

ters:
J= 2, Bl= 0.25, 82= 0.001 .
The evolutions of ai (PLL) and ei (NLF)

are Pplotted together with the average value

of the filter dimension for each value of n,
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N = ==~ I N; (22)

171 €n PLL
161 {\ AU
o |

W N |
4 . “ = W'
137 o NLF

124 .

3 s0 70 90 110 130
FIG. 3 - Simulation results for the PLL

and the NLF, corresponding to R= 0 dB.

The horizontal lines represent the time

(PLL) and €2
n

Their values are 1.592 and 1.369 re-

averages of ei (NLF) as given by
(21).

spectively.
Defining the performance improvement of
the NLF over the PLL, in dB, as

Tz 2 2
Aey= 10 loglo €M(PLL) 10 logloeM(NLF)

one computes Asﬁ= 0.65 dB, which is of the

same order of magnitude as the ones
in [2].

reported

Since the error process is a diffusion
and the NLF algorithm allows the expansion of
F(n) on the real line, the filter dimension
an increases with time as can be seen by the
plot of Ni in fig. 3.

This is unsuitable for practical rea-
sons: the error performance is good but the
filter exhibits an increasing complexity. A

simplification is required to keep the filter

dimension constant and small.

2. Algorithm Simplification.

The Matching Technique.

It was observed by Youssef in [5], by
using a Fourier series expansion as a represen
tation of H(n), that F(n) could be replaced,
at each iteration, by only one Gaussian func-

tion, without significant loss of performance.

Let us denote this new representation

of F(n) by
= 1 1 B2
F(n)= = exp |- —=(x-n_)"] (23)
/2ﬂ0§ Zog n

According to [4], the parameters of F(n) will
be such that F(n)
first and second optimum moments relative to

and F(n) have the same
the same error criterion (the cyclic loss func
tion). This condition corresponds to the

matching equation (24).

4o
; eI™[F(n)- F(n)]dx=0 .

(24)
The new algorithm is now described:
A - The sensor factor representation is the
same as in the preceding algorithm.
B - The predictor density P(n+l), obtained by

convolution of two Gaussian functions S(n) and
F(n), is now Gaussian, with parameters

p _ F
o =0 tq

el (25.a)

F

P _ -
Tm+1)~ ™ (25-b)

C - When multiplying P(n) by H(n) only the J
nearest terms of H(n) relative to the unique
term of P(n) are considered. This leads to a

sum of J Gaussian terms for F(n).

D - Matching - By application of the matching

equation (24) one is conducted to

= o
F_ -1 7s
n.= tg T ' (26)
c
F 2
0= 0 -1n (as+ ety (27)
where J
as=i£1Kin sin n, . ; (28-a)
J ¥
o =1 K, cosn, . (28~b)
c-j2; "in in
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b

The cyclic estimate is now

. F
X =n, (29)

. F P _ F
Since n  belongs to [-7, ) and Np+1= Ny the

modeés of H(n) considered in the multiplica-
tion are the one in [-m, m) and the adjacent
ones. Next experiments correspond to J=3.
Fié. 4 is a block diagram of the simplified

(SNLF) algorithm just described.

FILTERING
;
nH .

SENSOR FACTOR]|_°P = - -
a7 REPRESENTATION HULTIPLICATION| a %
Z . ! F

a o
n n
P ] . f F
a
m 9 o " 7,
n—1
PREDICTION DELAY
f
n

FIG. 4 - SNLF Block Diagram

V - SNFL PERFORMANCE EVALUATION

In order to see how this new filter
(SNLF) (NLF) ,

the same noise testing sequences (R= 0 dB)

compares with the preceding one

were used.

2
and En

A good agreement between e% (NLF)

(SNLF) was observed. The dot points in

fig. 3 represent only the values of ei (SNLF)
 26. The final mean square
error was sﬁ (SNLF)= 1.372 which is approxi-

mately the value of Eﬁ(NLF). Thus we conclude

for n= Sm, m= 7,...

that the same performance is achieved by
setting J= 3 in the SNLF.

The continuous lines of fig. 5 represent

the theoretical modulo 21 error variances
versus R, for the PLL and the ideal linear
filter. The upper dot points are the simula-
tion results for the PLL; the lower ones corre
spond to the SNLF. Their respective values
can be seen in table 1. One can see that: 1)
ﬁ, for R= -1,0,1, are of the

same order of magnitude of the ones reported

the values of A ¢
in [2]; 2) a é is consistently positive for
all values of R, tending to zero as R ap-

proaches the region of linear behavior,

the dimension keeping constant.

Point 2)

em-

phasizes the difference relative to the Fourier

filter which requires an increasing dimen-
N

sionality as the SNR increases.

LIMITING  YARIANCE

(o)

]
€n

24

R(db)

-4 -2

FIG.

o
~

5 - Simulation results

4

Table 1 = Mean sgquare errors (modulo 2I), (dB)

(PLL, SNLF).

2 2 ement
R(dB) sﬁ(P.L.L.) Eﬁ(N.L.F.) Inprow
. . Ag2
M
-6 - 5.371 - 5.402 | 0.031
-5 - 3.920 - 4.240 | 0.320
-4 - 2.711 - 3.026 | 0.315
-3 - 1.398 - 1.825 | 0.427
-2 - 0.105 - 0.644 | 0.539
-1 1.071 0.417 | 0.654
0 2.018 1.372 | 0.646
1 2.823 . 2.194 | 0.629
2 3.296 2.885 | 0.401

The computation effort associated with

the SNLF is,loosely speaking, equivalent to:

1)

three Kalman-Bucy filter steps operatina in

parallel, the associated weighting factors in-

volving three exponentiations; 2) one match=
ing operation - equations(26),(27 and(28-a,b)-

and 3) a Kalman-Bucy predictor step.
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VI - CONCLUSION

The paper studies a cyclic phase demo-
dulator designed by application of the optimal
nonlinear filtering techniques. The crucial
step lies on a representation of the sensor
factor, whereby each of its periodsis adjusted
by a single Gaussian. The resulting filter's
performance compares to the one of the point
mass filter [2]. Since this filter propagates
at each step a line density, the number of
Gaussian parameters increases with time. To
obtain a further simplified algorithm, an
adaptation of the filtered density by a single
Gaussian function is carried out at each step.
The simplified nonlinear filter exhibits no
noticeable loss of performance, nor any of
the difficulties reported for the Fourier
filter [4].
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