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RESUME

Cet article présente une stratégie nouvelle de
classification non supervisée basée sur une
analyse d'histogrammes. La philosophie générale

a déja eté publice (LOWITZ 1). Cet article traite
plus spécifiquement d'une solution de ce

probléme par filtrage adapté.

Le cas intéressant est celui d'une scéne multi-
spectrale en Télédétection. On la réduit, d'abord
d ses deux composantes principales par trans-
formation unitaire de K.L. L'histogramme bi-
dimensionnel résultant est alors partitionné

en segments connexes par détection directe des
centres et des séparatrices des distributions
gaussiennes sous-jacentes. Cette détection est
effectuée par filtrage adapté dans le domaine

de Fourier, le signal étant ici 1'histogramme,
Le filtrage adapté est optimisé & 1'aide d'un
développement en ondes de la Prolate Spheroidale
(S]epian4).
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SUMMARY

This paper presents a novel and computationally
efficient strategy to achieve data clustering
directly on histograms without iteration.

The general philosophy and motivations of
clustering Data histograms by extraction of the
self-information have been developped in a
previously published paper (LONITZl). The
contents of this present paper deals with an
optimum signal theory implementation of these

concepts.

The incoming raw multichannel data can be first
reduced to its two principal (Karhunen-Loeve)
components to augment the weight of the statistical
evidence, the histogram of which is then
partitionned in non overlopping radiometry
domains after detection of the centers and
separatrices of the underlying distributions. The
novelty consists of the extraction of the self
information, the detection of the underlying
distribution and the kequired filtering by a
Fourier transform of the histogram itself
considered as an information carrying signal. The
methodology is first explained in simple terms
using the vocabulary of signal detection. This
methodology is later refined using a model based
on Slepian and AL'S Prolate Spheroidal Wave
Fonctions.
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CLUSTERING ON HISTOGRAMS

In a previously published paper (LOWITZI) the
motivations and the basic principles of
clustering on histograms were given. These
motivations and principles are briefly
reviewed here.

WATANABE2 has demonstrated mathematically (The

Ugly Duckling Theorem) that classification is
possible only if a complete set of predicates

is altered by an extra logical distribution

of weights on these various predicates either
in the form of a “Professor” or in the form of
a global statistical distribution, a frame of
imagery for instance. In the first case the
classification is said to be "supervised" in

the second case, the classification is (wrongly)
said to be "unsupervised" and is commonly
refered as "clustering". It is quite clear
that clustering is a form of classification
internally supervised by the own statistics of
the data : The WATANABE conditions are
satisfied.

Given an image for instance and the radiometric
values as the set of predicates, the histogram
of the radiometries is the best possible
statistics to supervise the clustering : A
histogram is the best estimator of the
superposition of the underlying distributions
and the a priori probabilities thereof.

The clustering information, however, is not
directly derived from the histogram, it is
derived from the information law attached to
the histogram. To start with take a gaussian
shaped histogram, i.e. a gaussian distribution
with a given a-priori probability. The self
information attached to the radiometry x in the
"message"

X, £ X g A+ A
Where x is a realization of a random variable
governed by a probability of occurrence such

that : 3\(1) -k % { _ xz/z V'L;

within a constant factor, is given by the self-
information law L (x) obtained by taking the
Togarithms of the counts :

I(’X,U‘): - Lo% f,e\_}: kzx‘l/z g~7-
2

In this simple case the information Taw is al

e

parabola whose invariant is its curvature :

A gaussian shaped histogram is therefore
characterized by a parabolic information law
which has a constant curvature equal to

This fact was recognized by FISHER3 who called
this quantity the information content of the
distribution. Inour context J () is called the
information content of the (gaussian) histogram.

The general problem of clustering on histograms
consists of finding its "primitives" i.e. the
various distributions whose superposition,
within an additive noise contribution,will
adequately represent the given histogram. If
one is interested in gaussian primitives, then
the clustering problem is reduced to the

search of the centers and the curvatures of the
underlying parabolic information laws.

The intended objective of the present paper

is to reduce this general problem of clustering
on histograms to a signal detection problem whose
optimal solution is known and can be derived in
the FOURIER domain by efficient digital means.

CLUSTERING ON HISTOGRAMS, A SIGNAL DETECTION
PROBLEM

Under the assumptions of gaussians primitives
the information law attached to each underlying
distribution is parabolic. In order to find the
underlying parabolas, buried in Tot of noise,
the appropriate pre-processing of the histogram
consists of taking the logarithm of the counts.
Within a small interval (x%, x;), the parabolas
should be detectab]e by appropriate means :

Y = @%z q_) 2 ¢xg QL'; 2T
¢ -

Their essential characteristic is a constant
curvature within a small interval of measure
Another essential characteristic is the fact
that, in pratical cases, the radiometric values
are discrete and sampled at Shannon frequency Wy
In order to enhance the signal from the noise,
the detection should be done with a cut off
frequency ﬂ smaller than W

It seems therefore Togical to attempt the
detection of a signal of known shape, but
unknown time of arrival, by matched filtering

in the FOURIER domain to bank on the translation
invariance property and the ease of zonal
filtering offered by the FOURIER Transform.
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Because the discrete fourier amplitude spectrum
of a centered parabola has l/w2 (w integer) as
an enveloppe, the proper filter is known :

F(w).—. w?') \Wl(léwa'

Limiting the bandwidth to.fl(a threshold to be
determined) provides a re-sampling in signal
space that permits to control both the noise and
the maximum number of detected centers. After
filtering and inverse transformations, the
detected centers will correspond to a signal
exhibiting zero curvature within the small
interval T' , 1.e. points corresponding to the
maxima or minima of the reconstructed wave. The
value of the reconstructed wave at these extrema
will be proportional to the inverse of the
variance of the detected underlying gaussian
distribution when this variance is positive. When
this "variance" is negative one has detected a
parabola with inverse curvature i.e. the

separation between two gaussians distributions.

The significance of this "LORENTZ metric" in
terms of apparent variance has been explained
in LowiTz!.

Using the discrete Fourier transform scheme
detailed in Figure 1 has one drawback : The
classification relies on the detection of the
extremal points of a wave. One would prefer to
rely on the detection of zero-crossings because
such points are readily observable and easily
detectable by digital means.

To achieve this goal, the true Fourier transform
has to be replaced by the sine and cosine trans-
forms.

These transforms are implemented from the
conventional (FFT) algorithms in reconstructing
on positive frequencies only : the phasing
information contained in the complex Fourier
component is then reconstructed as the inverse
sine transform and its zéro—crossings occur at
the extrema of the inverse cosine transform,
which, within a constant, is identical to the
inverse Fourier transform and carries only the
variance information of the underlying gaussian
distribution. The only information not readily
obtained is the a-priori probability of each
distribution. An estimate of these a-priori
probabilites can be obtained by summing the
counts of the original histogram over each of
the detected classes.

In one dimension, when the domain of the histo-
gram is on a line, the classification problem

has been completely solved.

In several dimensions the method permits to
positively detect Kernels of classes with a
measure of variance for each point of these
Kernels. The remaining points can easily be
classified by a K-neighbourgh method with a
Mahalanobis metric to take advantage of the
availibility of a measure of variance. Separa-
trices also forms Kernels that help the classi-
fication by forbiding to belong to a class whose
Kernel is on the other side of such a barrier.

It should be stressed that the classification

is done in the domain of definition of the
histogram (feature space) and not in image space.
For each point of this domain a number of image
points are dealt with at the same time. As a
result the classification is done with a great
speed. Once the domain of the histogram is
classified, a loock up table and a single reading
back of the image radiometries permits the
production of the thematic map.

ADDITIONAL SIGNAL FILTERING

Up to now nothing has been said about the
implementation of the detection of the parabolic
signal within the small interval'T' 1in an effort
to optimize the detection in presence of the
inevitable statistical noise. The required
filtering is a convolution of the :[ (=)
function by a gaussian filter whose sigma is
expressed in units of T . In Fourier space
this filter component will also be gaussian
with variance inverse of the signal space
variance. The following section outlines the
required optimization model in terms of the so
called Prolate Spheroidal wave functions. Though
this model does not add any new concept to the
classical signal detection procedure outlined
above it permits an elegant optimization
perfectly adapted to the problem, easily
implemented by digital means and discrete
arithmetic.

THE PROLATE SPHEROIDAL WAVE FUNCTION MODEL

An elegant theoretical model relevant to a large
class of problems including discrete filtering
has been published in 1961 by SLEPIAN and

A14 and has been recently used by SHANMUGAM
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and A1 for the optimum detection of edges in
digital images. Here the same model is proposed
to implement clustering on histograms.

The prolate spheroidal functions are in fact
the eigenfunctions of the discrete FOURIER
transform. Their basic properties are briefly
reviewed in this section, compiled from
reference 4.

Given any rP;oand any.fl)othere exists a
countably infinite set of rea) functions ;

(e ({v) -
(?o )/ "P' J
and a set of positive numbers )\o >>~(>>\,_>----
with the following properties :
I
- The ‘fs are band Yimited, orthonormal on the

real line and complete for the répresentation
of band 1imjted functions of °Z:z :
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- For all values of t real or complex :
7,

A (f‘.(ﬁ) -—-/ _"-’i’.‘_iz.[é_'i). Z(d)/lj DEYARL
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In fact both the fﬁf and the A Q are functions
of a single parameter c given by SLEPIAN's
relation : €= JL.T/2
In can be demonstrated that the FOURIER transform
of ¢ €, t) s given by the relation :

(4

T[@[éi—)}; K/&/}&;‘I_(c/ wT/2{2.)

Where K is a constant and ;:-"-—’

The table 2 below gives some values of and
1lustrates general shape of ¥ (c¢), Pl E)

and the influence of the
parameter ¢ on theip shape.

From the graphs in table 2 it is quite clear
that ¢ is a Tipear expansion factor for t. As a
result, for computational convenience, 96 and
ﬁ can be closely approximated, foresg 2 and

/Q/:If-;és ! by the following HERMITE
functions :

(e, 2t/ )= [S 0k § ~ S5
¥ e n
0
el
g conermtafE 2 et 55

These approximations have been arrived at by
fitting the amplitude of Qﬁ and the slope of

q{ for t = 0. These approximations hold quite
closely for values of ¢ up to 2.

If f (x) and g (x) denote respectively the

input signal within P and the output signal
after filtering, if h (x) is the spread function
of the filter, F (w), 6 {w), H (w) their

FOURIER transforms, the optimum detection
problem can be stated as follows : 'T’is the
symetrical interval inside which the signal

(the parabola) is to detected. L) is a

frequency cut off. One wants to maximize the
following ene;%%'rat1o

vo Ao /809"

+ 2o 2

S e/
with the constraints :

Hew) = 6-tw) [FEw), o)<l < e,

H(u) =0 leof 2 4L

z

Flu)=K/e
the Fourier amplityde spectrum of the parabola.
Looking for a representation of the filtered
signal g (x) in terms of the prolate spheroidal
wave functions sucﬁ_gs :

= & e, 2

g/’l) Eﬁ " ?; , )

the scalar Y to maximize becomes :
— 2
y= = /ﬂ,,/ )‘M
s —_— "
Z/a *
~e

But the eigen values )ynare positive and strictly
decreasing.

Therefore

The optimum output corresponds to the maximum

value of which is reached when the series

representation is limited to its first term :
%.(7») = (fo

The Fourier transform is obtained using the

relation :

and the optimum filter becomes, for la;vn/s-Q.
Hewys Ge) [ Fres = ket le, KT



67711;;;//

A SIGNAL DETECTION TECHNIQUE TO ACHIEVE DATA CLUSTERING
FROfi DATA HISTOGRAMS

Now approximating ?L by the appropriate Hermite
function yields :

Htw = & ‘”"”9‘/{ nt i.nﬂ- ,{ ‘7{), :}

Using Slepian's relation ¢ =-Q!P/Q. permits a
further simplification :
Hlw) = £ nu//( /'P)j /w/s.(L

H() =0 lwf > L
As the inverse transform of a Gaussian shape
with variance cr}'is a gaussian with variance
//q~zﬂ it follows that the exponential
component of the filter corresponds in signal

space to a convolution by a gaussian shape with
a= T/4%

On the other hand the hard limiting after at
L corresponds in image space to a convolution
by sin (.fLa-)/x which, in discrete topology,
resamples the spatial domain according to a new
Shanon frequency.r)— . Finally the component
nf corresponds, within a sign, to the second
derivative of the signal, i.e. the extraction
of the curvature of the information function
I(—») attached to the histogram under
processing.

The use of the Prolate Spheroidal Wave functions
model has permited to optimize the detection

of the relative extrema of L(a)which are
normally buried in large amounts of statistical
and quatification noise.

On a pratical point of view varying.fl- permits
to control the average number of classes to be
detected, while increasing T permits to merge
those classes that are very close to each other.
The overall detection performances will only be
function of ¢ = LT /2. , the "frequency-
space" compression parameter.

The translation invariance property of the
Fourier transform simplifies the multiclass
detection problem, while the FFT algorithm
computing speed increases the overall efficiency
of the proposed methodology.

The extension to higher dimensions does not
present any difficulty due to the even symetry
of the optimum filter. In two dimensions for
instance the filter becomes :

H (w,v) =K, (ul+v?) bp(n{ aley (m } u+v<ﬂ,
H (w,vy >0 wlv >_D.

EXPERIMENTAL RESULTS

The clustering methodology outlined in the
preceding sections has been extensively
experimented on histograms of single black

and white pictures (one dimension) and on
composite histograms cartesian products of the
first two eigenimages of multichannel imagery.
Such a dimensionality reduction preserves 97
to 98% of the total scene variance.

The problem encountered in dealing with
composite histograms cartesian products of N
channels, N > 2, has nothing to do with the
efficiency of the proposed strategy. Such
higher dimension histograms have extremely poor
weight of statistical evidence simply because
the average count per histogram cell becomes
zero almost everywhere resulting in an
intolerable statistical noise.

In the reduction to practice the only difficulty
encountered resulted from an inconsiderate
choise of the integral number implementing the
cut off frequency.f1-in the discrete implemen-
tation of the optimal filter. For certain
even values of this parameter the reconstruc-
ted waves presented parasitic bumps (false
classes). The problem was easily traced to a
beat phenomenon due to the reverse Gibbs effect
of the sharp cut off—fl— accentuated by the
spectrum overlap between the frequencies NN
an(u% the original shanon frequency. This
parasitic effect was eliminated by choosing for
an odd integer : This choice decreases
the beat frequency in signal space and rejects
the parasitic bumps of the reconstructed wave
outside the domain of definition for the
histogram.

Adequate noise filtering and a proper number

of detected classes (16 to 20) where obtained
for values of I L roughly equal to one third of
Shannon frequency W, The optimum value of T
was found between 1 and 8, and, as expected,
permited a "fine tuning” on the number of
classes by effecting a merge when desired.

The photographic reproductions at the end of
the paper illustrate typical clustering results.

It has been stated that the histogram is a good
statistics because it contains the estimation
of the underlying distributions and those of
their higher moments. This property has been
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thoroughly used. It has been shown that, under
the gaussian hypothesis, the information Taw
attached to the histogram is a superposition
of parabolas whose centers can be optimally
detected, within small intervals of measure T
with a matched filter in the Fourier domain.

The Prolate Spheroidal Wave function model has
been used to optimize the filter and an
approximation with Hermite functions has
permited to implement the values of the filter
parameters without extensive computations.

Some results of digital simulation have also be
presented to validate the theoretical concepts.
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KL1 EIGENIMAGE ) KL2 EIGENIMAGE

(KL1 AND KL2 CONTAIN 16% OF THE SCENE VARIANCE)

RYL KLY .KL2 CLASSIFIED NISTD

KL1 X KL2 CLASSIFIED HISTOGRAM

EXAMPLE OF CLUSTERING IN MULTIDIMENSION SPACE :
PRINCIPAL COMPONENT PROCESSING OF THE AVIGNON SCENE
RESULTS OF FEATURE SPACE CLUSTERING (10 CLASSES)

%

MATRA-ESPACE (LABORATOIRE DE TRAITEMENT DES IMAGES)
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OPEN COUNTRY CULTURES

THE WATER CLASS (RHONE RIVER) HUMID VEGETATION

MATRA-ESPACE {LABORATOIRE DE TRAITEMENT DES IMAGES)

MOUNTAIN FORESTS BRUSH

RESULTS OF CLUSTERING IN THE IMAGE SPACE
A FEW CLASSES IN ISOLATION FROM THE AVIGNON SCENE



