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RESUME

Ce document &tudie numériguement et en partie avec des
mesures l'onde électromagnétique répartissant des guides
d'ondes rectangulaires et homogénes vers les guides
d'ondes avec une section transversale non homogéne. Ces
transitions jouent un réle important dans la recent
développement de circuits & onde-millimétre dans le

d¢omaine des satellites de communication.

La méthode de calculation hasée sur l'expansion de
champs dans des modes propres arthogonaux appropriés
est introduite avec plus de détail pour l'exemple de

la transition directe d'un guide d'ondes hnmdgéna vers
une microligne écrannée. Ce traitement peut 8tre
considéré comme général dans ce sens gu'il faut prendre
en considération tous les six composants de champs et
les caractéristigues des sections transversales svec

des plagues diélectrigues.

Pour la transition de guide d'ondes vers la microligne
il est montré gue la plupart de la puissance est
transmise par le mode de premier ordre hybride et non
par le mode fondemental de la microligne caommunément
désiré. Cela indigue qu'une jonction directe des gquides

d'ondes avec les microlignes n'est pas apprapriée.

Les structures de plague diélectrique montées dans
le plan &lectrigque des guides d'ondes rectangulaires
sont trés anproprikes pour des applications d'aondes-
millimétre. Ceci est demontr& par les exemples de
transition de guide d'ondes vers un guide d'ondes
avec une plaque diélecirique et vers une ligne '
"gilée" ("fin-line") ol la plague diglectrique est
partiellement métallibee. La structure de catte
ligne est trés prapre aux circuits integrés des
gndes-millimétre. On a dessing et calculé un filtre
avec une ligng "ailée" 3 neuf sections comme exemple
paur 33,7 GHz qui montre une perte d'insertion

mesurée d'environ 0,5 d. 8. seulement.

SUMMARY

This paper investigates numerically and partially by
measurements the electramsgnetic wave scattering at
transitions from homogeneous rectangular waveguides
to waveguides with an inhomogenecus cross-section. Such
transitions play a significant role in the recent
developmert of suitable millimeter-wave communication
circuits.

The calculatian method, which is based on the field
expansion inte suitable orthogonal eigenmodes, is
introduced in more detail for the example of the direct
transition from a homogeneous waveguide to a shielded

microstrip line. This treatment can be regarded as

general in the sense that all six possible field
companents have to be considered and the features of
dielectric slab-filled cross secticns are taken into

account.

For the investigated waveguide transition to the micro-
strip-line it is shown that the principal part aof the
transmitted power is transported by the first order
hybrid mode and not by the commonly desired fundamental
microstrip mode. This indicates that a direct waveqguide

instrumentation of microstrip lines is inappropriate.

Dielectric-slab structures, however, mounted in the
E-plane of rectergular waveguides are very sultable for
millimeter wave applications. This is demonstrated by
the examples of the waveguide transition to a dielec-
tric slab filled waveguide and to a fir-line, where
The fin-

line structure is very suitable for designing milli-

the dielectric sleb is partially metallized.
meter-wave integrated circuits. A nine step fin-line
filter is designed and calculated as an example far
33.7 GHz which exhibite 2 measured insertiaon loss cf
anly about 0.5 dB.
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1. INTRODUCTIGN

Recent studies, e.g.1’2, have indicated that there will
be a significant increase in satellite communications
in the near future. To avercome the prablem of spectral
crowding, efforts are being made to expand the
communications services upward ta the millimeter-wave
region of the spectrum. Since the millimeter-wave
systems are based on waveguide instrumentation, wave-

guide scattering problems find increasing interest.

Further, because af their known advantages in the lower

freguency range, particularly compactness and louwer
price, there is a growing demand in the actual
satellite communication research activities for
suitable millimeter-wave integrated cirguit (MIC)
structures. The ideal transmission line type for MIC's
for millimeter-wave application is one which avoids
excessive miniaturization, is suitahle for waveguide
instrumentation, and yet offers the potential for low
cost production through batch-processing technigues.
The fin-line and the dielectric image line (Fig. 1) are
such line types. However, there is still a paucity of
suitable theoretical research on such structures. So
far only experimental design data and first order
design theories are available, e.g.B’Q, especially

concerning three~dimensional problems.
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Fig. 1 Millimeter-Wave Structures
a Rectangular Waveguide
b Shielded Oielectric Image Line

c Fin-Line

The purpose of this paper is therefore to show that the
orthogonal expansion method, principially introduced
by Whinnery and Jamieson5 is an appropriate numerical
method for the rigorous sclution of millimeter-wave
structure discontinuity scattering praoblems. An in-
finite set of linear equatidns for the amplitudes of
the reflected and transmitted modes for any incident
mode can be gbtainad by exactly satisfying the
boundary conditions. This theory takes into account
the fact that higher mode propagation plays a signifi-

cant role in the effect of those scattering problems.

Waveguide Microstrip Line
Fig. 2 Transition from a Rectangular Waveguide to a

Microstrip Line

The first example investigated is the dirfect transit-
ion from a rectangular waveguide to a microstrip line
(Fig. 2). It is shouwn,
mode propagation is caused at the discontinuity.

that a significant higher arder

The transition from a waveguide to a dielectric loaded
waveguide (Fig. 3), the second example, represents the
first step towards the investigation of the transition
to a dielectric image line (Fig. 1). The H1D-uave of
the empty waveguide is transmitted almost undisturbed
intn the dielectric loaded part thus showing the
possibility of a direct waveguide instrumentation.

This is in clear contrast to the microstrip transition
(Fig. 2), where the H1u-mude is considerably disturbed,
so that suitably tapered transitions are required.

Dielectric loaded
Waveguide

Rectangular Waveguide to a

Waveguide

fig. 3 Transition from a
E-plane Dielectric Loaded Waveguide

In a fin-line structure, metal inserts ("fins") are
printed on a dielectric substrate which bridges the
broad walls of a rectangular waveguide (Fig. 1c,
Fig. 4). The fin-line combined with RT/durcid sub-
strate materisl is very suitable for millimeter-
wave integrated circuits. Therefore, as the third

a fin-line filter for about 34 GHz is

designed. A new design theary is introduced, 'based on

example,

the orthogonal expansion method, taking into account
the higher mode propagatiaon.
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2. METHOD

The method of the series expansion inte orthogonal
eigenmodes is described at the rather general and

=2
Nig

relatively cumplicated‘example of the direct transit-

i igr trip7 (Fig. 2). 7T
example in principle includes sll cases investigated
in this paper, because all six field components are
excited, and it takes intoc account the aspects of

dielectric slab filled cross sections.

The hybrid modes on the shielded microstrip line are
derived from the axial z-components of the vector

potentials Ah and AE:
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Cross Section of the Shielded Microstrip Line

The subdivision of the craoss section according to Fig.
5 leads to four parallel lines. Their vector potentials
can be written as & product of the elgenfunctions

v (x,y) with the common propagation expression

h,e

e—sz‘z and the sguare roots of the field impedances
wi k2
Zh = 1/Yh = kz Ze = '1/Ye =37 (2)

_ UV ~Jjkzz
Ahz = VZE Vh(x,y)e

-jkz z
VVJ V:(x,y)e Jkz

P
1l

v = I,Iia, IIb, and III (3)
with e.g.
nmx
® €as I @ L
U; = 2 2 [Aie*JKyny + Bie'JkV“V] )
=0 5
n=0 1 + oan
[ = Kronecker delta.
on

The other eigenfunctions can be written in the same

manner. This way is analogous to the known Fourier
expansion method with the still unknown coefficients

An1 Eni
conditions.

which are determined by the boundary

The eigenfunctions V(x,y) can be regarded as represen-
ting waves traveling in the ty direction, with the
still unknown propagation constant kv. It is posesible

to define the amplitudes:

s V Y
v v_+jk v_-JjkynVy
I = Aqet VY 4 glem Y
d1” WLV v
Up Cy) = —3%3 = jk;nﬁASE +3kyny _ B:e -dkyn¥l, (s5)

and in the same manner the corresponding amplitudes
v v

en’ I~ .

related to the vector potential AE: U en

The boundary conditions at the partial waveguides

I1T1 _ .Ila IIT _ I1a
f<x<g Ex,z - Ex,z Hx,z =H Xy 2
. LIIT _
g<x<g+C: Ex,z =0 (8)
. £IID L IIb 111 _ 1ib
g+c<x<a Ex,z = Ex,z Hx,z = H X,z

successively applied to (5) lead finally to the

relation hetween the amplitudes at the lower boundery
171
(V=V1

boundary (y=yi=b—d/2-h, Fig. 6):

=-d/2~-h) and the amplitudes at the upper
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The still missing boundary condition at the metallic
surfaces at a = -d/2~h and y = b-d/2-h leads to the

resanant candition:

(8>

=3
T
=3
]

M F

This matrix of this characteristic egquation (8) is the
upper right guarter of the matrix product of (7). The
zeros of the determinant whick is a transcendent
function of k n(w,kz) provide the interesting disper-
sion characteristic kZCw) for each mode tazken into

account.
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Fig. 2 shows the step investigated. The transversal E-
and H-field strengths of the adjacent transmissian
(1) and (2) are expressed by the eigenfunctions:

RN Z:sz E A SRS b
. (9)

ﬁ(?) _ ZV,Y. 4 .(a.fe_jkzjz-EA'e+jkzjz)
t 7004 83 J

-

grad Th X e H-mode

z?

t3i”

~grad Te’ E-mode

T = eigenfuncticons of the rectangular
waveguide
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By = th gréd Uhk X ez—\/Zek grad UEk

g _ =
htk -"th grad Uhk + VEk grad VEk x e, .

(The indiecation v = I, II, III, Fig. 6 of the sub-
division ef the cross sections is omitted in this
 2Te the amplitudes of

chapter for simplicity.) 9;, o
waves traveling in the +z-direction, BE, c.

x are the
amplitudes of waves traveling in the -z-direction, cf.
Fig.2. The indexes j and k designate transversal field
- 2 - I . . .
vectors Etj’ ktj’ Bir htk which cohere with the eigen-
functions and indicate the arder of their cutoff

fregquencies.

The boundary conditions at the step (z=0)

(O _ (2 (1) (2
Et = Et Ht = Ht

lead to the matrix eguations

(M ¥y K (C¥ 4+ ch
O3 K (€7 + €7 .
and C” contain the amplitudes

Z) and
( ¥) contain the sguare roots of the magnetic- or. elec-

8" -8 =
1)

The vectors BY, 87, c*,

of the traveling waves, the diagonal matrices (

tric-field impedances Zh ar ZE, ard the magretic- or
electric-field admittances Yh or Ve, respectively,
(ef. (2)). The electrical K, 2nd the magnetic coupling
matrix Hh are given by the elements

(KoY s = J/Qt. - B dF (8 —)/’F “R, dF.

3 j h”jk ~ t tk
F
s Fs (12)
The scattering matrix § of the step is given by
eliminating 3~ and G in (11):
! - +
‘2+ =(s) | (13)

3. RESULTS

In order to show the convergence of the orthogonal
expansicn method, Fig. & indicates the normalized
propagation factors kZ/k0 (kn=free epace propagation
constant) of the shielded microstrip line for four
mades as a function of the number of eigenmodes
congidered. It can he stated that far a number of abaut
10 to 12 eigenmodes the progation factors converge to

a corresponding constant value.

32
aky* S \
' \ L EHy
3 N\ e —
L~
%,
28
S T
. .~_’r’, 1
EH'
26
S
0 2 4 6 8 10 12 %
a
Fig. & Normalized Propagation Factor as a Function of

the Number of Eigenmodes Considered

Fig. 7 shows the scattering parameters as a function of
the normalized freguency a/)\cv()\o = wavelength in air)
of a direct waveguide to microstrip transition (Fig. 2),
if a H10-mnde is incident in the rectangular waveguide.
Up to a/AU = 1 the reflection coefficient in the wave-
-wave. The

10
other modes (dotted lines) do not yet propagate, since

guide is only related to the backward H

their freguency is below the corresponding cut-off

frequency.

At the microstrip line (lower figure), however, higher
order modes play a significant role. It can be seen
that the principel part of the transmitted power is
transported by the first higher order HE1—mude1)and

not by the commonly desired fundamental microstrip

mode EHU. This is because of the incoherence of the
waveguide H1D—mnde with the EHD—made. The figure
indicates that a direct waveguide instrumentation of
microstrip lines is inappropriate. Since suiltable
transitions (e.g. ridged waveguide tapers) are
relatively complicated (the state af the art are
insertion losses of about 2.5 dB per transitiune),other
structures, e.g. the two following examples, are much

more appropriate for millimeter-wave MIC's.

1 The EHq-mode is the hybrid-(EH-)made with the first
cut-off frequency and a purely H-mode at cui-off¥
fregquency. The other hybrid modes on the microsirip
line are indicated in the corresponding manner.
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Fig. 7 Scattering Parameters of the Step Waveguide
to Microstrip (Fig. 2).
Dimensions (cf. Fig. 5):
b/a = 0.5, c/a = 0.3, d/a = 00.3, g/a = g.5,

h/a = 0.1, €p = 9.7 (-.~.- cut-off frequencies)

Line structures with circuits suspended in the £-plane
of rectangu:lar wavegulides are very well compatible
with the H1D Thus for the
direct waveguide transition to a waveguide filled with

(Fig. 3) it can be

-mocde of the waveguide.

a dielectric slah in the E—plane9
stated (Fig. 8) that below the H2
frequency practically the totel energy is trans-

D—mnde cut-off

-mode of the
10

filled waveguide. This is alsc confirmed by measure-
ments (Fig. 8).

mitted into the desired fundamental H

1 H,y,-mode ++ measured 11, y ﬂ
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Fig. 8 Transmission Coefficient of the Step Waveguide
to a £-Plane Dielectric Loaded waveguide
-(Fig. 3)

If the dielectric slab mounted in the waveguide E-plane

is partially metallized, a fin-line structure (Fig. &)
is aobtained, which is also very adequate for direct

waveguide instrumentation. Further it has the advantage
that suitable MIC structures,

easily be constructed by photoetching techniques. A low

such as filters, can

insertion loss fin-line filter is designed with the
orthogonal expansion method which consists af a fin-
line structure with alternatively metallic bridges and
gaps in the total height of the rectangular waveguideg.
Fig. 9 shows the calculated value of the insertion loss
in dB as a function of the frequency for a nine-step
fin-line filter (four metal inserts,Fig.10),designed for
a midhand frequency of 33.71 GHz,mounted inte an R-band
waveguide (a=7.112 mm, b=3.556 mm). The dielectric
substrate is RT/duroid 5880 with €L = 2.22. The
theoretical insertion loss in the pass-band is 0.1 dB,
the measured value is about 0.5 dB. The slight

frequency displacement of the measured values is due to
the copper cladding thickness (17.5 um) which has not

been tsken into acesunt in the calculations.
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Fig. 9 Calculated and Measured Insertion Loss of

Designed High-( Fin-Line Filter
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