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RESUME

La magnitude carrée de la fonction d'ambiguité
croisée doppler entre la entré et la sortie d'un
systéme lindaire et variant avec temps est une con-
volution double modifiée entre la fonction d'eparpil-
liment doppler du systéme et la magnitude carrée de la
fonction de'ambiguite doppler de 1a entrée. Trains
d'impulsions sont commodes pour measure. la fonction
d'eparpilliment parce que, comme inscrit dans ce
conférence, les leurs fonctions de'ambiguité sont
coussins pour ésingles et la banc de filtres assortis
qui s'exigent pour déterminer la fonction d'ambiguité
croisée peut &tre approximé par passer la sortie 4
tfavers in filtre assorti & 1'impulsion et additionner
avec déplacements convenables de temps les sorties de
ce filtre qui correspondent i chaque impulsion du train.

INTRODUCTION

Any time-varying linear system can be represented
by its spreading function, which tells how the system
spreads any input signal in time and frequency [1].
Often—-for example, in sound propagation in the ocean--
this spreading is stochastic in nature and further is
uncorrelated in both time and frequency; in this case
the spreading function is replaced by the scattering
function [1]. Typically in active sonar and radar a
received signal is processed first by a bank of filters
matched to the transmitted signal and frequency-shifted
versions of the transmitted signal [2].

By definition the output of a bank of filters
matched to frequency-shifted versions of a reference
signal is the cross-ambiguity function between the
reference signal and the input signal to the bank of
matched filters. (When the reference and input signals
are the same the term ambiguity function is used.
Rihaczek [2] has investigated the ambiguity functions
of a number of useful signals.) Séstrand [1] has shown
that the magnitude squared of the cross-ambiguity
function between the input and the output of a sto-
chastic time-varying linear system with a scattering
function is a modified double convolution in time and
frequency between its scattering function and the mag-
nitude squared of the ambiguity function of the input.

Pulse trains are convenient input signals for
measuring the scattering function of a system since,
as Rihaczek [2] has shown, their ambiguity function is
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SUMMARY

The magnitude squared of the cross-ambiguity
function between the input and output of a time-
varying linear system is a modified double convolution
between the doppler scattering function of the system
and the magnitude squared of the input doppler am-
biguity function. Pulse traing are convenient for
measuring the scattering function because, as shown
in this paper, their ambiguity functions are pin
cushions and the matched filter bank required to deter-
mine the cross—ambiguity function can be approximated
by passing the output through a filter matched to the
pulse and adding with appropriate time shifts the out-
puts of this filter corresponding to each pulse of the

train.

a pin cushion. In particular their ambiguity function
has a sharp central spike on the order of 1/B wide in
time and 1/[(n - 1)AT] wide in frequency surrounded by
a clear rectangle 2AT wide in time and 2/AT wide in
frequency, where AT is the time between pulses in the
n is the number of pulses in the train and B
is the bandwidth of the pulse. Hence, with such an
input the magnitude squared of the cross-ambiguity be-
tween the input and output of a system with a scatter-
ing function will reproduce the scattering function
with high resolution provided it lies inside a rect-
angle AT wide in time and 1/AT wide in frequency.
Furthermore, Costa and Hug [3] have shown that the
matched-filter bank required to compute this cross-
ambiguity function can be approximated by passing the
system output through a filter matched to the pulse
and adding with appropriate phase shifts the output of
this filter corresponding to each pulse of the train.

In many situations--for example, with moving ob-
jects——the effect of time-varying linear systems is a
doppler shift rather than a frequency shift. Although
a doppler shift may be approximated for narrow-band
signals by a frequency shift, for wide-band signals
(such as required in measuring scattering functions)

a doppler shift must be represented by the time stretch
it naturally is. Some systems--for example, a moving,
turning submarine-—may be modelled as spreading sig-
nals in time and time stretch in a stochastic manner
that is uncorrelated in them [4]. The purpose of this
paper is to extend the results summarized above to such
systems. References [4,5] give in detail both the con-
ventional result summarized above and the novel results
described herein.
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The Fundamental Relationship

The doppler cross—ambiguity function YD between
two signals x and y 1is defined by

Vg (1200 = /2 x¥[a(e - D] y(6) e 1

where T is time shift, o is time stretch and * de-
notes complex conjugate. Note that it is a cross-
correlation between y and time-shifted-and-stretched
versions of x.

For a time-varying linear system describable by a
doppler spreading function SD, the output y is re-~
lated to the input x via

v = L o sP(r,m xla(t - D] dodt . (2)
We assume that

E(sP (17,07 s(r,0] =#2(1,0) 8(t°-1) 8(0"-a),
(3)

1 denotes expected value,é?D is the scatter-
is the Dirac delta function.

where E[
ing function and §

Substitution of (2) into (1) and use of (3) and
(1) yields the fundamental relationship:

D 2 o o D, . .
Ny (7 = L, [ &7 (7,00
(4)
D - O 412 - -
lyxy[x (=17, 51" ax” a7,
2 A . . N
where Ial = E(a*a). Note that this relationship is

a modified double convolution,

The Doppler Ambiguity Function of a Pulse Train

Consider the following pulse train

n

o) = 2 3wl - (- 2l ()
/o i=1

where the pulse x (t) is assumed to be normalized to

have unit total ehergy (integral of |x |2 over t). In

the appendix it is shown that substitigion of (5) into

(1) for y = x = Xpr yields for the ambiguity function

Y: of x_..:

PT PT
D -l
YPT(T,OL)= Z v (1-iAT,0), (6)
i=-n+1
where
D 1 lil g
Yi(T’O‘)=H ) YP[T
k=1
€]

and Yg(T,a) is the doppler ambiguity function of xP(t).

For o = 0, YP = [(n-]i[)/n] YD and'YD is just a
shaded pulse train in 7. If the sgread o?TYD in T is
small compared to AT the pulses in this pulse train
do not overlap. Since the spread of YL is on the order
of 1/B where B is the bandwidth of x_,” this require-
ment becomes BAT>>1. It is shown in [4] that for
|a-1|/a<1/n, the pulses Y? do not overlap in T for
YgT; therefore for BAT>>1 and Ja-1]/a<1/n,

n-1

2. T D . 2
pp(md |7 = Ty IysCe-tame | ®

To get some idea of how [Y |2 behaves wit
respect to 4, we determine the ggtal energy in Yy, for
a given o by integrating Y? over t for a pulse x_, such
as a linear FM pulse, whose fourier transform is uni-
form in magnitude over a bandpass B centered upon f .
In [4] it is shown that for this pulse, °

(u-]a=1])/2

o . o+l 2
. , 1 (sm[ng(x + =) (={1])] ) o
|Yi(T,a)[ dr = ori

n sin[TE(x + —-2-)]
-(u-fa-1])/2 (9)

where & = I(a—l)/a]foAT and 1 = B/f . This integral is
readily evaluated since it can be written as a sum of
cosine functions. In Figure 1 this integral is plotted
versus § for u = 0,06, fa—l{<<u, i=0 and n=5. Note
that the ordinary ambiguity function for a pulse train,
which is derived in [2], takes the same form as (6) with
frequency shifts v replacing 0. For comparison in Fig-
ure 1 the total energy for given v for the same type of
pulse is plotted versus £ = VAT for U = 0.06, V/f <<y,
i=0 and n=5. Observe that the functions plotted n
Figure 1 are just wide-band and narrow-band beam pat-
terns respectively,

From the foregoing it follows that the doppler am-
biguity function of a pulse train consists of a central
spike surrounded by a rectangular clear area. From (8)
this clear rectangle has dimension along the T-axis of
roughly 2AT and from (9) it has dimension along the o-
axis of roughly 2/(f°AT); hence the area of the rectan-
gle is rough 1/fo. As mentioned previously the width
of the spike in T is roughly 1/B. The width of the
spike in § from Figure 1 is the same order as that of
the ordinary ambiguity function. But the width of the
latter is on the order of 1/[(n-1)AT]; hence the width
of the central spike of the doppler ambiguity function
in o is on the order of 1/[(n-1)ATf,].

An Approximate Matched Filter Bank

For ease of presentation a uniformly spaced train
XpT of identical linear FM pulses XpM is assumed; how-
ever the same analysis applies in an obvious manner if
the pulses are not linear FM pulses and are shifted in
time and phase in the train. Let y be the signal to be
passed through a bank of filters matched to x p and
time stretched versions of xpy. Substitution of (5) and
the approximate identity

(ORI
Xy (0) = P ™ xpylt + @DE /K], (10)

where k is the rate of change of frequency with time of
XpM, into (1) yields:

D 1
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Figure 1 Normalized Energy in Ambiguity Function for i=0, n=5.

D

The quantity Yx y{ ,1) is the output of y passed
through a filter matggéd to x. therefore the first
step in the approximate matcth filter bank is to pass
the signal through a filter matched to the input pulse.
The summation in (11) is just a sum of suitably time-
shifted versions of the outputs of this matched filter
corresponding to the various pulses in the train. As
such it is the temporal analog of a broad-band beam
former. For IY 12 the phase term in (11) drops out.
In [3,4] it was sﬁown that the bank of filters matched
to xpy and frequency-shifted versions of xpp could be
approximated by a filter matched xp followed a summa-
tion of suitably phase-shifted versions of the outputs
of this matched filter corresponding to the various
pulses in the train. This summation is the temporal
analog of a narrow-band beam former.
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APPENDIX

Substitution of (5) into (1) yields

-

D 1B n
Ypp(Tho) == 2 xP[a(t—T) - (k——)AT]

i=1

'n n
xP[t:—(i—E—;i)AT]dt} =% 5| s /x;‘(oc{t—r

. _k 0Ll ol _1 (% D
-k al @l ]At})xP(t)dt—E'Z (»z YP{T
S i=1Vk=]
k oa-1 n-1
(- - fddchpar, o
on utilization of (1) with y=x=x . Rearrangement of
the double summation yields (6) aﬂg n.
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