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RESUME

Les techniques globales d'identification des
signaux et de systémes permettent de calculerB%gi coef-
ficients d'une fonction de transfert linéaire () a
partir de l'autocorrélation d'un signal. L'autocor-
rélation se déduisant de la densit& spectrale ces
mémes techniques sont utilisées pour la synthé&se des
filtres numériques 3 partir du spectre du filtre
idéal recherché.

Les recherches nouvelles présentées dans la
communication portent principalement sur la comparaison
des différents algorithmes possibles pour le calcul du
numérateur et du dénominateur de la fonction de trans-
fert (parties MA et AR) : minimisation de l'erreur de
prédiction ; "blanchiment”" de cette erreur ; identifi-
cation aprés factorisation spectrale ; identification
successives des parties AR et MA apré&s déconvolution
(dans le domaine spectral).

Ces algorithmes sont implanté&s (langage
FORTRAN) dans un programme conversationnel permettant
la visualisation graphique des résultats. Les compa-
raisons pratiques entre les différentes méthodes
portent sur l'Ecart séparant le spectre désiré et le
spectre calculé, qui est fonction de la forme du
spectre original et de l'ordre des fonctions de trans-
fert. I1 apparait que méme pour des gabarits de formes
assez complexes, la réponse en fréquence du filtre
trouvé est trés proche de celle de l'original.

En conclusion, on montre que ces méthodes,
trés systématiques et utilisant des techniques
mathématiques et informatiques simples (résolution
de systémes linéaires, factorisation spectrale,
transformées de Fourier) permettent d'aboutir i des
résultats assez différents mais aussi intéressants que
ceux obtenus par les méthodes de programmation fondées
sur la définition d'un gabarit en bande passante et en
bande atténuée. Elles ont de plus l'avantage de permet-—
tre la synth&se de formes plus complexes.

SUMMARY

The global techniques for identification of
signals and systems are useful for calg?%?ting the
coefficients of the transfer function A(2) ° knowing
its autocorrelation function. The same éezhniques are
used here for the design of digital filters knowing
its spectral density characteristic.

Different algorithms are proposed in the
present paper for calculating coefficients of the
numerator (MA-part) and denominator (AR-part) :
minimization of error of prediction, whiting this
error, identification after spectral factorization,
successive identification of the AR and MA-parts after
deconvolution (in the spectral domain).

All the algorithms are implemented in a
FORTRAN program which permits the graphical visuali-
zation of the results. The practical comparisons
between the resulting and the ideal spectral density
characteristic allow us to choose that filter which
has smallest peak pass band ripple (PPBR), and highest
minimum stop band attenuation (MSBA). Moreover, these
techniques can be used for the design of multiband-
multigain digital filters.

In conclusion, we indicate that these tech-
niques are systematic and use simple mathematical and
programming techniques (solution of systems of Linear
equations, spectral factorization, Fourier transforms)
compared to the classical methods of design.
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I. INTRODUCTION

The problem of designing ARMA-digital
filter can be considered as an approximation problem,
specially in calculating the coefficients of the
moving average (MA) part /1/ - /4/.

Three approches are proposed in the present
paper for the solution of the MA~part : 1) Spectral
factorization of the inverse filter correlation,

2) Deconvolution of the MA-spectral density after
identification of the AR-part, 3) Spectral factoriza-
tion of the ideal correlation for getting the impulse
response to be used with the correlation for calcula-
ting the zeros' coefficients.

In the first approach we approximate the
correlation of the MA-filter by the inverse filter
correlation resulted from the minimization of error
of prediction, then easily we factorize this mirror
image polynomial, we get the required MA-parameters.

In the second approach we get a.correlation
corresponds to an AR-filter, when identified we get
directly the required coefficients.

In the third approach we get the impulse
response of the ARMA-filter, then either using it for
calculating both poles' and zeros' coefficients (time
domain design of digital filter /5/ -/8/),or using the
correlation for calculating poles' coefficients and
then both correlation and impulse response for calcula-
ting the b- coefficients. The use of first and second-
order informations is prefered for the purpose of
matching spectra /3/, /9/.

As the spectral factorization is used in
two approaches we introduce in sec. II the principle
of LE ROUX algorithm /10/ which is used for the facto-
rization process.

The design parameters are, number of bands,
pass (stop) ~ band edges, and attenuation in each band.
With these parameters we can design low (high) - pass,
band - pass (stop), and multiband - multigain ARMA(N,M)
frequency matching digital filters.

The experimental results at the end of this
paper show that, the optimum filter specifications
resulting from the design with our approaches can be
compared with those resulting from the design using
either the statistical method of design /3/, or the
modified ARMA methods of design /4/.

II. FIRST-ORDER INFORMATION THROUGH
SPECTRAL FACTORIZATION

Given the spectral demsity characteristic
R(z), we have to find its impulse response
{g(n)}* or the L - coefficients of the polynomial
0 L .
G(Z)y =T g(n) 2z ,
n=0

g(0) =1 (1)

where G(Z) G(Z_l) is an approximation to the spectral
density R(Z).

The solution to such a problem can be
obtained using the roots finding technique, but fin-
‘ding the roots of a polynomial of an order greater
than 36, leads to a higher error of calculation
(practical limitation). Another technique which is
equivalent to the previous one, and having the ability
to calculate the roots of a polynomial of an order up
to 256 with good accuracy, is that which uses LE ROUX
spectral factorization algorithm. This algorithm at
its convergence, extracts the first - order information

.
sequence {g(n)}; from the second - order information
sequence {r'(n) }(r'(n) is the inverse discrete Fourier
transform of R(Z) , 2 = el¥).

The principle idea of this algorithm
depends on the calculation of the partial correlation
coefficients K , m=1, 2, ..., L used in Linear
prediction tecBnique /117 - /13/.

The spectral factorization process starts with the
following initialization : .
(i) ,i=o0,%1, %z, ... ,-Z
e .= (2)
0 elsewhere

where e . is the ithintermidite variable at the mth
iteration, meanwhile for i negative and at conver-
gence, it represents the required impulse response.
This variable is calculated from the following
Levinson-type recursive algorithm :

Cm+l,i Cm,i " K Cn,m+l-1 (3
= K 4
em+1,0 em’o (1-Km) %)
Km = (3)

_em,m+l/em,0

As a result, we get e 1 and from which me calculate
Gm(Z) as follows : m,

m L ~-i L ~T
= 7, = 6
G (Z) iZZ e -1 Z EO g(n) Z (6)

IITI. POLES' AND ZEROS'COEFFICIENTS
CALCULATION

The problem of designing an ARMA (N,)
digital filter can be stated as follows : given the
ideal spectral density characteristic R(Z), it is
required to find the N-poles' coefficients and the
M-zeros' coefficients of the transfer function H(Z),
such that its spectral density characteristic matches
that of the ideal onme. This transfer function is
given by

M .
2y by Z *

H(Z) = &ﬁ———————frz , ag= by =1 @)
P a; A
i=0

In all the three approaches, the poles'
coefficients are to be calculated firstly by the
approximation of the ideal correlation {r(m) }K
(r(n) = IDFT {R(Z)}). The details of this calculation
will be given in the following subsection.

IIX. 1 POLES' COEFFICIENTS CALCULATION

Using the transfer function (7) and its
difference equation, we can write the following very
important relation of the ARMA (N,M) digital filter

=4

5 ay c (n-i) = c(@m), n>M+l (8)

i=0

where {c(n)}k is the correlation sequence of the fil-
ter H(Z). Using (8), the poles' coefficients can be
obtained such that z(n) = c(n), n = M+l, M+2, ...,
M+N. Hince (8) becomes

§ a; r(n-1) = -r(m) ,
i=1

n o+ ML, M+2, ...,
M+N 9
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Solving the system of equations (9), we get
the poles' coefficients {ai}N. This method of calcula-
tion can be interpreted as t%e exact fitting of the

ideal correlation sequence { r (n)} %I?.

IITI. 2 STABILITY

The condition of stability of the resulting
filter is that all the poles lie inside the unit
circle in the Z - plain. As the spectral density
polynomial of the autoregressive filter (AR) is syme-
tric, we can reflect the poles which are outside the
unit circle to be inside it.

IIT. 3 ZEROS' COEFFICIENTS CALCULATION

The calculation of the coeffirients of the
MA-part was always an approximation solution. In this
paper we propose three approaches which are related
to the previous techniques. In the three methods we
have to calculate the zeros' coefficients using the
calculated poles' coefficients.

III. 3.1 SPECTRAL FACTORIZATION OF THE
INVERSE FILTER CORRELATION (Ml).

This method is similar to that proposed by
L. Scharf in /1/, but it has no restriction over the
order of the MA-part.

As the pole coefficients were calculated,
we can calculate the invers filter correlation as :

rinv(n) = IDFT {Rinv(Z)} (10)
where Rinv(z) is given by
-1
Rinv(z) = A(Z) R(Z) A(Z ) (11)
and
=1
Ry - BRELBET (12)
A(Z) A(ZT)
Therefore using (12) we can write
B(z) BNy s R, (2) = A@@) RZ) AZ™D) (13)
inv
Using- the correlation coefficients we have
-1 9 -n
B(z) B(Z) = I q Finy® 2 14)
Applying LE ROUX algorithm over {r, (n)} ,

. . N
we get at its convergent the required zeros' coeffi-
cients.

IIT. 3.2 POLE-ZERO DECONVOLUTION (M2)

In this method we calculate the AR-filter,
and its spectral density, then we separate a spectral
density corresponding to an AR-filter, when identified
we get the required MA-coefficients. This method can
be considered as pole-zero decomposition technique as
proposed by YEGNANARAYANA /14/, but the computations
in our method are four-times smaller.

Taking the logarithm of (12) we get :

Ryp(Z) = B, (2) + A p(2)

(15)

Since A(Z) was calculated we can calculate
BdB(Z), and the better is to calculate --Bd (Z) which
corresponds to an AR-filter which can be 1§entified as
follows :

M

iZo by Trap@i) = T, (@), n =1, 2, ..., M(16)
where

r g (@) = IDFT {10701 BdB(Z)E=eJW} 17y

III. 3.3 FIRST AND SECOND-ORDER INFORMATION
IN THE DESIGN OF ARMA-DIGITAL
FILTER (M3)

In this method we use both first and
second-order informations for calculating the coef-
ficients of MA-part. This approach is similar to that
proposed by L. Scharf /3/, but in our approach we
factorize a mirror image polynomial (corresponding
to the ideal correlation) of an order 64, for getting
the approximate impulse response { g(n)}83. while
Scharf solved a system of 256 linear equations for the
same purpose.

Using (7) we can write the following
relation :
n=0, 1, ..., M

a; h(n-i) , (18)

Now we can calculate the b's ~ coefficients
such that {h(n) }% = {gn)} %. Substituting the calcula-
ted optimum poles’ coefficients {a¥ }) and the deduced
impulse response into (18), it becomes

n

N %
bn Zido 2

gn-i) , n=0,1, ... , M 19

It is clear from (19), that the effort
given for the solution of the MA-part is transfered to
the spectral factorization process, which is more easier
than the solution of a system of 256 linear equations
as proposed by L. Scharf in /3/.

IV. STEPS OF DESIGN

as follows ?he steps of design are summarized below
1- specify an ideal filter spectral density
2- choose number of FFT points
3j_choose N, and M
4— choose method of zero's coefficients calculation
5- calculate poles' coefficients
6~ find poles' locations and check stability
7- calculate zeros' coefficients

8- calculate resulting spectral density

A FORTRAN program was implemented for
fulfilling the above design steps. This program was
used to design all of the examples that follow in
section V.
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V. EXAMPLES

In this section we introduce the design
of three kinds of ARMA-digital filters, with the three
methods of design.

In first example we design a -50 dB
rejection band low-~pass filter. The resulting spectral
density of the ARMA (10,6) -50 dB low-pass filter of
M2, is shown in Fig. 1 along with the ideal ome. For
the purpose of comparison, the specifications of the
filter resulted from the design with the three methods
are given in Table. 1. From this table, it is clear
that the filter designed with M2, and M3 has better
specification than that designed with Ml.

a)

0O- T - T T -
In Fig. 2 we give the resulting spectral

density of the -40 dB rejection band-ARMA (12,8) -
band - stop filter designed with M3, via the ideal
‘characteristic. The resulting specifications of this
filter corresponding to each method of design is
given in Table. 1. b)
The most important advantages of our
method is that, we are able to design digital filters
with complex transfer function (multiband-multigain).
Fig. 3 shows the ideal spectral density of the three-
bands~-three gains (0 dB, -10 dB, -20 dB) digital filter
along with the ARMA (6,5) three bands-three gains
optimum filter designed with M1l. The specifications of
this filter for the three methods of design is given
in Table. 1.

Magnitude~square in dB

-50 -
Fig.1.-50 dB rejection band low-pass
filter,

a) poles’~zeros'locations

h=pole , a=zero

Table.l. Specification of the optimum filter

Ex.No

M.No

PPBR(dB)

MSBA(dB)

Remarks

+0.37

ho.o2

~0.22

49,92

+0.19

49,89

+0.47

39.08

higher
transi,

region

+0.35

39.57

+0,18

39.98

+0,15

MsBAaa(dB

MSBA2(dB)

9.79

19.63

-0,21

9.84

19.69

-0.31

9.83

19.60

Magnitude=square in dB

b) ARMA(10,6) approximation of M2

J b)

~404
Fig.2.~40 dB rejection band stop-
band filter,
a) polesr-zeros®locctions

b) ARMA{12,8)approximation of M3,
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T
<

“To .1

=101

Magnitude~square in dB

-204
Fig.3.Three bands-three gains filter,
a) poleé’-zeros’ locations
b) ARMA(6,5) approximation of ML.
VI. CONCLUSION

The results presented here show that
our methods are useful in designing low (high) - pass,
band-stop {pass), and multiband-multigain digital
filters. Several note can be stated. 1) there is no
need to begin the design with a rational analog
filter (classical method of design), 2) the procedures
presented here permit the designer to rechoose the
order of poles and zeros, 3) the stability of the
resulting filter is checked, 4) the use of both first,
and second-order informations leads to a better
spectral matching, 5) increasing the number of correla-
tion coefficients used in factorization process, L,
results in a better spectral matching. We hope that
the proposed techniques may provide useful methods for
modeling ARMA digital filters.

For the moment we study the question
of optimum order determination.
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