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RESUME

De nombreux problémes en filtrage adaptatif
peuvent &tre traités du point de vue de 1'identification
des systémes. L'algorithme récursif du maximum de
vraisemblance est proposé pour l'estimation des
paramétres du modéle du signal. Les valeurs estimées
des paramétres sont ensuite utilisées comme coefficients
d'un filtre adaptatif de type ARMA. Plusieurs exemples
sont presentés, en particulier: prédiction adaptative,
déconvolution adaptative, suppression adaptative
du bruit et estimation adaptative de retards temporels.

1. INTRODUCTION

Considerable progress was made in the last decade
in the development and analysis of recursive parameter
estimation algorithms. The major part of this work was
in the area of system identification, in the context of
controlling plants with unknown or slowly time varying
parameters. A large number of algorithms were developed
for fitting linear models to the observed data. The
following ARMAX model is an example of the class of
models that are typically considered.

Let u and y, denote the input and output
processes oE the modél, and v,_ an unmeasurable white
noise process (i.e. a "disturbance'", in the control
terminology). These processes are related by the
following equation:

NA NB
v, = —'z ay._; z b, Yeoi + z eV vt (1)
i=1
which can be written in polynomial form as
-1 _ -1 -1
(z )yt = B(z Ju, + C(z A (2a)
where
_l = 1 . - . -NA
Az ) =1+ az + + aya? (2b)

SUMMARY

Many problems in adaptive filtering can be ap-
proached from the point of view of system identifica-
tion. The recursive maximum likelihood algorithm is

- proposed for estimating the parameters of the signal’-

model. The parameter estimates are then used to form
an adaptive infinite impulse response filter., Several
examples are discussed including: adaptive line
enhancement, adaptive deconvolution, adaptive noise
cancelling and adaptive time delay estimation.

S S R -NB
B(z ) = blz + + bNBZ (2¢)
<1, _ S -NC
Cz ) =1+ c,z + Cxc? (2d)
z'_l = unit delay operator, i.e., z-lxt =%, (2e)
-1

The case where B(z ) = 0 1is of special interest in
s1gnal processing applications, since the output
(C(z‘l)/A(z'l))v is then an autoregressive

mov1¥g—average (ARMA) process. When B(z ) = 0 and
C(z 0 we have an autoregressive (AR) process
(l/A(z" ))v . Such processes are very common in

t1me series analysis and statistical signal processing.

Many problems in signal processing involve signals
that can be represented by linear models of this type
(AR, ARMA, ARMAX), as we will show later. Knowledge of
the signal model parameters makes it relatively straight-
forward to design filters that perform various process-
ing functions such as: 1linear prediction/smoothing,
deconvolution, noise/interference suppression, or
spectral analysis. When the signal model is not known,
the parameters of the related filter need to be adap-
tively adjusted. A technique that is commonly used in
adaptive control problems, is to first estimate the
model parameters and then design the controller as if
these estimates were the true parameter values.
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The same idea can be used for adaptive signal process-
ing, as already indicated in [1]-[4]. The combination
of a recursive parameter estimation algorithm with a
filtering technique based on known model parameters is
the main theme of this paper.

The successful application of system identification

techniques in adaptive control motivated us to apply
the same techniques to signal processing. Of particue
lar interest is the fact that some commonly used param-
eter estimation algorithms such as recursive maximum
likelihood (RML), extended least~squares (ELS) or
recursive generalized least squares (RGLS) [5]-[6], are
capable of estimating ARMA (or ARMAX) parameters, and
not just AR parameters. As we shall see, this leads
naturally to adaptive infinite impulse response (IIR)
filters. Adaptive ITR filtering is considered by the
signal processing community to be a difficult problem.
Consequently, the overwhelming majority of the work in
the area of adaptive signal processing seems to con-
centrate on finite impulse response (FIR) filtering.
The application of system identification algoritims
opens the way to the development of a whole new class
of adaptive IIR filters, backed by the extensive con-
vergence analysis that was performed in recent years
[71-[12].

In spite of the natural interconnections between
system identification and adaptive signal processing
very little work seems to have been done to transfer
algorithms from one area to the other. The objective
of this paper is to report on some recent work in which
a version of the RML algorithm was successfully
applied to a number of problems including: adaptive
line enhancement,adaptive deconvolution, adaptive noise
cancelling and time-delay estimation. A brief descrip=-
tion of these applications is presented in Section 3.

In Section 2 we present the RML algorithm and
discuss its properties. Some of the special character-
istics of the signal processing problem (when compared
to the control problem) and their effect on the behavior
of the algorithm are also discussed. Finally, in
Section 4 we outline some alternative algorithms for
adaptive processing and areas for further investigationm.
We hope that our work will stimulate further research
into the numerous potential applications of parameter
estimation algorithms to adaptive signal processing.

2. THE RECURSIVE MAXIMUM LIKELTHOOD ALGORITHM
The RML algorithm provides a recursive estimate

of the parameters of the ARMAX model in equation (1).
For a detailed derivation of this algoritbm see [13]

[14]. Here we present only a summary of the recursions.
Let 0 denote the vector of model parameters
_ T
8 = [al""’aNA’ bl""’bNC’ Cl”"’CNC] s (3a)

and ¢t, wt denote the data vector and the filter data

vector, respectively.

- T
O = [¥eps Yo nartears e Ce a8 e
(3b)
N i OSSN b
t t-1 * 7t-NA® el *"t-NB* t-1° *Tt-NC
~ (3¢)
Dengte by et the parameter estimates at time t, and

by C(zgl) the filter whose coefficents are the estimates

¢,. Then,
1 ~

8, = prediction error

_ T
Cer1 T Vear T e (42)

T T
= - | =
Pt+1 [Pt Pt"[)t+l¢t+lPt/(>‘t+1+vt+ltht+l)]/Xt+l
= error covariance matrix (4b)
O = % T PV (4e)
B T 4 _ .
eyl = Ve ~ PpqnOpyy T residual (4d)
7= (/e
y, = ( z )Y,
T, = (1/C(kz™))u,_ » filtered quantities (4e)
— ~ -1
e, = (1/c(kz T))e,

with initial conditions

P =
o}

~

8 =
(o]

0l, o = initial estimate of the covariance

60, initial estimate of O (typically
60 = 0).

The parameter At is ad exponential weighting on the

data. Typically Xt is a constant close to unity, or

A =X At + (1-2) (= .99, XO = 0.95) 5

t+1
The parameter k is used to 'pull in" the roots of the

polynomial C(kz-l) into the unit circle, when C(z—l)

has roots near the unit circle, as is often the case in
signal processing applications. This parameter affects
the convergence rate of the algorithm as discussed in
[15). 1In fact, for k=0 this algorithm becomes the so-
called Extended Least-Square algorithm described in [16],
[17}. In most cases the choice of k is not critical
and in the following we assume that k is close or
equal to unity. To ensure convergence, the stability

of C(z_l) needs to be monitored. If unstable, the
parameter estimates need to be projected into a region
of stability [71,[8].

The asymptotic properties of the RML algorithm
have been investigated in considerable detail. It was
shown that asymptotically the recursive maximum likeli-
hood technique has the same properties as the corres-
ponding off-line version. Thus nothing is sacrificed
by going to a recursive implementation, provided that
enough data is available. The maximum likelihood esti-
mator has all the desirable properties one may expect
from a parameter estimator:

~

N >0

as the number of data points N goes to
infinity

® Asymptotic consistency [18], i.e., ©

® Asymptotic efficiency [19], i.e., the
estimation error covariance approaches
the Cramer-Rao lower bound

o The estimation error distribution is
asymptotically normal [19].

The convergence properties of the RML.algorithm
were studied by Ljung [7],[8] and others [5},[12]. It
was shown that this algorithm will always converge to a
local maximum of the likelihood function. In some situ-
ations there may exist "false" maxima which can cause
difficulties. However, for ARMA processes it was shown
that all the local maxima coincide with the global maxi-
mum [20] (provided that the orders (NA,NC) of the esti-
mated ARMA model are equal to or larger than the true
model orders).

Relatively little is known about the convergence
rate of the RML algorithm for different types of pro-
cesses., Hardly any analytical units are available and
most of the results are based on extensive simulation
studies [11]. However, most of these studies were
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related to control problems involving stable plants
with poles and zeroes well inside the unit circle.
Models arising in signal processing applications typi-
cally involve narrowband signals, which are represented
by poles and zeroes on or very near the unit circle.
Our own experience indicates that pole and zero loca~
tions have a significant effect on convergence rates.
When the poles and zeroes are well separated, fast
convergence was observed. Clusters of poles and zeroes,
especially when they are near the unit circle, often
lead to much slower convergence. The issue of conver-
gence rate is crucial in adaptive signal processing
since signals are often nonstationary and time-
varying and it is important to know how well the
adaptive filter will track the changing parameters.

In adaptive control problems the parameters are often
very slowly time varying (compared to the time con-
stants of the plant). We are currently investigating
the convergence rate of the RML algorithm for ARMA
models with poles and zeroes near the unit circle.

The broperties of the maximum likelihood estimator
described above make it very attractive for adaptive

IIR filtering, as illustrated in the next section.

3. ADAPTIVE SIGNAL PROCESSING: SOME EXAMPLES

3.1 The Adaptive Line Enhancer (ALE)

The ALE is an adaptive filter for narrowband
gsignals in additive noise {21]-[23]. The ALE can be
interpreted as an adaptive predictor, i.e., its output
is yt]t—l: the estimate of Ve based on data up to

time t-1. A narrowband (autoregressive) signal in
white noise can be represented as an ARMA process [24].
Thus, the optimal predictor is given by

~ NA NC

Yele-1 T 7 121 3%¢-3 * 121 (6)

€151

which is depicted as a tapped delay line filter in
Figure 1. The parameters of the filter will be
adjusted using the RML algoritbm (with NB=0). Note
that the resulting filter has an infinite impulse res-
ponse while.most ALE-s discussed in the literature are
of the FIR type. In [24] we discuss in detail the
advantages of the IIR-ALE and its superior performance
at low signal-to-noise ratios.

To illustrate the behavior of the IIR-ALE we
depict in Figure 2 the input and output of the filter

for a single sinusoid in noise, at SNR = 0 dB. The
spectra were obtained by a 512 point FFT. The ALE
INPUT ERROR
Yy £t
QUTPUT
Yt|t-1

Figure 1 The IIR Adaptive Line Enhancer
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Figure 2a Spectrum of the ALE Input Y.
2. 5. 1ee. 150. 200, 250.
! 1 L | 1
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(d8]
-49.9 - --49.9
i Ay ad
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0. so. 100. 150. 200. 250.
Figure 2b Spectrum of the ALE Output §tlt 1

output data corresponds to the last 512 samples in a
total of 2048 data points. Note the significant noise
reduction. Further noise suppression is achieved if
the filter is allowed to continue its convergence.

See [24],[25] for more results.

The parameters of the ARMA model C(z_l)/A(z-l)
which serve as the coefficients of the IIR-ALE can also
be used to estimate the spectrum of the observed signal.
In [26] we present some comparisons of the ARMA spectra
obtained by the RML with corresponding estimates
obtained by the maximum entropy method.

3.2 Adaptive Deconvolution

The need to extract a signal, given a filtered
version of the signal arises in many situations includ-
ing: (i) speech analysis/synthesis by linear predictive
coding, and pitch estimation, (ii) estimation of the
reflectivity sequence in seismic data processing, (iii)
channel equalization for the removal of the intersymbol
interference caused by convolution of the message
sequence with the channel impulse response.

Consider the case where a white signal process
passes through an IIR filter C(z‘l)/A(z‘l) (stable and
minimum phase). The RML algoritim can be used to
estimate the filter parameters, and deconvolution will
be achieved by passing the data through the estimated

. . -1 -1
inverse filter A(z ~)/C(z 7). Note that most current
deconvolution techniques are limited to the case where

the convolving filter has only poles (l/A(z_l)) while

the RML can handle the pole-zero case (C(z—l)/A(z_l)).
In Figure 3 we present a comparison between IIR and FIR

deconvolution. The data y_ was generated in this case
by passing a train of impufses through the filter
ciz"h 1+ g7
-1 -1 -2 M
A(z ™) 1+ .606z ~ + .93z

and adding measurement noise. The signal to noise ratio
was 20 dB. Note that the IIR filter restores the
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NB
340, 360. 389, 400,
1 —
2.09 1 L 2.00 .z a; z 4 +'z bi u g - (1D
=1 i=1
1.00 - L 1.00 Using the RML algorithm to estimate the ARMAX model
parameters and then estimating the "clean" signal by
o equstions (9), (11) gives an IIR-ANC. Figure 4 depicts
S 9.090 L o.60 the noise cancellation achieved for a narrowband signal
= in the presence of narrowband interference. See [31]
g for more results.
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Figure 3b The Deconvolved Signal §4(w) [dB] -20.0 -2e.0

¢ at the
Output of an FIR Filter (NA=2,NC=0)

original impulse sequence while the FIR filter gives
pairs of impulses. This is caused by the fact that the
moving average part of the convolving filter is not
identified by the algorithm and therefore the de-
convolved signal is A(‘,z_l)yt = C(z*l)vt = (l+zpz)vt.
For a more detailed discussion of adaptive deconvolu-
tion see [27], [28].

3.3 Adaptive Noise Cancelling (ANC)

The ANC and its applications are discussed in [29]
[30]. Here we present only a very brief description.
In the ANC problem we are provided with a noisy meas-
urement Ve of the signal S,

Y. T s, + z, (8)

and also with a reference input u,_ which contains in-

formation about the noise process z,.- From the side
~
information (ut) an estimate zt of the noise process

is obtained and then subtracted from the primary input

Ve to "cancel out" the noise, i.e.,
~
s = -
e T Ve~ 2, (2
under the assumptions that u, and zt are related

by a linear model and that s_ is an ARMA process it

t
can be shown [31] that Ve is an ARMAX process of the
form
-1 -1
e T Bpts = B(Z-l) vt C(2—1) t
LN CE Az )

is the reference input and v,

(10)

where u is a white

t
noise process. The noise estimate can be obtained by
the following IIR filter.

i

-88.0 T T T T 6.0
58 100, 150.? 200. 2ase.

e

SIGNAL INTERFERENCE

Figure 4b Spectrum of ANC Output S,

Note that in addition to obtaining the predictor

B(z"l)/A(zvl) of the noise process z_, the RML algo-
rithm automatically provides us with an ARMA model

c(z’l)/A(z‘ If the
signal S,

1) for the signal process S -
is a narrowband process corrupted by white

noise (uncorrelated with the noise process zt mea-~

sured by the reference input), additional noise sup-
pression can be obtained by narrowband filtering. Thus,
the ARMA parameters (C,A) can be used to form an IIR-
ALE as was discussed in Section 3.1, i.e.,

Fa s 40
s = = a, s, + c.,€
L = |

it-i ° 12)

In otherwords, the RML algorithm leads naturally to an
adaptive filter (equations (9), (11), (12)) that can
be interpreted as an IIR-ANC followed by an IIR-ALE.
In [31] we present a much more detailed discussion of
this filter.

3.4 Adaptive Time Delay Estimation

The need to estimate time delay between two
signals arises in many applications such as target
localization by sonar systems, and position estimation
by radio navigation systems. The problem is usually
formulated as follows: Jlet us assume that two sensors
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(recivers, microphones, geophones) receive time shifted
and scaled versions of some signal x_ : u x, +n

e Ve T ¥ TR
= d +m are independent mea-
Ve T S TR t P

surement noise processes. Many different techniques
for estimating the delay T have been proposed in the
literature. These techniques typically involve filter-
ing the signals and then cross—correlating [32]-[34].
To do this in an optimal way (in the least-squares or
maximum likelihood sense) requires knowledge of the
statistics of both the signal and noise. Using the
system identification approach we were able to derive
an adaptive technique for time delay estimation which
requires no prior information [27],[35]. Here we
present only the simplest version of the algorithms
presented in [27],[35].

, where m., D

Note that two processes that are delayed versions
of the same underlying signal are related by a moving-
average filter whose coefficients contain the delay

information. In the example mentioned above
_ -1
Ve = B(z )ut + v, as)
where
B(z_l) =az""
(bi=0 for i#T and bi=d for i=t)
v, = m - dnth = a white noise process

8
of B(z-l) will provide an estimate of the time delay
by looking at the index of the largest coefficient of

B(z—l). If the delay is not an integer multiple of

the sampling interval, it is necessary to perform a

simple interpolation to get at the true delay [27].

The RML algorithm is, of course, capable of handling
the case where Ve is not white.

A much more sophisticated approach is based on

the idea of fitting a multichannel model to a vector
of sensor measurements Y, e.g.,

?A gc
y. = = Ay, .+ C, v__. as
t i=1 1°t=-1 i=1 i t-1

where Ve isa p %X 1 wvector and Ai’ C. are

i
p X p matrices. In [27], [36] we have shown that the
resulting multi-input multi-output (MIMO) adaptive
filter can be interpreted as a combination of an adap-
tive beamformer and a time delay estimator. The
interesting point brought out in [36] is that this
filter is capable of handling simultaneously several
(up to p) targets! Here we only note that the use of
MIMO signal models opens the way for developing new
classes of MIMO adaptive filters which have numerous
applications in array processing, beamforming, and
processing of multisensor data. Current adaptive
filtering techniques are almost entirely devoted to
single input single output filters. We believe that
perhaps the most important contribution of our model~
ing approach is that it provides a systematic frame-
work for handling multichannel problems. '

4. CONCLUSIONS

We presented an approach for developing adaptive
‘filters for various signal processing problems. While
the RML algorithm described in this paper is well
known, its application to the class of problems de-
scribed in Section 3 is apparently new. The RML algo-
rithm was presented here in one particular form. It
is important to note that alternative forms can be
used to derive other implementations of these adaptive
filters with similar asymptotic properties.
examples:

Some

Square-Root Form

The update equation (4) for the error covariance
matrix Pt suffers from numerical problems when the

number of estimated parameters n = NA + NB + NC is
large (e.g., n > 10). A much better implementation is

obtained by using the square root form in which Pi/z
is propagated rather than Pt (where Pi/z Pz/z = Pt).

The advantages of square-root algorithms were discussed
in deail by Bierman [37].

"Fast" Implementation

The RML algorithm presented in equation (4) re-

quires in the order of 4n2 + 5n multiplications and
additions per data point. For higher order models
(i.e., large values of n) the amount of computation may
become excessively large. Thus, it is important to
search for more efficient estimation techniques. Using
the idea of "shift low rank" developed by Morf led to
implementations of the RML requiring proportiomal to n

rather than n2 multiplications and additions [38].
This technique provides an efficient way of computing

the gain vector tht+l' The rest of the algorithm

remains unchanged. The detailed update equations can
be found in [38] and will not be repeated here.

Recursive Lattice Forms

The recently developed square-root normalized lat-
tice forms [39] combine the good numerical behavior of
square~root implementation with computational effi-
ciency. They furthermore provide a computational
technique that is recursive both in time and in model
order. In fact, the lattice form provides simultaneous
parameter estimates corresponding to filters of all
orders up to a maximum order! This is very sueful for
addressing the order determination problem, which is
one of the more difficult aspects of signal modeling.

Symmetric A(z’l) Polynomial

In some situations the parameters of the ARMA model
are interrelated in some way. For example, the case of
sinusoids in white noise can be shown to have a sym-

metric A(z—l) polynomial, i.e., a, = In [40] we

a ;-
presented a way of incorporating this constraint in the
parameter estimation algorithm. Several high resolution
spectral estimation techniques are implicitly "Sym-
metrizing" the predictor coefficients. In general,
whenever the problem has some special structure that

can be used to reduce the number of estimated parameters,
one should explore the possibility of using that struc-
ture in the parameter estimation algorithm.

Finally we should note that the results presented
here are only preliminary. Much work remains to be done
on the analysis and performance evaluation of the RML
and related algorithms in adaptive signal processing
applications. Some specific issues that need to be
addressed are: the convergence rate of the RML for
different classes of signals, the tradeoff between
parameter tracking capability (i.e., the value of A)
and filter performance, and the development of robust
techniques for ARMA order determination in real-time.
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