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RESUME

La méthede d' "Entropie Maximale " est une for-

malisme mathématique utilisée pour assigner une fonc-
tion de densité de probabilité 3 une ensemble d'infor-
mation donnée en fonction de ses moments. Cette app-
roche a €té appliquée aux statistiques multidimensi-
onnelles en vue d'obtenir des fonctions de distribu-
tion d'ordre n 2 partir des marginaux d'ordre réduit
et des contraintes additionnelles, L'utilisation de
la méthode d'Entropie Maximale pour les probl2mes de
détection est indiquée. Une démonstration simple du
probldme isopérimetrique inverse pour distributions
‘multidimensionnelles est &galement fournie dans le
texte.

I - INTRODUCTION

The principle of maximum entropy and the prin-
cipl® of minimum créss-entfoéyﬁare mathematical for-
malism to solve statistical inference and information
processing problems in a remarkable variety of fields.
Specifically, these problems are characterized by
systems or processes whose state probabilities are
not known but information on the probability distri-
bution is given in terms of expectations of various
functions of the states. To obtain a complete statis-
tical description of the system one needs to assign
the probability distribution function of the states
which is consistent with the available information
but is otherwise minimally prejudiced with respect

to the missing information.

These types of problems arises in a variety of

situations. In probability theory and applied statis-

SUMMARY

The Maximum Entropy (ME) procedure is a mathema-
tical formalism to assign a probability density fune-
tion corresponding to an information set given in the
form of moments. This procedure has been applied to
multivariate statistics in obtaining n'th order dis-
tribution functions from lower order marginals and
additional prior constraints. Applications of M tech-
nique to detection problems are also indicated. A
simple proof of the inverse isoperimetric problem for

‘multivariate distributions is given.

tics one often has measurements of the functional mo-—
ments of the system states and one desires to find
the underlying probability distribution function. In
time series analysis and modeling one tries to esti-
mate éhe power spectrum of a process and the model
parameters given a limited number of observations.
Other applications are in the fields of traffic net—
works, reliability analysis queuing theory, produc-
tion line decision making, group behaviour stock mar-—
ket analysis, radio astronomy, geophysical sounding,

data communication, etc.

The common aspect is that, in general, the num-
ber of observations and data are considerably smaller

then the " degrees of freedom " of the system or the

process. Tn this respect the ME solution can be view—
ed as an antiprojection operation,that is reconstruc—

ting the complete system from limited projection data.
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II - MATHEMATICAL PRELIMINAIRES

Consider first a discrete system with n states
and M prior constraints in the form of functional mo
ments.:

(x;) = & j=1, v.., M (1)

with, al(x) = 1 which corresponds to the normalization
constraint. These constraints, if cgnsistent, define

a set of uncountably infinite number of probability
distributions, called admissible distributions. Jaynes
{1} has shown that among admissible distributions one
should choose the probability distribution that max-
imizes an entropy functional, the Shannon entropy de-

fined as:

n
H(p) = I log p; (2)

. i=1 . . .
subject to the set of constraints in (1). This sub -
jective assignment of the probability distribution

can be shoWh to be also the distribution that
would be realized in the greatest number of ways ex~
perimentally. Jaynes qualifies this distribution as
" the distribution which is maximally noncommittal
with regard to missing information and is the one that
agrees with what is known but expresses maximum an-—
certainty with respect to all other matters and thus
leaves a maximum possible of freedom for our final
decision to be influenced by the subsequent sample
data ". The maximim entropy ( ME ) distribution can
be found by considering the objective function

M n
JA(P) = H(p) + jil Aj iil piaj(xi) (3)
where the constraints have been appended through the
Lagrange multipliers { Ai } . The ME distribution is
simply found as:

py =exp { =X - Alal(xi) B N VIR BN CY)

Furthermore the Lagrange multipliers in (4) can
be simply found by using the constraint equations in
(1). This procedure generalizes to the determination
of the probability density functions in a straight-
forward manner using techniques of calculus of vari-
ations (2] . Similarly starting from a set of a prio-
ri probabilities,an aposteriori distribution in the
light of new information can be assigned by mini-

mizing the cross—entropy functional, defined as

H(q, p) = '

.1 . .
J q; log (qJ / pJ) (5)

[[Iciy=]

i

where q is the a posteriori distribution. In essence
in the minimum-cross—entropy technique one desites to
choose a new set of probabilities, gq, which 1s nearest
to the given set of probabilities. In the case when
the a priori distribution is uniform the minimum cross-
entropy technique becomes the maximum entropy tech-

nique.

IIT- MULTIDIMENSIONAL DISTRIBUTIONS and ME.

Given an n'th order probability density function
(p. d. £.) the lower order marginals can be simply
found by straightforward integration. On the other
hand the broblem of obtaining a p. d. f. given its
m'th lower order marginals( m< n ) and some addition-
al moment conditions does not have a unique and ex-—

plicit solution. {4, 57 . Beckmann has solved the

special but important case of deriving a second order

. p. d. f. given the first order marginals and the cor-

relation coefficient using an infinite series of or-
thogonal polynomials. It will be shoéwn -that the ME
formalism provides a much more general solution. In-

fact let the prior contraints be given as

I k.f(xl’ DY xn) gj‘(xl,

o Ky ) dxl NN dxk
R J 3 ]

3
= Gj(xk.+1""’ Xn) (6)
J j=1, ..., M

where kj is a subscript depending upon j, { gj(.) } are
generic functions of kj variables and { Gj(.) } are
moment functions of n - kj - 1 variables. Note that
for k. = n one obtains the functional moments, while
for gj(.) =1, kj < n, one has the lower order margi-

nals. The performance index becomes in this case:

JA (£} = - fnf (Xl’ . xn) log f(xl, vy xn)dxl..
R M
,dxn + 1 I f(xl,.., Xn) Aj(xk. b xn)~
J=1 jol _]+1
R
.gj(xl,.., ij) QXl...dxn (7)

where xj(x . xn) are the Lagrange multiplier

k.+1"'
functions. J

Let us now consider a number of two dimensional dis-

tributions to illustrate this formalism.

Case 1: Assume that only the correlation coefficient
is available; in other words, the constraint

set is given by:

Ir (%, y) dzdy = 1 and [/ xy f(x, y) dxdy = ¢
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The ME solution then becomes:
£ (x, y) =exp { A ~ Apxy }

This equation has nosolution in the intervals ( 0,=)
and (-«, ®). On the other hand, for a finite interval
e.g., fO, 1] one obtains the value of Lagrange multip-—

lier implicity:

-A
£= (e '+Ein () - 1) / AEin ()
where Ein (Al) =- 3 ((-»)" Aln) / (n.n!).
=1

Case 2: Let us assume that the marginal distri-
butions e(x) and d(y) are available in
addition. to the:éorrelation.coefficient.
It can be shown that the corresponding

ME distribution becomes:
£G6Gy) = exp { -2 = 24, (0 = ,() - agxy 1(8)
where the Lagrange multiplier functions should satisfy
exp (=2 = A, (NS exp (2X;(x) = Ayxy) dx = d(y) (8a)

exp (-1~ 2 (x)) S exp (-Az(y) = Agxy) dy = e(x)

(8b)

Assuming further that the marginals are identical (i.e,
e(.) 2 d(.)) it follows then that xl(.) = Az(.) = A ()
and (8) reduces to a nonlinear integral equation of
the Hammerstein type |11} :

-rxy

ch(y) / e h(x)dx = e(y) (9)

where we have used h(x) 2 exp (-A(x)), ¢ = exp (—Ao),
r = A3. Under more general moment conditioms but still
with symmetrical marginals, (9) remains the same in

form with the kernel:

k(x, y) = exp { -

M
z
j:

X, a.(x, ¥) 1}
1 38
Case 3: A common prior constraint is the con-—
ditional expectation which in the most

general form can be written as
E{ux) /vy)}l=cly (10)

where E {.1.} denotes the conditional expectation.

The constaint set becomes now
Jf f(x, y) dxdy = 1 S f(x, y) dx = d(y)
I f(x, y) dx = e(x) Foux) £f(x / y) dx = c(y)

and the performance index can be written as:

- SIf(x, ¥v) log f(x, y) dxdy +
+ XO JIf(x, y) dxdy + ff‘xl(y) f(xy)dxdy ™3
+ fflz(x) f(x, y) dxdy +

JA[ £)=

Soulx) f(x, y) dx
+ () dy
I f(Xy y) dx

an

Recalling that fu(x) f(x, y) dx = c(y)d(y), the ME

distribution becomes:

f(x, y) = exp { AT AI(X) - Az(y) - x3(y)-

u(x) - c(y)
[———] }o(12)
ay)

where the Lagrange multiplier functions, if f(x, y)
is symmetric in its marginals, must satisfy a symmetry

condition of the type:

ST u(x) hix, y) dxdy = [/ c(y) h(x, y) dxdy (13)

where h(x, y) 2 exp { - Xl(x) - u(x) AB(y) / dly) }

Case 4: In certaincases the characteristic function
of a process has a recursive structure.
For example consider the set of vector

autoregressive (AR) processes,

X = Ax u
L

where { u } is a sequence of independent identically
distributed random vectors with a joint p. d. f. g(u)
A is an nxn matrix and { b5 } are the sample vectors

of the AR sequence. It can be seen that the ch.f. sa-
tisfies the equation

9. (v) = ¢_(Av)

x

. v
d)g(—)
The prior constraints in this case becomes:

iy f(x)dg=1
D T

ii) £f(x) =/ f(A_lz) g (z - x) dz
X n Z z T X) 4z
R
1i) other moment constraints.

The resulting ME disturbing using constraints i) and

ii) becomes
£(x) =exp { -2 -/ A(w) g(Rx - uw) R du - A(x)}(14)
IV - APPLICATIONS to DETECTION PROBLEMS

Consider the detection of a known signal in the
presence of noise, i.e., the binary hypothesis testing

problem
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HO : r{e) = s(¢) + n(e) (15)

H o r(t) = n(t) e [O’T]'
where n(t) is a sample function of an additive noise
process and sft) is the signal component. The Bayes
detector can be implemented using the likelihood ra-
tio
£ (x(e) / Hl)

H
el —mm = 2y
£ (r(t) / Ho) Ho
where £( r(t) / Hi ) = fi (r) i=

of the received signal under HO and H

0,1 are the p.d.f."s;
1
Case 5: Suppose that fo(r) and fl(r) are not

“known a priori but information on the moment condi=
tions only is given. One would like to derive in the
ME sense the p. d. f.'s fo(r) and fl(r) that satisfy
the given moment conditions while maximizing ( mini-
mizing ) the detection probability. The corresponding
p. d. f. pair will be the most ( least ) favorable
distribution in the class of admissible distributions
and upper and lower bounds to the receiver performan-~
ce could thus be set. The performance index can be

" written as:

(16)

J £.,f ='-ffo(x)1ogfo(x)dx - f£,(x)1og £;(x)dx

X 1’7o

m
+ I

n
Z xiai(x) fl(x)dx + 3 nib]._(x) fo(x)dx

i=0
(16)

N £
+ ¢y fD fl(x)dx + fD‘Lo(x)dx

1 [¢]

In (16), D, and Do are the decisioh regions for cor-

1

rect detection under hypotheses H, and Ho, respec*

1

tively. Furthermore c. and <, denote the relative

1
weights associated with decisions of each type. The

resulting ME distributions become than

m

£(x/H)) = exp { - iilxiai(X) + cjulx = y) } (17a)
m

f(x/Ho) = exp { - iilnibi(X) + cou(y - x) (17v)

where u(.) denotes the unit step function. The pro-

bability of detection ?D and false alarm P, can be
calculated in terms of y and the receiver operating
characteristics (ROC) can be then evaluated. Inver—
ting the signs of the last two terms in (16) one ob-
tains the least favorable distribution for the detec-—
tion problem. Furthermore for a detector of Neyman -
Pearson type one adds simply one more Lagrange mul-

. It

n+l
is interesting to note that for ME distributions the

tiplier term, i.e., <, is substituted with n

the likelihood ratio has always the form

n m .
.E Aiai(x) - .Z nibi(x) <y
1=l 1=1

V -~ INVERSE ISOPERIMETRIC PROBLEM:

The problem of finding the probability density
function that maximizes the entropy functional subject
to prior constraints as in (6) is also referred to as
the inverse isoperimetric problem E6] . One would like

to establish whether the ME distribution is the unique

. extremal distribution that satisfies the given cons—

traint equations. The following theorem is obtained
using a straightforward generalization of the theorem

proven in [6] .
Theorem: Given a p. d. f. of the form

. M
f(x) =exp { - T 1 (Xk +1,...,xn) g(xl,..., % )}
SR ;

the needed constraints so that this p. d. f. is the

extremal distribution of the isoperimetric problem are

E { g; (xl,..., xkj)} = Gj (xl,..., xkj) (18)

j=1....M

k3

Proof: The ME solution under the constraints in (18)

is the function given by

i M (19)
f(x)=exp { - I ei(xk-+1""’ xn) g(xl,--~xk )}
i=1 i i

where { 8(x)} denote the set of Lagrange multiplier

functions. The theorem will be proven if one can show

that:
(20)
Si(xk{+1,..., xn) = ni(xk{Fl""’ xn) i=1,...M
Consider now (21)
M
Gj(xl,---, x )=/ gj(xl,---, X )exp { - 1
j j i=0

6 3 oo %) Bxpaeees X ) )
1 1

where { Gj(xl""’ X Y} } are now functions of
{ ei(xk:kl""’xn) } 1 Consider now the variation of

Gj(.) with respect to ei(.):

an(xl,..., xk.)

] — - -
= ‘fgj(xl,-~-, ij) gi(xl,---xki)

Bei(xk{+1,..., xn)

£(x) dx..ed (22)

i
For a stationary point to exist all variations must be
equal to zero. However for i = j (22) is always a po-

sitive cuantity and it follows then that there are no

local maxima and (20) 1s always satisfied.
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VI - DISCUSSION and CONCLUSION

Several Problems of interest remain to be in-

vestigated with ME distributions:

i) If the physical properties of a problem are suffi-
ciently well known and one knows the p. d. f. up to
a parameter set one uses parametric techniques. On
the other hand if our a priori information is very
limited (e.g. one knows only that the p. d. f.'s are
symmetric) one reverts to nonparametric p. d. f. es-—
timation techniques. The degree of " nonparametric-—

ness "

of the estimation rule depends in essence upon
the cardinality of the set from which one tries to

select an appropriate p. d. f.

One then wonders where does really the ME pro-
cedure stand in the spectrum of p. d. f. estimation
techniques ranging from parametric to strictly non-
parametric methods. Furthermore if one has to esti-~
mate the moments from noisy data, one has to deter-
mine how robust the ME procedure is and how fast and
according to what criteria it converges to the true
distribution {7, 8] . Recall that in the case of
noisy data for the moment constraints one coulduse the

mean square criterion, e.g.,
r

3, (€] = - T8 1ogf(x)ax + 1 e A SE(0a (x)dx - A)2
jop PUE i i

where { ¢y } is a set of weighting coefficients.

Lacoss [9] has shown that nonlinear spectral estima-

tion techniques in general, the M spectral analysis

technique in particular, provide a data-adaptive win-
dowing effect. It can be conjectured then that as one
derives the M distribution starting from raw data

one would have a Parzen windowing effect on the data.
These conjectures are yet to be tested out.

ii) Jaynes' formalism assigns a p. d. f. using a pri-

ori moment constraints. On the other hand in statis-

tical work one often has measured data. One then would

" "

desire to determine the essential moment functions

In other words the smallest number of moment func-

tions to extract the largest amount of information

from data ", where the moments are estimated as, e.g.
. 1 n
E { gj(X) } = H iil gj(xi) J = 1,..., M. (23)

This problem can alternately be viewed as designing
an optimal set of observers to discriminate two pro-
cesses or distributions ( e.g., the true distribution
from a uniform distribution ). An analogous problem

in the context of 'dis¢riminating two Gaussian pro-

cesses has been solved by Kadota and Shepp [10] .

iii) Determination of the M p. d. f. as in (4), (12),
(14) etc. can also be viewed as a nonlinear mapping
from the set { Gj(.) } to the set { Aj(.) } . Infact

e.g. (1) can be expressed as

Fe(pseees 4y = 0 k=1,..., M.  (24)

Such a formulation lends itself conveniently to numeri-
cal troot finding algorithms such as the Newton ~ Raphson
technique [lf] . Efficient numerical techniques should

then be developed for the above problems.

In conclusion, it has been shown that the ME pro-
cedure can be applied easily to derive multidimensional
distribution functions but the success and usefulness
of this technique devends upon the design of the opti-
mal observers as in (23) and the efficient implementa-
tion of numerical algorithms.

PLPPENDIX A:

The derivation of M p. d. f.'s necessitate the

solution of certain nonlinear integral equations. Let
us now consider the illustrative example encountered in
(14):

-rxy
ch(y) f e h(x)dx =
n

g(y) (AD

D= [0,=)

This particular #ntegral equation can be solved
through i) Laplace transform technique iiigenfunction
expansions 1ii) Tterative methods iv) Numerical methods:

Galerkin etc.

a) One realizes that in (A.l) one has the Laplace trans-—

form expression such that

ch(y) H (py) = g(y) (A.2)

-Xs
where H(s) = fo e  h(x)dx.

Unfortunately with this method one obtains an in-
direct solution, in that instead of solving for h(.)
for a given g(.), one finds feasible solution g(.) for
each pair { nh(.), H(.) }

{0, =), Equation (A.1) is a singular Fredholm
1x27 L } and

{x 2} for 0 <a<1, i.e., the eigenvalues assuming

b) For D =

integral equation with eigenfunction:

a continuum of valoes. The characteristic solution be-

comes
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¢(x ,a) YT (1 - a xa_l + /f?;jEX-a x >0 7 — J.V. Campenhout, T.M. Cover, " Maximum Entropy and
’ (A.3) Conditional Probability " Tech. Report 32, Dept.
wherel (.) denotes the Gamma function. If we now ex— of Statistics, Stanford University, (1978).
pand h(x) in terms of { ¢(x.,a) } , one obtains
1 ’ 8 - D. Kazakos, " On Nonparametric Estimation of Pro-
h(x) = fO v(a) ¢(x;a)da (4.4) bability Density Functions ", D. Kazakos, P. Kazakos
w(.) being the expansion function . Using (A.4) in (Ed.) Nonparametric Methods in Communications,
(A.1) and defining the partitions { Yyseees Yo } o, Marcel Dekker, N.Y., 1977.
{ Syseens S } and { Eisenns tn } over the variables ) )
¥, s, t, respectively, (A.1) can be numerically sol- 9 - R.T. Lacoss, " Data Adaptive Spectral Analysis
ved using the set of m nonlinear algebraic equations, Methods ", Geophysics, 36, 661 - 675 (1971).
i.e;,
a n 10- T.T. Kadota, L.A. Shepp, " On the Best Finite Set
Iz v(ti)v(si) K(i, j, k) = g(yk) k=1,...,m of Linear Observables for Discriminating Two
=1 1=l (A.5) Gaussian Signals ", IEEE Trans. on Information
Theory, 13, 278 - 284 (1976).
where
Ki, i, k) ;' /sinnsj ¢(rxk;sj) ¢<Xk§ti) 11- W. Pogorzelski, Integral Equations and their Appli-
. T cations, Pergamon Press, 1966.
For more general types of kernels one uses an ap-—
propriate set of orthogonal functions to obtain a sys- 12- Johnson, R.W., " Determining Probability Distribu-

tem of algebraic equations as in (A.5).
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