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RESUME SUMMARY
La detection et la prediction d'imperfect- System faults may be detected and pre-
ions dans un systeme dynamic peuvent eétre dicted via estimation of trajectories
obtenues & l'aide de 1'estimation des of the system dynamic parameters 1in tne
trajectoires des parametres, dans l'espace parameter space. During normal operation
des parametres. Durant un fonctionnement the parameters exhibit random motion
normal, les parametres exhibent un mouve- around their nominal values. A drife of
ment aleatoire autour de leur valeurs one (or more) parameters may indicate a
nominales. La derive d'un (ou de plusieurs) fault. Two algorithms are developed here
parametre peut signaler une imperfectjon. for the €stimation of the parameter drift
L'estimation_dg la frequence du parametre rate. Performance of the developed
de derive a ete obtenue a l'aide de deux algorithms is also evaluated.

algorithmes developpes dans cette etude. La
performance des algorithmes developpes a
aussi ete estimee.
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1. TINTRODUCTION

Detection and prediction of faults in dynamic
systems is an important aspect of preventive
maintenance. It has been applied to both
physicall and biomedical systems. In this
paper we describe two algorithms for detect-
ion of drifts in the systems parameters. The
decision whether a significant parameters
drift exists, is an essential part of fault
detection and prediction algorithms. The
algorithms imply estimation of the trajector-
ies of the system dynamic parameters in the
parameter space.

2. MODEL DESCRIPTION AND PROBLEM STATEMENT

Consider a dynamic system described by its
state equations

x(k+1)=£[x (k) ,u(k) ,8(k)]

k=0,1,....
y(K)=g[x(k),u(k),8(k)] (1
x(0)=x,

where x(k) is the state vector; u and y are
the input and output vectors, respectively;
B(k) is the system's parameters vector; X,

is the vector of initial conditions; k
represents a discrete time. B(k) may be
identified on line using a suitable identifi-
cation algorithm3. Denote as 8(k) the
estimated value of B(k). During normal
operation, B(k) would exhibit a random motion
around a ngminal value. When a fault
develops, B(k) shifts from the normal opera-
ting point; this condition will be referred
to as a drift. Linear approximation of the
trajectory of B(k) yields

B (k)= (k) +(k-k) a+n (k) (2)

where n(k) is a zero mean random vector
resulting from the random motion of the para-
meters and the identification errors; a is a
vector of drift rates; and ko is an arbitrary
time point. The forgoing model enables
construction of the fault detection

algorithm shown in Fig. 1, The algorithm
consists of the parameter identifier, trend
rate estimator and threshold comparator.

The parameter identifier (described else-
where3) computes f(k) and transfers it to the
trend rate estimator. The estimator computes
a - the estimate of a - and transfers it to
the comparator. The comparator compares a
with the threshold vector ¢ and accepts
decisions as follows:

a > e: drift from the normal condition
T (3

< g¢: normal condition

o>
jo

In the following sections we describe two
different algorithms for trend rate estima-
tion and evaluate their respective
performance.

3. HEURISTIC ESTIMATOR

Equation (2) may be rewritten as follows:
B(ivk)=B(kg) +ia+n(i+k,) (4)

where i A k-kg. Consider the sum of N_
points on the estimated trajectory of B(*),

Fig. 1.
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as defined by (4):

=

. N N
I B(i+kg)=Ng(K )+a L i+ T n(i+kg) =
i=1 Tial ia1T O
. (5)
= Np(k,)+a ML) 5 iek)

0 im1™ 0
Define a heuristic estimation algorithm as
follows:

" N a a
a = mi_n_ [iils(ko,u)‘ns(ko)] (6)

Note that this algorithm requires (N+1)
gdditions and two multiplicatiens. Let us
investigate properties of the algorithm.
Equation (6) can be rewritten as

3 =2t ey (EoaGkgei) - pZon(kg) ("

i=l1
Since n(+) has a zero mean, (7) yields

ol |
E{a] = 2 (8
i.e., our heuristic estimator is unbiased.

The covariance matrix of the estimator is
defined as

X A E[(G-a)(3-0) 1] (9

whe;e (-)T denotes a transposition. Diagonal
¢lements of X are variances of the errors:

N
G2 A Kys = — 4 E i) -Nn. 27 =
2 2N 7 e [(iilnj“‘o”) Nn; (ko)) 2]

a L_N N N
= ———_TI'% I R (m-i)-2N £ R_(i)+N2g2
NZ(N+1)27pay 521 0 i=1 ? o
(10)
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where Rn(') is the noise autocorrelation
function and a% is the noise variance. Note
that og,Rn(-) and o2 can be different for
different j; however, we do not indicate it
explicitly in order not to muddle up the
notation. Let us consider two practically
important particular cases:

Uncorrelated noise

R (1) = 028(i), H#i (11)
Substituting (11) in (10) yields

o% 4

. (12)
o2 N(N+1)

Exponentially correlated noise

R (i) = of exp(-alil), ¥i (13)

Substituting (13) in (10) yields

o 4 2 exp(-a)
2 e [N¢ — T (N-1)
o: NZ(N+1)2 1- exp(-o)
2 exp(-a)(l-exp(-aN))
- 2N exp(-a)-
(1- exp(-a))?
1- -aN
-__e:I_,_(_(_!__)_ + NZJ=
1- exp(-a)
4 2 exp(-a)

= - {N(N+1)+ — [N exp(-aN)-1]+

N2(N+1)2 l1-exp(-a)

2 exp(-a) [1-exp(-a(N-1))]
+
[l-exp(-u.)]2
4, MAXIMUM LIKELIHOOD ESTIMATOR

(14)

Assume components of B(k) be mutually
independent. This condition need not be
valid in actual applicationd. However, it
yields a useful algorithm, and allows us to
treat each of the components of B8(k)

separately. Denote the j-th component of
B(k) as Ej(k). Hence,

N - Cexe s
Bj(k) Bj(ko)+a3(k ko)+nj(k) (15)
where a; Assume

j and nj(k) are scalars.
{n;(k)} be zero mean Gaussian random varia-
blés with known covariance matrix, and
compute an N-dimensional vector r:

za[r; ryoreeryd” (16)

where 1) A Bj(k)-sj(k—l) =

= a +n {k)-n,(k-1), k = 1, 2, ...N 17)
J 3 b -
Notice that r is a Gaussian vector whose
mean is equal to a;I (I denotes a unity
vector), and condi%ional covariance
matrix is
A8 E[(z-a;D (2 -251)] (18)
can be easily found from the covariance

A
matrix of {n(k)}, as we shall see shortly.

The conditional probability density of r is
P(Elaj) =

[zmy N2 A1/ 2] texp [ 1205100 2y )]

19
The ML esiimate satisfies the (9
condition
9
a—d‘j‘ in p(;_[aj) . =0 (20)
a.=a,
373
Substituting (19) in (20) yields
3 1. T,-1 3 T -1 23 T 3 12 T 1
73 (702 TPl A IspmrATIesaslairffe=0
a_ =a,
j o)
-1 . (21)
But A 1S a symmetrical matrix. Consequent-
ly, (21) yields
2
3 T,-1,, %5 r1.-1
a; [‘:—-’i Iv 5 A nff=0 (22)
aj=aj
Solving (22), we obtain
" T, -1
= g2.
a3 gt AL (23)

where o2 4 (ITI‘A—‘II)_1
before the test begins
written as

should be computed
. (23) may be also re-

% , N
a. = 0° L ry g
k=1 kek

where {gkf are the components of the vector

(24)

gty
Let -us find now the variance of the ML esti-

mate aj. Apglying the operator of mathemati-
cal expectation to (23) we obtain

Efa;Jeo2 1 A B x] a5 021Ta  1ma (25)

i

We see that a. is an unbiased estimate. In
addition,

3 enP(rja.)
=173 T - -1 ~- -
=T A ll—aji?ﬁ I = (a,-a,)o 2
3aj (26)

where the first part follows from (19) and the
secgnd_from (23). If (25) and (26) are both
satisfied, then the estimate is effectivet.

Hence, its variance may be found from the
Kramer-Rao theorenm:

32 LnP(Elaj)

02 = {-F 1

a [ 3a? ' 27
J

Substituting (19) in (27), we obtain

o2 = CELTA ] s T DT - o2 2y

a

The physical meaning of the constant o2 is now
clear: it is the variance of the ML
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estimator. Now let us again consider two
practically important particular cases.

Uncorrelated noise.

In this case, defined by eq. (11), AuZO;A

where
"1 -0.5 ]
Aa |-0.5 i -0.5 0
-0.5 1 (29)
-0.5 -0.5
Y -0.5 1 |

The matrix A is a symmetric tridiagonal,
Toeplitz matrix. To calculate a2 (eq. 18)
a

one requires the sum of components of the
Matrix A~1 in (29).An algorithm for
jnverting a general tridiagonal Toeplitz
matrix is given by Roebuck and Barnett~”.
The matrix A in°® is more general, it is
defined as:

i=1,2,....N and

1, a,

a. L= a. . ,=C
i=1,1 i,i-1

all other aij=0.

23,17
This matrix is inverted by
the following algorithm:

1. Set x0=1; xlel—ac and xk=xk_1—ac xk_z

2. for k=1,2,...N form: (30)
b =1
0
-k s
i<
a X .10 )
= 31)
by = (
-k 5
;1>
c X1 i
The inverse of the matrix Alafa, |} is
given 1,3

-1 AP
(abN) bi—l bN—i’ 1 J

-1 i+j ] i
(ab) ™" (-1 b, Pyogi bS]

; i+ i s
(bt (-1 b, by s R

YNe1-§,N+1-1" 4'i,j (32)

For the covariance matrix of interest
(eq. 29) we have & =.¢ = - 1/2 hence
equation (30) becomes

= - 1/4 x (33)
X=X T M %N
Solving this difference equations yields

3} k + 2 (34)
Xy ;EIT#
Then equation (31) yields
b a (-1)K (k+1) (35)

and the inverse matrix is

21 (N<j#1)

HE S
N+1
a, . = (36)
Y 25 (N-ie1)
—_— 1>
N+1 -

The variance of the estimate is given from
(28), (29) and (36):

oa N i (N-i+1) N-1 N j(N-i+I)
— = (L —————— + I hX . — =
a; i=1 N+1 j=1 i=j+1 N+1

N(N+1) N 2 N-1 N

P T S b b j(N-i+1) =
2 i=1 N+1 j=1 i=j+1
N(N2+1) 1 N , 2N+l N-1, 1 N-1
= —_— T 1% T 3% z 33
j
2 N+l i=1 N+l j=1 N+l j=1
(37

To calculate the last three terms consider
the Euler-Mclaurin SYm Formula

N-1 N ¢« Bi (i-1)|x=N
T f(x)= f f(x)dx + T — f (38)
x=1 1 i=1 i! (x) x=1

where Bi are the Bernoulli coefficients.

For £(x) = x? (38) yields
N-1 1 4 1, 1

I j%2 = _(N°-1) = —(N°-1) + —(N-1) (39)
j=1 3 2 6

and for f(x) = x3

N-1 1 ~ 1
. _

£33 - —ovteny - —edin « edan (40)
j=1 4 2 4
hence
og 12(N+1) 1 12
i 3 - (41)
a N N2+4N+5N+2 N(N+1) (N+2)

n

Comparing the last equation with equation
(12) shows that the ratio of the variance of
the ML estimator to that of the heuristic
estimator (for uncorrelated noise) -

3(N+1)2 3
R ) T Nez (42)
N”+4N“+5N+2 N+2

Qai]ML

2
(ﬂa)H

For exponential cerrelation (equation (13))
the covariance matrix @ is given by

a8 yrexp(-ali-j[) 5 i #j

Qi,j = (43)
oZey 5 1=
where y = 2(1-exp(-a)) ; 6=(2—%*(;)-1)'Yj1~
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(1 dexp(-a)
fexpea) 1

.

dexp(-2a)...8exp(-a (N-1))
gexp(-a)....8exp(-a(N-2))

A=ya?
n

1 Sexp(-a)
| sexp(-a(N-1)). .8exp(-a) 1]
(44)

This is a symmetric Toeplitz matrix.
Its inverse can be calculated numerically but
no close form is available.

Note that the M.L. estimate is given by:

- -1 .-1 -
a, = (DT ML
N

- ™ ln ! zrg (45)

== = k=1 k®k
where g) are the components of the vector
g=a1

- T,-1 -1

assuming that the quantities (I°A 1) and

A_II are precalculated, the calculation of

The estimate requires N multiplications and
N-1 additions.

For comparison recall that the heur;stic
estimator used only two multiplications and
N+1 additions.

The variances of the two estimators as a
function of N, are shown in Fig. 2.

<

[+

s -3 \\i\ﬂ ~

) ‘\

g -4 g

- \
S ' &
£ Meximum likelyhood
i ML.

Figure 2: Variance of the two estimators
versus the number of samples.

5. EXAMPLE
To demeonstrate the applicability of the para-
meter drift estimation to fault detection,
consider the following simple example. A
linear discrete system, H(z), is given by

14'81.2-1
H(z) =

-y (46)
1+822

where BT = [8,,8,]; 8, = -0.8 + 1.6U(k-Kq);
By = 1-2U(k-kg) and U(+) is the unit step
function. The system-%s under normal opera-

ting conditions with g [-0.8, 1] at times
k<kg,(point 1 in Fig. 3). It has undergone a

+
+
L

L

-+
ﬂb
<+

e 4+ 4 . " 3 4 +
+ T T T — T * -

Figure 3: Parameters trajectory in the two

dimensional space.

fault at k = k_ and its location_in the para-
meter space has shifted te 8' = 0,8,—1]
(point 2 in PFigure 3). Figure 3 shows the
two dimensional parameter space with the
normal operating region 1, the parameters
trajectory and the fault region 2. The
parameter vector B was estimated by a recur-
sive lesast squares algorithm. Figure 4 shows
the parameters estimates as a function of
time. The heuristic algorithm was used to
estimate the drifts a; and a,. These are
shown in Figure 5. Detection of the fault

is provided by applying a threshold to a; and
a,. Defining the drift vector

AT - ~

it = [y, 4] (47)

We use equation (4) to predict the motion of
the system in the parameter space at time
(k#i)_ :

gp(k+i) = B(K)+i-a(k) (48)

Here gp(k+i) is the predicted location of the
system at time k+i, based on the estimated
parameters B(k) and drifts a(k) at time k.
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Figure 4: Estimated parameters 8, and 8,
vs time.
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Figure 5: Estimated drifts a;, 2, vs time.

6. CONCLUSIONS

A method for detection and prediction of
faults in dynamic systems has been presented.
The method is based on the assumption that
the fault causes the dynamic parameters of
the system to change from a given '"normal"
region to a "new' fault location. ‘The .
systems parameters are constantly 1de?t1f1ed
using an on-line identification algorithm.
The identified parameters are observed to
detect a drift. When a drift is detected
the system is considered to be under a
fault. The estimated drift is used to pre-
dict the future trajectory of the parameters
and thus yield information concern?ng the
type of fault the system is wmoving at and
the estimated time of arrival at the faulty
location.

Two estimation algorithms for the estimation
of the drift were discussed.

Both algorithms

yield unbiased estimators. The variance of
the heuristic estimator is inversely
proportional to N2 while that of the ML is
inversely proportional to N3 (for

uncorrelated noise). The heuristic estimator,
however, requires much less computations.
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