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RESUME

Une technique par exponentielle complexe a &té dévelop-
pée pour représenter et analyser des signaux limités
dans le temps, et l'é@valuation de cette méthode par
comparaison avec les techniques plus conventionnelles
par transformation discréte de Fourier, est discutée.
On montre que pour une durée donnée d'un signal conte-
nant une information discré&te en fréquence, &chantil-
‘lonnée au moins au rythme de Nyquist, 1'algorithme

par exponentielle complexe peut souvent fournir une
meilleure résolution en fréquence que les techniques
standard de Fourier. On montre aussi que 1l'algorithme
par exponentielle complexe apparalt &tre un meilleur
mécanisme pour l'interpolation entre points d'un signal
discret contenant des composantes discrétes de fréquen-
ce, en présence de bruit large bande. Les effets du
bruit dans la technique par exponentielle complexe et
les difficultés de calcul lies au présent algorithme
sont aussi analysé&s. Enfin, on discute les applications
possibles de cette technique par exponentielle complexe
& d'autres domaines comme la résolution angulaire fine
de cibles multiples, l'estimation de Doppler etc...

Cet article rassemble les résultats des recherches de
ces dernidres anndes et il est de nature didactique.

SUMMARY

A complex exponential technique developed for the
representation and analysis of time-limited signals is
defined, and its evaluation with respect to conven-
tional discrete Fourier techniques is discussed. It is:
shown that for a given length of a signal containing
discrete frequency information, sampled at least to the
Nyquist criterion, the complex expomential algorithm
can often provide increased frequency resolution over
standard Fourier techniques. It is also shown that the
complex exponential algorithm provides an improved
mechanism over Fourier techniques for interpolation
between points in a sampled signal containing discrete
frequency components in the presence of broadband noise
The effects of noise in the complex exponential tech-
nique and the computational difficulties associated
with the present complex exponential algorithm arealso
discussed. Applications of this complex exponential
technique in other areas such as high angular resolu-
tion of multiple targets, Doppler estimation, etc.,
are discussed. This paper summarizes research results
of the last few years' and is of a tutorial nature.
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INTRODUCTION

Fourier techniques are the most widely used and
valuable general-purpose signal-analysis techniques
available today for digital signal processing. The
advent of what has become known as the fast Fourier
transform has made real-time digital signal analysis a
practical reality. However, several stringent assump-
tions concerning the signal to be analyzed and the
associated analysis parameters are necessary in order
to effectively use digital Fourier techniques for
signal analysis. Often these assumptions result in a
degradation in certain performance characteristics of
Fourier techniques, for example, the ability to resolve
discrete frequency lines in time-limited signals.

Fourier techniques, in particular, involve the
assumption that a signal is either infinite in dura-
tion or is repetitive over all time within some funda-
mental period. However, in a practical digital
analysis it is necessary to truncate the signal.
Consequently, the analysis of a pure sine wave using
Fourier techniques typically results in a (sinx)/x,
as shown in figure 1, that limits the ability of
Fourier techniques to resolve two closely spaced dis-
crete frequency components in a signal. Normally two
discrete frequency components cannot be resolved using
Fourier techniques unless a segment of data of length
T is utilized, where T is the reciprocal of the fre-
quency difference between the two discrete components,
as shown in table 1. As noted, this expressionapplies
even at high signal-to-noise ratios (SNR's).

Table 1. Resolving two closely spaced discrete
frequency components using Fourier techniques

Signal = £(t) = A1 sin (2ﬂf1t + ¢1) + A, sin (anzt + @2)

2
To resolve these two discrete frequency components
using Fourier techniques requires a segment of data
length T, where
1
T2 | —tepe |
f2 - fl

This expression applies even at high SNR's.

It is also necessary when using Fourier techniques
to make an a priori specification of the bandwidth
structure of the analysis; that is, the signal is
analyzed in bandwidths that are predetermined and
normally equally spaced. The signal energy is simply
projected on a set of functions of the form cosnwgt,
where w,, the analysis bandwidth, is predetermined.
The bandwidth structure is determined by the parameters
of the analysis, such as sampling rate and number of
data points, and has little relationship to the true
frequency content of the signal. Consequently, many
of the frequency values computed are typically of
little interest.

One technique that has been particularly success-
ful for signal analysis is the complex exponential
technique. 1Intheearly 1960's, this technique was
utilized by Huggins1 and McDonough,“ of The Johns
Hopkins University, and others® to reduce the number of
parameters required to represent an oscillatory signal
to some desired accuracy. We have found the technique
to be particularly useful for the analysis of time~
limited signals containing discrete frequency compo-
nents. The complex exponential signal representation
for a signal length T is defined in figure 2.

Here we review the complex exponential technique
with examples and explore possible application in

many areas such as estimation of Doppler shift,
bearing estimation of multiple targets without forming
beams, etc., and cite future research areas.

THEORETICAL APPROACH

The complex exponential representation is defined
as

s.t

2M "
£(t) = 20 Ay ed X k=01, aM - 1; ¢5)
=1 2

that is, for a complex exponential representation, the
sequence of sampled-data points {f(ty)} is represented
as a summation over 2M basis functions of the complex
exponential type. The sequence for coefficients {A;}
and {s;} are to be determined using the known sampléd-
data sequence {f(ty)}. It can be shown that 2M i$
equal to one-half the number of input digital data
points, and an exact solution to the system of non-
linear equation 1 for the sequence {A.} and {s.} is
possible. If 2M is less than one—hal% the numger of
input points, a least-squares solution of the nonlinear
system of equation 1 can be found.

The Prony technique is the standard computational
method for obtaining a complex exponential representa-
tion.3 This algorithm consists of, first, solving a
linear Toeplitz system, as shown in table 2. Next, a
polynomial equation is solved for its complex roots
{xj}, where

and At is the sampling period associated with the
digital data as shown in table 3.

Table 2. Solving a linear Toeplitz system of equations for
the unknown parameters aj

- f2M-1 fZM foms1 0 ¢ - f4M—2 %0 fame1

fmz a1 Fou cee fayes % £am-2

fames Tz foun famea 3 fam-3
fo £ £ o S| [P | £

L I N N L
Table 3. Solving polynomials and calculating the

complex root to get the frequency component

Solve a polynomial equation for its complex roots xj:

2M

T oaml-o
j=1 J

Calculate the complex Sj from the relation

S?At
Xj = ¢ ,
This yields the frequencies and real exponential
modulation factors, since

jo=1,2, ... , 2M
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Once the complex roots that provide the frequency
component are determined, the complex amplitudes {A;}
are calculated from the solution of a linear Van der
Monde system of the form shown in table 4.

Table 4. Solving a linear Van Der Monde system of equations
for the complex amplitudes Aj
- T rFr A r -
1 1 1 e 1 Al fo
% X, % oM Ay £
2 2 2 2
X % X3 oM A3 £,
2M-1 2M-1 2M-1 2M-1
X1 % X3 ce oy Azgj fam-1
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EXAMPLES

Consider a signal consisting of two sine waves of
amplitude 1, initial phase zero, and frequencies of
560 and 700 Hz. A sampling rate of 0.1 millisecond is
used. Since these two signal components differ in
frequency by 140 Hz, Fourier techniques require a
minimum of 7.1 milliseconds of signal to resolve the
two signal components. The results of both discrete
Fourier and complex exponential spectral analysis of
the defined signal using signal durations of 3.1 and
6.3 milliseconds are shown in figure 3.

In the no-noise case, above, the complex expo~
nential results are accurate to about five significant
figures. Consequently, it can be seen that the complex
exponential performance is substantially better than
the Fourier results for the example shown. In partic-
ular, in the lower half of figure 3, note how the
superposition of sidelobes in the Fourier transform
tends to make the frequency results of the Fourier
transform very inaccurate.

APPLICATIONS OF THE COMPLEX
EXPONENTIAL TECHNIQUE

The complex exponential technique has possible
applications in the following areas:

e Analysis of transient signals
e Analysis of time-limited signals

« Estimation of Doppler shift of a continuous
wave (CW) pulse

» Simultaneous bearing estimation of multiple
targets without. forming beams

¢ Possible application in bearing and range
estimation.

Examples of time-limited signals such as tran-
sient signals have been discussed. Here we shall
discuss the problems of bearing estimations of differ-
ent targets using a linear array as shown in figure 4.
The output of each hydrophone consists of signals
arriving from several plane waves. The output of the
mth hydrophone may be described as

L lzﬂ-dm sin6,
E =Y W e’ m=0,1,2 M
m 4 j 2 3 s 3
j=1
1,
= 3 OW.x. o,
=17
331 d sing,
where x. = e , d is the element spacing,

L is thé total number of incoming signals, 6; is the
angle of arrived signal j. One wishes to de%erminee..
The above equation can be solved the same way as
equation 1. If M is equal or greater than 2L, the
above equation may be solved to obtain {ej}.

FUTURE RESEARCH

Preliminary simulation results indicate that at
high SNR's (> 20 dB) the complex exponential technique
works well. However, it needs further investigation
to determine the influence of the following on the
complex exponential technique:

» Effects of noise

e Effects of initial phase of each tone
¢ Minimum required length of signal

¢ Unequal data samples

« Improvement of SNR by averaging.
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SIGNAL = sin[2 x(560)t] + sin[2 »(700)t], 0 t<T
SIGNAL = Asin(2 » ft), 0 <t T
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