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RESUME

Le traitement de signaux, de modéles de clutter
pour radar, propagation d'onde en acoustique, électro-
magnétisme et géophysique peuvent utiliser une méthodo-

logie mettant en jeu la solution de systémes dynamiques -

modelés par des équations de fonctiomnement qui sont de
nature assez générale at qui permettent 4 la fois un
comportement stochastique et non-lindaire en utilisant
- la technique des fonetions de Green stochastique pour
fournir la statistique du second ordre de la sortie du
systéme. Ce travail évite toutes restrictions sur la
nature et la grandeur des phénoménes aléatoires et non-
linéaires et il est un outil puissant applicable ld ou
wne modélisation plus réaliste est nécessatre.
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SUMMARY

The processing of signals, clutter models for
radar, wave propagation in acoustic, electromagnetic,
or geophysical cases all may be substantially aided by
a methodology imvolving the solution of dynamical
systems modelled by operator equations which are
quite gemeral in nature allowing both stochastic and
nonlinear behavior using the stochastic Green's func-
tion technique to provide statisties to second order
of the system output. This work avoids restrictions
on the nature and magnitude of randommess and non-
linearity and offers a significant potential for
applications where more realistic modeling is
required. :
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Problems of propagation in a randomly varying
channel or medium or the detection of signals in a
reverberation or clutter limited, randomly space and
time varying transmission media can be treated with a
fundamental and unified approach through solution of
the appropriate stochastic linear or nonlinear opera-
tor equations which model the system dynamics. This
approach, due to Adomian [1], is a computable approxi-
mation method which allows realistic modeling which
neither minimizes nor avoids the inherent nonlineari-
ties and stochasticity in the system as do other
generally available methods.

Mo perturbation, averagings, closure approxima-
tions, artificial assumptions for statistical
separability or of white noise processes, monochro-
matic approximations, or linearization is involved.
These common restrictions on the nature and magnitude
of the fluctuations and nonlinearities may be adequate
in some problems but entirely inadequate in others.

Our procedures allow stochastic operators,
including differential operators with stochastic
process coefficients as well as stochastic initial
conditions or driving terms.

Let's consider wave propagation in a stochastic
medium governed by a linear wave equation with a
stochastic coefficient, because of a randomly time
varying index of refraction, and stochastic boundary
conditions, and input term. First of all, if this
equation is correctly modeled assuming stochasticity
from the beginning, the result is not the same as with
replacement of quantities, such as the velocity in the
d'Alembertian operator, for a deterministic problem by
a stochastic quantity. Secondly, since the solution
process is stochastic, we require a statistical
description. The channel also is stochastic and is
described by a random Green's function, i.e., the ker-
nel of the integral operator representing the solution.
The most complete statistical description would, of
course, be given by the hierarchy of multidimensional
probability distributions. However, such a characteri-
zation presupposes more information than is practically
available for realistic media and is not necessary
for system design or analysis. Actually, very recent
work of Adomian and Malakian [2], connecting with work
of Kuznetsov, Stratonovich, and Tikhonov [3% makes it
conceivable to go further. Usually, we require only
expressions for second-order statistical measures
such as covariance functions and coherence functions
for the solution process in terms of appropriate given
statistical measures of the transmission medium and
driving or source term. The kernel of the integral
expressing the desired relation between a desired
statistical measure of the solution stochastic process
in terms of the corresponding statistical measure of
the source term is Adomian's "stochastic Green's
function" and involves statistical measures of the
coefficient processes and boundary conditions. Thus,
this approach derives the governing stochastic ordinary
or partial differential equations from fundamental
physical principles, obtains a stochastic solution in
series form by the author's decomposition process
analogous to obtaining ordinary Green's functions as
the response for an impulse from decomposition of the
forcing function or inhomogeneous term of a differen-
tial equation. Finally, appropriate ensemble averages
provide desired statistical measures in terms of
stochastic Green's functions and statistical measures
of the source. The formalism provides a unifying
framework and approach to many problems.

Suppose now that L(r,t,u) represents a linear
stochastic differential operator and

LT tw)y(Ft,w) = x(F,t,o)

s re R3, we
x{(r,t,w)
is a stochastic process.
field, whether electromagnetic or acoustic, whose
statistical measures such as the expectation <y>
and correlation Ry(tl’tz) are sought. The solution

where t e T,
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is the source or driving term and
y(r,t,w) 1is the solution

can be written
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The (time)

in terms of the random Green's function h.
correlation of y(r,t,u) is
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in general, where 4. is the stochastic Green's func-
tion for this particular statistical measure. Implicit
in the derivation is an assumption that the propaga-
tion medium and the source are uncorrelated which is
physically reasonable in most applications and quite
different from the unrealistic assumptions of statis-
tical independence implicit in hierarchy methods which
require an independence between medium and the solu-
tion process for statistical separability and conse-
quent closure of an otherwise infinite system of
equations.

Central to the design and analysis of optimum
detectors and estimators is the concept of the
scattering function discussed by Sibul [4] in terms of
our stochastic Green's functions, by Kennedy [5] for
randomly dispersive communication channels, by
Tuteur [6] for underwater acoustic communication with
reflections from rough sea surfaces, etc, Scattering
functions are stochastic Green's functions and they
need to be derived by systematic application of
stochastic operator theory as Sibul has pointed out,
as well as exploring connections with ambiguity
functions and optimal detection. Clutter scattering
functions have been based on rather simplistic models
and are not physically realistic. The methodology
for solutions of stochastic operator equations, linear
or nonlinear, is basic to any such analyses if
realistic solutions are to be obtained. The determi-
ration of coherence functions in stochastic media 1is
the same problem.

The basic theory began with a research study at
Hughes Aircraft (August, 1960, R.S. 278, Linear
Stochastic Operators, G. Adomian) generalizing an
earlier classified study of signal processing in a
randomized radar channel and extended in following
years, finally being generalized to the nonlinear
case in 1976. The present work js applicable to an
equation of the form

Fy = X

where x 1is a stochastic process and F 1is a non-
Tinear differential operator which may involve wide
classes of nonlinearities - polynomial, exponential,
trigonometric, and even wide classes of functions
involving y and its derivatives. The solution

y = 7 ix
F']x into components to be calculated first writing
the equation in terms of its basic linear and non-
linear deterministic and stochastic parts

Ly + Ry + Ny + My = x wher2 L dindicates the linear
deterministic operator and nay be the mean value of
the entire linear part L + R, or L, if it is
readily invertible that way. If not, it may be simply

is found by assuming a decomposition of
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the highest ordered derivative. Once L'] is found,
one writes the Volterra equation
y = Flh=1x - L']Ry - L’]Ny - L']My.

A term ¢ added to ,L']x includes the solution of.
the homogeneous equation Ly = 0 and terms resulting
from the stochastic bilinear concomitant if an adjoint
operation is used in the second term because R
involves differentiation acting on y. There are now
several adaptations of Adomian's basic iterative
method ‘appropriate to different problems. One of
these is as follows. Assuming a parametrized decompo-
sition of y inte } Anyn or equivalently ZAnF;1X
n=0
and analyticity for the deterministic nonlinear func-
-tion Ny or f(y), and stochastic analyticity for the
stochastic nonlinear function My or g(y), we have

Y=Y - AL_]RZXnF;]X - AL_]zAn)\n - AL']Zan"
from which after setfing A =1

.y=.yO+Y'| *e
or

= _] _-] LR
y=F x=rFyx+

where the components are determinable from
2141 -1 -1
Yy = -L RFy’x - L 'AO - L 'B0

]RF;]X o) 1

etc., the An and Bn being determinable by implicit

Yy = -L” Ay- LB,

differentiations as follows:
AO = Ao(.Yo) = f(‘Y(x)H)FO = f(yo)
Ay = Alygsyq) = £y g = (df7dy) (dyzdr) ],
2 = Aolygsyysyp) = (1/2)1d¢/dy) (dy/dn)?
+ (df/dy) (dPy/da®)} ],
Ry = AylygsyysYpsys) = (176)((e3F/dy®) (dy/dn)’
+ 2(d%/dy?) (dy/dr) (dPy/dr?)
+ (d2£/dy?) (d%y/dr%) (dy/d)

+ (df/dy) (@y/ar®)y], g

The Bn are similarly determined for the function

My = g(y) = g{y(2)) and differ only in involving a
stochastic process, e.g., in a term such as

yiy) = b(t,w)y3, b(t,m)ey, etc. If f(y) = y2 as an
example,

2
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Ay = 2y,
A, = z + 2y
2~ N oY2

A3 = 2(yqy, + ygys)

If fly) = ¢
= Y0
A0 e
= gYo
A1 ey

=
1]

, = (1120005 + 2y)

>
1

3= (176)e0(y3 + 6y(y, + 6y3)

Because of the need to calculate nonlinearities
involving derivatives of y as well as y of the
general form Ny = f(y,y',...), much more efficient
procedures have been developed and are being reported
elsewhere. Since each term is calculable in terms of
the preceding term, no question of statistical separa-
bility will arise and no closure is necessary. The
solution of equations of the form

Fu=g

where g = g{x,v,z,t,w) and F involves partial
differential operations is carried out similarly,
although the expressions are considerably more
complicated, and is being reported in journals.
Statistical measures are then obtainable. If the
entire equation is deterministic, this latter step is
of course not necessary but the solution can neverthe-
less be -.obtained.

In stochastic cases, one need not consider the
usual Gaussian or white noise restrictions and model
with realistic processes as needed. For a propagation
channel with deterministic characteristics, the input
signal to a receiver will be a linear deterministic
transformation of the transmitted signal.

It is interesting to note the development of an
input-output point of view in analysis relying on the
Ito approach to "stochastic differential equations®,
long used as a model for dynamical systems perturbed
by white noise. This equation is written
dy = f(t,y)dt + g(t,y)dz but is actually understood
in the sense of an integral equation

t it
y(t) = y(0) + Jo f(s,y(s))ds + Jo 9(s,y(s))dz(s)

where the Tast integral with z being the VWiener
process is the Ito integral. The nondifferentiability
of the liener process, however, is a mathematical
property (as McShane has pointed out) not a physical
property and our objective in physical problems is a
physical solution, not theorems. In the input-output
point of view the Ito equation is regarded as a
mapping taking the "input" =z dinto the "output" y.
However, our approach, available since 1961, is far
Tess restrictive since it does not restrict the nature
of the process and offers a computable solution for
real physical systems involving stochastic parameters.

The work discussed rests on secure analytical
foundations as well as being useful. The Tinear space
Vx(t w)(E) spanned by the elements of a second order

stochastic process x(t,n), with given definitions of
inner product, norm, and distance functionals,
constitutes a Hilbert space LZ(Q’R) and the
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statistical description in terms of expectation, cor-
relation, etc., determines the underlying space struc-
ture for each x(t,w).

In optical communication systems when initially
coherent Tight from a (single mode gas laser) trans-
mitter is repeatedly scattered by a very large number
of particles before it reaches an optical detector,
the light at the detector is essentially a Gaussian
process and the communication channel or scattering
medium is a stochastic operator on the input process
and can be described by stochastic differential equa-
tions such as those we consider. Applications can
reasonably be expected in optics in image formation,
resolution in microscopy, radio astronomy, lasers, and
radar measurement and processing. Remote sensing of
stochastic media such as internal waves or a turbulent
medium, radar clutter, or pollutant mixing is also a
possibility.

The analysis of input signals and noise through
various linear and nonlinear devices, when the input
is not necessarily white noise or even Gaussian, is
essential in performance analyses in radar, communica-
tions, and other areas. Thus our objective has been
to analyze a "stochastic filter" which stochastically
transforms a stochastic input x to an output vy,
the objective being the determination of the statisti-
cal measures of the transformed process y = mx. If
‘the system is described by a differential equation
Ly = x 1in which the forcing function x is the
system input and I s a stochastic (differential)
operator, i.e., one involving stochastic coefficients,
ve need again to calculate statistical measures of
Y. Thus whether the system or channel is described by
a "filter" operation or a differential equation,
(Tinear or nonlinear), the appropriate operator can be
effectively inverted to provide a stochastic solution
process or output from which the necessary statistical
measures can be calculated. :
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