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RESUME

On présente 1'évaluation des performances
des systémes de communication numériques in -
cohérents a plusieurs états lorsque les bruits
gaussien et impulsionnel sont simultanément
présents.

On calcule la probabilité d'erreur pour
les systémes FSK binaires, tandis que pour
1'ASK et 1'FSK & plusieurs états sont présen-
tées des estimations de la probabilité d'er -
reur aptes a délimiter un intervalle suffisam
ment étroit ("tight bounds").

Puisque les systémes FSK sont employés
lorsque 11 y a fading du signal, on a considé
ré 1'influence du fading sur la performance de
ces systémes.

Les structures du récepteur considérées
sont celles (habituellement employges) qui réa
lisent 1'algorithme du maximum de vraisemblan-
ce pour un bruit blanc gaussien.

SUMMARY

The performance evaluation of multilevel
noncoherent digital communication systems in
simultaneous presence of Gaussian and impul-
sive noise is presented.

For binary FSK systems the exact expres -
sion of the bit error probability is derived,
whereas for multilevel ASK and FSK systems
upper and lower bounds of the character error
probability are obtained.

Since the FSK systems are preferred in ap-
plications where signal fading is expected,
for such systems also fading is taken into
account.

The analysis is performed considering the
maximum likelihood receivers for additive whi-
te Gaussian noise (AWGN).

# Reaserch partly supported by Ministero del-
la Pubblica Istruzione (cap.8551)
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I.Introduction

The performance of M-ary digital communication sy-
stems operating in Gaussian noise environments has been
exstensively analysed alsoc in the presence of other ty-
pes of interference (i.e., intersymbol, co-channel,etc)
However, expecially in the frequency region below UHF,
the noise generated by several natural and men-made e-
lectromégnetic sources {atmospheric noise, ignition noi
se, etc.) exhibits impulsive characteristics [1-6].

Comparatively few authors [7-11] have studied the
performance of digital systems in the presence of impul-
sive noise. In particular very few papers [11] have
been devoted to M-ary noncoherent systens.

A more realistic noise model takes into account the
simultaneous presence of Geaussian end impulsive noise
because in general both types are present, though some-
times only cnc may be predominant. With reference to
such a model the error rates of binary [12,13] and M-
~ary [1&,15] coherent systeéms have been already evalua—
ted. In [12,13,15] the effect of Rayleigh signal fading
has also been considered.

In the present paper we evaluate upper and lower bo—
unds for the error probability of M-ary noncoherent ASK
and FSK systems (useful results for DPSK have not yvet
been obtained) in the presence of an additive mixture
of Gaussian and impulsive noise.

The impulsive roise model employed here comnsists of
a stream of delta function impulses of random areas
occurring at random times which constitute a Poisson
process. This model, already considered in previous pa-
pers [7-15], has been chosen because it gives [1]a-good
description of some real physical situations (e.g., at-
mospheric and ignition noise) in which the bandwidth of
the incoming noise is larger than that of the receiver's
front-end stages.

The present analysis is performed considering the
well-known receiver structures for additive white Gaus-
sian noise because such receivgrs are in common use and,
on the other hand,the derivation and the implementation
of the optimum receiver for M-ary signaling schemes in
the presence of Gaussian and impulsive noise are very
difficult.

Since the error probability of digital systems for -
purely Gaussian noise is strongly dependent on the pre-
sence of signal fading and its parameters‘[l6], we take
into account here the channel fading characteristics as-
suming that such a fading is non-selective and slow in
comparison with the signaling duration. The signal fa-
ding is not considered for the ASK systems which, as
well-known [16L are not preferred in applications whe-
re it is expected.

Let us mention finally that, for the numerical com~—
putations, the areas of the noise impulses are assumed
to follow a bilateral Rayleigh distribution. However the
results obtained hold practically also for different di-
stribution laws. In fact, as shown in [17], the perfor-
mance of ASK systems is practically unaffected by this
choice over a wide range of the signal to noise ratio
(SNR), whereas for fading FSK signals the bilateral Ray-
leigh distribution gives a slightly pessimistic estima-
tion of the error probability obtained with reference
to the Gaussian and exponential distributions which ha-
ve been frequently assumed in the previous analyses [7,
11,14,

In Section II the noise model is stated, whereas

‘bounds

for the character error probabilities of M-ary
ASK and FSK systems are obtained and discussed in Sec-—
tions III and IV, respectively. Also some numerical re-

sults are presented.
II.Noise model

The noise n{t) at the receiver input is modeled as
an additive mixture of two statistical independent pro-
cesses:

n(t) = ng(t) + nj(t) (1)
where ng(t) is a zero-mean white Gaussian noise process
and n;(t), referred to as the Poisson or generalized
shot noise model, consists of sample functions

ni(t) = ) aps(t- ty)

T=—c0

(2)

where ay is the random area of the rth impulse 6(t—tr)
which occurs at random instant tr. The number of impul-
ses occurring in any observation interval is assumed to
obey a Poisson distribution.

The areas a, are supposed to be statistically inde-
pendent of one another and of the occurrence times and
t0 have the same even probability density function{pdf)
pal*). Moreover in the following we shall consider the
most interesting case of highly impulsive noise for
which the average number y of noise impulses occurring
in the signaling duration is very small (y<«<1).

The performance analysis of M-ary non coherent digi-
tal systems, as at will be evident in the following sec—
tions, is carried out starting from the characteristic
function (CF) of the noise vector N = N; + Ng at the
output of the matched filters of the receivers at sam-
pling instant t=T.

The CF of the impulsive noise component Ni at the
output of a parallel bank of k orthogonal matched fil-
ters, on the assumption y<<1, is given by [7]:

w k
¢li(x1, ceesd ) = l—'y+2y_!;pa(a)j:}o,s [amglxmhm(t)]_d.t. da (3}

T
vhere hy,(t) is the impulse response of the mth filter

IIT.ASK performance analysis

For noncoherent ASK systems the received signal in
the signaling duration T is of the form:

r{t) =|/2—§i cos(wet+a) + n(t) i=1,2,...,M (W)

where: E; is the energy content of the ith transmitted
signal; w,= 2mn,/T with n, some fixed integer; o is a

random variasble (rv) uniformly distributed over a 2w

interval.

According to [18] , let us assume that

VE; =

where, if the transmitter is subject to the average po-

wer limitation E/T, A is given by
6E

(M-1) (2M-1)

(i - 1)a i=1,2,....M - (5)

A=

(6)

The receiver calculates
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Fig.l Integration regions for the lower bound
of the conditional probability of a cor-
rect deciston [in ASK systems.

.
2
x =fr(t)vf cos wet dt =)E; cosa +ng (1)
[}

y =‘|:r(t)V%7 sin w,t dt =-JE; sina +ny  (8)

computes VX2+ y2 and, for equally likely signals,choo-
ses the signal minimizing

| Va2 y7 - VEy | i=1,2,...,M

Such decision rule is in common use because, as well-
—known [18], it approaches the optimum rule for AWGN in
the range of high SNR's and, moreover, it is easy to im~
plement.

(9)

Bounding techniques for the error probability

An analytical expression of the error rate can be ob-
tained. Its complexity however suggests (already in the
presence of purely Gaussian noise) to derive bounds of
the character error probability. The bounding techmniques
employed here are an extension of those proposed in[lB]
for AWGN.

Since the pdf of the noise vector N possesses circu-
lar symmetry [15], the conditional probability of a
correct decision for the ith transmitted signal is gi-
ven by the probability that N falls in the ring-shaped
region bounded by theconcentric circumferences of radii
riy = OB, +VE; )/2 ana vy, = (VR +VE,, )/2. The
center of such circumferences lies on any point of the
circumference of radius Vﬁ;, centered at the origin of
the axes (Fig.l). This probability is lower [upper]
bounded by the probability that N lands inside the sha-

. ded regions of Fig.l [Fig.2].

The circular structure of these regions is particu-
iarly suitable for the sbove mentioned circular symme —
try. In fact the probability Pp that N lands inside a

- circle of arbitrary radius R, © centered at the origin
of the axes is given [17] by:

2m R ©
Pr,=L,a¢fR oy (R) aR = Ro[@(0)7;(Rep) a0 (10)

where Jl(') is the Bessel function of the first kind of
first order and R and ¢ are polar coordinates defined by

ny = Rcos¢

n, = Rsin¢ (0gR<w,0<¢<2m (11)
For the statistical independence of the impulsive
and Gaussian noise the CF.of N, taking into account the

Fig.2 Integration regions for the upper bound of the conditional
probability of a correct decision in ASK systems.

well-known results for the Gaussian processes and (3),
is given by

2

e
N

[1-v+2r[Btalae)&o daa] (2)

where: p= (Ai-&k;)z 02 is the Gaussian noise power spec-—
tral density at the input of the receiver; J,(*) is the
Bessel function of the first kind of zero order.

Finally the bounds of the character error probability
P(E) can be expressed in terms of the lower PL(i)andthe
upper PU(i) estimations for the conditional probabili-
ties of a correct decision:

By(Aprp) =@ (p) = ¢’

»,
i

w2

1 1 .
- ;5 Puli)s P(E) < 1 - ﬁigl P (i) (13)

vhere, from the previous observations and from easy geo-
metric considerations onthe Figg.l and 2, PL(i) and
Py(i) are given by

. i=1
Riy *
2y = P P, L= 2,3,...,M1
Pi)={ 2%y + TRy, P T E3eee
L PR. + 1 1=M (14)
2 11 2
(o1
PRil 1
1P 1P, i=2
5 Big T3 Riy
Pyli) =
1P 1P, _ AP, _ P, ) i=3,...,M-1
> Big* 3 Ry T Ris By T
1 i=M (15)

In (14) and (15) Py, . (J=1,2,...,6) denotes the probabi
lity that N lands inside the circle of radius R;; cen—
tered at the origin of the axes. Such probability can
be calculated by (10). The values of R;j can be easily
derived by simple geometric considerations.on the Figg.
1 and 2; in pafrticular Ry;= A/2 for any velue of i.

Numerical results and discussion
Assuming for the areas of noise impulses the bilate—
ral Rayleigh distribution
v o LBl L a2/42
pyla) = O—gexp( a?/aZ )

(16)

from (10) and (12) it follows that the probabilities

Pe.. (i=1,2,...,M3_i=1,2,...,6) are given by
i3 2 R?
1J RZ. .
P, = (l—y)@—exp(—-—ii ﬂ +y l—exp[~ ”‘“i—ii"_]} (17)
R; : 262 2(a2+0%/v)
J g g
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Fig.3 ASK systems: bounds of the error probability
vs. SNR for several values of b,

vwhere o; is the variance of both impulsive components
at the outputs of the matched filters. .

Fig.3 shows, for y=.0l and M=2, the bounds of theer-
ror probability evaluated according to (13), (1k), (15)
and (17). The SNR Z and the parameter b are defined Dby:

g2
E g
7 =V ———7n H b= —— (18)
2442 2442
cg+cl Ug O'i

The results are also presented for several values of M
with vy=.01 and b=.5 (Fig.4) and for several values of Yy
with b=.5 and M=2 (Fig.5).

The following observations can be made:
a) For a given SNR, in correspondence of the range of
practical values of P(E), the system performance is poo-
rer (Fig.3) when also (or only) impulsive noise is pre-
sent than when there is Gaussian noise alone (b=1). The
particular case b=0 (purely impulsive noise) gives an
upper bound for the error probability in the range of
practical values of P(E). Moreover, in such range of
SNR's, with Z, vy and M fixed, as the impulsive ncise po-
wer increases, with respect to that of Gaussian (i.e.,
as b decreases from one to zero), the P(E) increases mo-
re and more slowly.
b) For a given SNR in the range of lowest values the sy-
stem performance is better when also (or only) impulsi-
ve noise is present (Fig.3). In particular the case b=0
gives a lower bound for P(E).
c) For purely impulsive noise the error probability is
practically expressed by y{M-1)/M over a wide range of
SNR's (Fig.3), whereas it is strongly dependent on the
SNR when a Caussian noise component is also present (b
#0). This behaviour is readily explained considering
that for purely impulsive noise the probability of oc-—
currence of an impulse in the signaling duration is ¥y
and that, for relatively weak SNR's, whenever such an
impulse occurs, the decision can as well be made by chan
ce. On the other hand, when the Gaussian noise is pre-
sent, its influence on P(E) at weak SNR's is predomi-—
nant and therefore the performance is strongly sensiti-
ve to the SNR.
d) From the previous considerations one deduces that
there is a transition region (Figg.3,% and 5) between
the range of SNR's in which the performance is domina-

Fig.4 ASK systems: bounds of the error probability
vs. SXR for several values of M.

Z(dB}
Fig.5 ASK systems: bounds of the error probability
vs. SNR for several values of y.

Z(dB)

ted by the Gaussian noise component and the rangeof high
SNR's in which the impulsive noise dominates. Such tran—
sition region is located at values of the SNR more and
more high for increasing values of M (Fig.4) and/or for
decreasing values of y (Fig.5). .

e) The results show that the bounds are fairly tight
though their tightness in the range of intermediate va-
lues of Z decreases as M increases (Fig.h). On the other
hand no attempt has been made to optimize the aperture
angle of the sectors of cirecle of Figg.l and 2 in order
to improve the tightness of the bounds. In fact this im-
provement is not easily performable because the optimum
aperture angles are complicated functions of M, vy, Zand
b. However we point out that for high SNR's only the set
of the points inside the circle of radius Rj, = A/2 gi-
ves significant contribution to the error probability.

IV.FSK performance analysis
In noncoherent FSK systems the received signal is

r(t) =FV§@ cos(w t +a) +n(t)  i=l,...M (9)
T
where: E is the energy content of the transmitted si-
gnals; T is the signaling duration; w,. = 2ﬂ(no+i)/T with
n, some fixed integer; o 1s a rv uniformly distributed
over a 2m interval; n(t) is the additive mixture of Gau-
ssian and impulsive noise; F is a fluctuating path-tran—
smission factor, modeled as a rv Rayleigh distributed,
which takes into account a slow (in comparison with T)
and non-selective signal fading. The presence of such
fading is considered here because, as well-known, the
incoherent FSK systems are in common use in applications
where fading is expected and synchronous detection is
not feasible.

With reference to the optimum (for equally likely
messages) receiver for AWGN, when the ith signal is sent,
a correct decision will be made if, and only if, for all
J#1 one has:

Ay = VA +y§ <l/§i +yIo=n A (20)

where X and ¥ are ‘given by
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T./2
x5 = éijF E cos a +Io‘/6 n(t) cos mjt dt (21)
J=1,2,...,M
T
. 5 .
.= =68, F + V= .
yJ i JE sina ‘LVT n(t) sin wstat (22)

vhere dij is the Kronecker delta.
The error probability PE(i) conditioned to the ith
transmitted signal is given by

PE(i) =I:1_)F(v)fP(jgiAj > w/Ai=w) pAi(w/F=v)dwdv 23)

where pp(" ) is the pdf of the rv F and Py (-/F=v) is" the
condltlonal pdf of A; given F=v,

The evaluation of the probability P(. l#] A >w [Aj=w)
requires the knowledge of the " joint condltlonal
pdf of the rv's AJ given Aj=w . Such pdf is very hard
to calculate because the rv's Aj are not statistical in-
dependent of one another. Therefore a suitable bounding
technique of the error probability must be found.

In the present case a geometric approach is not pos-
sible because the observation space is 2M-dimensional.

The union bound technique is considered here to ob-
tain upper and lower estimations of the performance:

max|P(aoa0)) < P (1)< T P(As> A;) (24)
vt - =1
J#l
where
P(A5>A;) §°°§° Pagag (y.t,) dtydt, (25)
The Jo:nnt pdf pA AJ ,-), on the previous -assumptions,

is expressed [17]

vhere o2 is the second order moment of the rv F.

Equazlon (26) shows that p iA3 (-,*) is independent on
the values of i and j. Therefore from (24) and (25) it
follows that the character error probability P(E) is
bounded by

P,(E) < P(E) < (M- 1)P,(E) (27)

where P,(E) = P(Aj>Ai) is the error probability for bi-
nary FSK systems.

Numerical results and discussion
The bounds stated are evaluated here on the assum—

ption that the areas of noise impulses are distributed

according to (16). Therefore from (25), (26) and (27)

one obtains that:

P,(E) = (1—y)—l~2— + l[_ ___1__}

Z5 2 4(1-v)
AP ]/“ — T
\((b+2 )

where b has been previously defined in (18) and Z, is
the mean (over fading) SNR expressed: by

(28)

o2E
F

Zo=
2 42
O+

(29)

The validity of (28) may be checked by. comparing it
with the results obtained for purely Gaussian noise [16]
and with the limiting situations (Z,+ 0 and Z,~ «).

Equation (28) shows the error rate as a sum of two
terms: the former takes into account the presence of Gau-
ssian noise acting when the useful signal is not affec—
ted by any noise impulse; the latter provides the con-

2%t 2443 2.2 ¢ o2 62E
_l-y ch% 1702 tio o o5 -8 ¥
By, (B1,%,) = 55— exp(- ——-2—) o P e — 3 palalep exp|- == (p2+p%)|exp(- p2) -
A;_A_j 2 Gé 20&*‘0%‘]3 2"2(20?";’3) 1 2-[050 j.o a 1 2 1 P N )
>
. Jo(‘tlp)%(tzpl)Jo(&‘/';p )Jo(a‘/%_pl)dpdplda (26)
~\00 1-01 Y
AY
Py (E) P2 (E) | R

Gaussian
noise {b=1)}

r=0.01
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Fig.6 FS5K systems: bit crror probability vs. mean
SNR for several values of b.
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Fig.7 FSK systems: bit error probability vs. mean
SNR for purely impulsive noise and for seve-
ral values of v.
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tribution of the impulsive noise, modified by the pre-
sence of the Gaussian noise. Moreover for high SNR's
(Zg >>2b) the Gaussian and the impulsive noise can be
considered acting separately.

Fig.6 shows the error probability P,(E) for binary
noncoherent FSK systems (for the M-ary case P,(E) al ~
lows to derive, according to (27), the bounds for the
character error probability) as a function of the mean
SNR Z, for y=.0l1 and for several values of D.

It is evident from the curves that for purely impul-
sive neise at low SNR's P,(E) is practically indepen -
dent on Z, over a range of SNR's which, on the other
hand, is more and more wide for decreasing values of y
(Fig.7), as it can be derived from (28) considering
that the system performance for b=0 is a function of
_yZ% . In the same range of SNR's, whenever the Gaussian
noise is present, the probability PZ(E) is relatively
sensitive to the SNR. Therefore, as in the ASK systems,
in such range of Zg the error characteristics are domi-
nated primarily by the Gaussian noise component; in o -
ther words the error probability is largely independent
on the parameter y of the impulsive noise.

For high SNR's alsc the impulsive component gives a
significant contribution to PZ(E)' Moreover, independe-
ntly on the values of b and vy (Figg.6 and 7), in such
region of Zs, P,(E) is adeguately expressed (see
eq.(28)) vy 2/Zg.

¥.Conclusions

The performance evaluation for M-ary noncoherent ASK
and FSK systems in the simultaneous presence of Gaus - ..
sian and impulsive noise is presented. Since the FSKisy-
stems are preferred in applications where signal fading
is expected, for such systems also fading is taken into
account. :

An exact expression of the error rate for binary FSK
systems is given, whereas,in the other examined cases,up-
per .and lower bounds for the character error probabili-
ty are derived.

The analysis assumes an unfiltered Poisson process
to model the impulsive noise at the receiver's front,
but it can be easily modified to include the effects of
bandlimiting of the noise.
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