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RESUME

TRAITEMENT D'UN RESEAU DANS DES CHAMPS ALEATOIRES
SEMI - HOMOGENES

Des modéles de bruit appropriés pour examiner un
systéme Sonar passif pour des sondages goniométriques
et pour des mesures du spectre d'une cible dans un
milieu bruité, sont les champs aléatoires homogénes
consistant d'ondes planes. Du fait que 1'hypothése

de stationnarité est fréquemment irréaliste, nous
examinons des généralisations selon les procédés
semi-stationaires stochastiques et nous introduisons
des champs altatoires semi-homogénes. Nous démontrons
comment les méthodes de Priestley, qui estiment la
densité spectrale &volutive peuvent &tre modifiées
pour le faisceau rayonnant et pour l'analyse spectrale
des signaux rayonnants, par éxemple si en fait un
réseau de lignes est utilisé.

Des &chantillons des signaux peuvent &tre traités par
1'intermédiaire des algorithmes rapides qui se basent
sur les transformations de Fourier rapides et qui sont
comparables aux algorithmes dé&jd connus dans le cas
de stationnarité&. Finalement, nous indigquons une
méthode de poursuite pour des lignes moduleés dans un
spectre &volutif.

SUMMARY

ARRAY PROCESSING IN SEMI-HOMOGENEOUS RANDOM FIELDS

Useful noise models for investigating a passive sonar
system for taking the bearings and measuring the
spectrum of a target in ambient noise are homogenecus
random fields consisting of plane waves. Since the
assumption of stationarity is frequently unrealistic,
we investigate generalizations in the sense of
Priestley's semi-stationary stochastic processes and
introduce semi-homogeneous random fields. We show how
Priestley's method for estimating the evolutionary
spectral density can be modified for beam forming and
spectral analysis of the beam signals, e.g. if a line
array is used. Sampled signals can be processed by fast
algorithms which base on the fast Fourier transform
and which are similar to known algorithms in the case
of stationarity. Finally, we indicate a method for
tracking modulated lines in an evolutionary spectrum.
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Introduction

Passive array processing is, following Liggert's [3]
definition, interpretation of noise and noise-like
signals received by an array of sensors,i.e.
hydrophons :in the case of sonar. The paper deals with
processing methods for taking the bearings and mea-
suring the spectra of signals which are generated by
distant targets and which are disturbed by ambient
noise from the far field. Frequently used models for
stationary ambient. noise at the outputs of the sensors
are homogeneous random fields consisting of plane
waves,cf. for example [1],[3]. Stationary signals can
be incorporated in such models as discrete components
of the random field. General properties of homogeneous
random fields are proved in Yaglom's book [13].
Spectral estimation and beamforming techniques for
estimating the targets have been frequently investi-
gated. Smoothing of short-period spectra of a beam

is a well known method to estimate thoe spectrum
of noise from a given direction. It was shown in [9],
[12] that this can be approximately done for sampled
data by a fast method basing on multivariate fast
Fourier transform.

signal

The assumption of stationarity of the signals and
of noise and moreover of homogeneity of the random
field is unrealistic in many applications, especially
for fluctuating ambient noise and moving targets. In
this papex, we generalize the concept of homogeneity.
Homogeneous random fields are composed of uncorrelated
plane, elementary waves. The random fields we are in-
terested in are superpositions of similar, but slowly
modulated elementary waves. This concept is a direct
generalization of Priestley's [6] model of semi-sta-
tionary processes. Therefore, we call the correspond-
ing random fields semi-homogeneous. A semi-stationary
process possesses evolutionary, i.e. time dependent,
spectra which describe the power over frequency and
time and which can be estimated under suitable condi-
tions. A semi-homogeneous random field is character-
ized by evolutionary frequency-wavenumber spectra. We
indicate that these spectra can be estimated by careful
smoothing of short-period frequency-wavenumber spectro-
grams. Then, the frequently implemented tracking of the
evolution of short-period spectrograms is a reasonable
method for analysing a long observation of a semi-homo-
geneous random field. Similar to the case of homogenei-
ty, short-period spectrograms of the beam signals gene-
rated by weighting, delaying, and summing the sensor
outputs can be approximately computed by a variant of
the multidimensional FFT-method indicated above. Final-
ly, we mention some special cases, e.g. models with a
fixed velocity of propagation, line arrays of sensors
in such a model in the plane, and a method for estima-
ting of modulated lines in evolutionary frequency
spectra.

Semi~Homogeneous Random Fields

Let us assume that the d-dimensional real vector x de-
scribes the position of a sensor in an array of a fi-
nite number of sensors and that the sensor outputs are
sampled with a period 1. If we presume wide-sense sta-
tionarity in time and space which means homogeneity,
the output of the receiver at position x can be de-
scribed by a Cramer representation, cf. [1],

Y(m,x) = J-'”/T[/‘[' f J(me‘I-kx')Z(dw'dk) ([m| =0,1,...),

where w/(2m)is a frequency in Hertz, k is.a d-dimensio-
nal real vector-wavenumber and x' means the transposed
vector of x. Z describes a zero mean orthogonal random
field, i.e. Z({(Aw,2k) is a random function of the inter-
vals AwAk with expectation
E3 (Aw, Ak) =0,

for disjoint intervals Ajw,ldw ad Ark,Azk,
Z(Aw, A k+Apk) = Z(Aw,A1k) + Z(Aw,Ask) and

Z(djwtdow,Ak) = Z(Ajw,Ak) + 2 (Apw,Ak) and

T Ez(f1w,01k)Z (Agw,d2k)* = O,

E|z (hw,8k) | 2= P (Aw,0k) = [, [, £(w,k)dwdk .

Mw” Ak

Herein, F is the frequency-wavenumber spectrum and the
most right equaticn is correct if a spectral density £
of F exists. Conseguently, Y(m,x) can be thought as a

j (wtm+kx")

superposition of plane waves e with orthogo-

nal weights Z(dw,dk) .

Generalizing Priestley's [6] method to define a
class of non-stationary processes, we think of a random
field which is a superposition of modulated waves

eyt
A (w, k)'e](me kx') with orthogonal weights 2 (dw,dk),

whgfe the complex and deterministic modulation A (w,k)
slowly oscillates in m and x in comparison with

j +kx !
e](me x') and does not overmodulate the elementary

wave. The output of the receiver is therefore
. t

- fK;TfRdeJ (wrmthx?) By (0K Z(E, )
We call a random field Y ({m,x) semi-homogeneous if there
exists a zero mean random field Z and a function A such
that Y (m,x%) can be represented by (1), where the complex
modulation function A has the following properties.
There exists a spectral representation

. st
2 A k= 1 g IOy (a0,
where A (w,k) = 1 and
IHw k(dgfgl)] has 1ts maximum for =0, 2=0 and_
’

B, = sug Ir) e, 2)||H o,k (30 ae) |}

A homogeneous random field is of course semi-homo-
geneous with A=i. If a function A is independent of
(w,k) and satisfies the conditions’(2), the product of
A and a homogeneous random field ¥Y(m,x) is
semixhomogeneous

(1) Y (m,x)

"

>0 .

For a special semi-homogeneous random field Y, we
consider the class of all functions A as above and de-
fine B = sypp B_ as the characteristic width of the
random field Y. The number 2B, can be roughly inter-
preted as the (d+1)-th power og the diameter of a maxi-
mum sphere in which the field can be treated as approx-
imately homogeneous. For the sake of simplicity, we as-
sume in the following that there exists one and only
one A with B _=B_ and we consider the corresponding nat-
ural representaglon (1) . We shall not discuss the prob-
lems if there does not exist a maximum or A is not u-
nigue which could be done similar to [6].

Since Y(m x) has expectation zerc and variance

var Y(m,x) = [f|A (k) | 2F (Qw, k) ,
we define the evofuﬁlonary frequency-wavenumber
spectrum with respect to A as
F__(dw,dk) = |a (w,k) |2 F(dw,dk)
an %he corresponalﬁq evolutionary density in case F
has a density f as

Llwk) = IAm,x“”'k”z £lw,k) .

Spectral estimation

In this section, we sketch a method for estimating the
evolutionary power of a semi-homogeneous random field in
an (w,k)-band or the evolutionary density, if it exists

~and is sufficiently smooth, from one observation.

Priestley [6] showed for semi-stationary processes that
careful time smoothing of the time evolution of short-
period spectrograms yields reasonable estimates if the
width of the data window is small in comparison with
both the width of the smoothing window and the charac-
teristic width of the process and if both are much
smaller than the range of observation..

The complex demodulation which means the short-pe-
riod time~space Fourier transform of Y(m,x) is first
investigated. With respect to the intended applications,
let us presume a finite time-space window gim,x), where
X ranges over .the finite set of sensor positions. The

complex demodulation of ¥Y(m,x) is defined as
- - +
(3 Umxiwk) = ST g@m-R,x-R Y@K e 3 (o)

for given frequencv wand wavenumber vector k. Using (1)
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L

and (2), the right hand side equals
ffffZEZ§ g (m-m,x-X)
. - - — T = = ) _
e;((m+e w) Tm+ (k+2-k) x )HB E(de,dQ)Z(dm,dk)
resulting in = = !
X - + (k- '
(@) Ulmxiwk) = frfred (o) kmkxt)
o3 (OTMHX) 6 Gro-0, Kro-k) B - (a0,a)2 (0, GK)
where —'(me+kx:)
(5) Gu,k) = I 5. glmx)e ) .
m X
If roughly spoken H (d6,d2) behaves as a §-func-
tion with respect to G(S?ﬁ&. we obtain U=U, where
T, x:0,k) = ffej((w-w)1m+(E—k)x )

G(w—w,k—k)ATm,x(m,k)Z(dw.dk).

The approximation is specified in the following sense.
ffej(61m+2x')

Let Ry =
(G (w-wt8,k-k+2) =G (w~w, k-k) ) H— glde,an).

Then, Wr

[Ri| < gup |orad G [£/] (0, 0)] |8, | (a8, ab)]

_<__Bg/BY R

where B is a measure of the width of the data window,
namely !

Bg = Zm2x|(Tm,x)||g(m,x)| .

If for an €>0 B <€By, it can be shown similar to the
proof of Theorem?8.1%in [6] that E|u-T|2=0(¢e) and then

6) E|lutm,x;wk|? = [f|6@-w %K) |2F _ (di5,dK)+0(e) .

Ceoncluding, !U(m,x;u,k!z is an approximately unbiased
estimator of the integral in (6). If we furthermore as-
sume that F has a wavenumber-bandlimited and smooth
density f "and |G(w,k)_|2 behaves as a §-function with
respect to” (w,k) in the usual sense, the estimator
is approxima%éfy unbiased for fm x(m,k).

.

The variance of IU!2 for a normally distributed
random field withasmooth density £ can be evaluated
similar to the treatment in [5] and’f10]. We obtain for
w0 mod(n/1) and k$o

var ([um,x;0,k) |2) = [£f]6(w-w,K-k)|2F X(E,E)dfu'dk']z

which is independent of the range of observations. Care-
ful smoothing of ]U(m,x;;,w,k)|2 can reduce the variance.
We therefore use

(7 Pm,xie,k) = IEw(n-G,x-x)|U@% 0kl

as an estimate of the integral in (6), where w(m,x) is

a non-negative and finite window with I I w(m,x) = 1.

The expectation of P is mox

(8)  EP(m,x;w,k) = [/|G(w-w,k-k)|?
Eaiiw(m-ﬁ,x—i)?ali(dﬁ,di).

Under the above assumptions and if the width of w is

large in comparison with that of g, we shall find

(9)  var Plmx;w,k) *0(Z I wm,x)?)
which can be made small with increasing width of w.

Summarizing, we showed heuristically that careful
smoothing of the time evolution of short time-space
spectrograms is a reasonable method to estimate the ev-
olutionary frequency wave-number spectrum if the width
of the data window is small in comparison with both the
width of the smoothing window and the characteristic
width of the process, and if the latter are much smaller
than the range of observation. We cannot obtain simulta-
neously a high resolution in both the time-space domain
and the frequency-wavenumber domain.

Beanforming

Semi-homogeneous random fields may be interpreted as a
superposition of approximately plane waves. Let us as-
sume to be interested in those nearly plane waves propa-
gating with velocity c¢ and coming from a direction char-
acterized by a unit vector e, i.e. travelling with a
slowness vector ~Ts=-e/c. Intuitively, we could estimate
the corresponding signal by weighting, delaying and

summing the sensor outputs and then estimating the evo-
lutionary frequency spectrum of the beam signal. We
show in this section how this can be done and, similar
to the case of homogeneity, that computing suitable
traces of (7) yields approximately the same estimate.

We first investigate the beam signal generated by
classical beamforming at point x if the direction of
the beam is described by the vector s and which is

Y (m,x) = I—y(x—%)Y{m-sX',X).
Herein, we assume that the sensor data are sufficiently
oversampled, the numbers sx' are integers, and Y is a
finite window with a suitable width. The short-time
Fourier transform of Ys(m,x) is _
wTm

) = Y ox)e s
Vs(m,x,w) ZEB(m m)YS(m,x)e

Defining g(m,x)=8(m)y(x) and using (1),(2),(4),and (5),
we find j ( (w+6-w) T+ (k+2~ (w+0) TS) X ")

o) v_(mxiw) = ffife o
G(546~m,i+2—(5+6)15)3a g (ae,ar)z(dw,dk).

Assuming the same restrictions as in the last section
and the existence of smooth densities £ , one can
show similar to the treatment for U that’

EIV (m,x;w) |2 = Jf G(B-w,EFErsﬂzf (w, k) dwdk
and for Var(lv (m,%;w) 2y approximately the square of
the right hand expression.

We estimate the evolutionary frequency density
fx m(w,mrs) of the waves with slowness vector -Ts by
smbothing the time evolution of the short-time spectro-
grams of the beam signal with a window w as in the last
section,
(1 P (mx,w0) = E_Tow (m-i, x-X) |vs(ﬁ,§;m)|2,

The estimator P has similar properties as P in (8) and
(9). We only have to substitute G(w-w,k-wts) for
G(w-w,k-k) .

The short-time Fourier fransform V_(m,x;w) of the
beam signal can be approximated by U(m,X;w,k) if k=wts
is chosen, as motivated by (4) and (10). For that we set

A (m,x;w0) = Vs(m,x;w) - U(m,X;0,0TS)
and presume the above restrictions. We compute

(12} EIAS|2 = ff]G(E—w,f—wrs+(w-6)15)ej(w_W)Tsx'

—G(E—w,i—mrs)]zfm X(E}K)dﬁdi.
’

The integral corresponds with the mean square erroxr in
the case of homogeneous random fields up to the replace-
ment of £ by £ X" Consequently, the approximation for
wavenumber—bangllmited £ m is the better the smaller
the frequency bandwith of’G is chosen. We conclude that
P (m,%X;w) can be approximated by P(m,x;,9Ts) since we
s X

know the following bounds

]E(Ps(m,x;w)—P(m.X;m,mTS))l §_E|PS—P] <
Ioig¥ (mm,x—x)E A x50) |2 =
If]ees

where |«+.|2 means the corresponding term in (12). This
bound is not greater than the supremum of E|AS|2.

Zzaz;w(m-ﬁ,x&) 23 (0,k) dwdk,

The remainder of this section deals with the com-
putation of the estimate P(m,X;w,wrS), where the point
of observation is x=0. For the sake of simplicity, we
assume that the sensors are placed at points x=nn with
n=(ny,...,ng) (|nj|=0,...,N ~1) and a sampling period n
and that the time sampling points are tm (m=0,...,Ms-1).
Let the support of the data window g be (m=1-M,...,0;
nj=1-N,...,0). Then generalizing [2?, we obtain from (3

- 1
Umnnw k) = eJ@Tmﬂmn)

L=l
m=0 n ,...,ng=

for m=0,...,My-M and nj=1-N_, ..., N, -N. This formula can
be computed by (d+1)~dimensional FFT-algorithms if
wt=27i/M (i=0,...,M-1) and k=(ki,...,kg) with kpn=2ni/N
(i=0,...,N-1). The exponential factor can be automati-
cally obtained if the transform of the windowed data
piece suitable rotated is taken. Because of the band
limitation of the window, U(m,nn;w,k) is highly over-

o 90T, R Y (0 (nm)) e ) WTEHNRY
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sampled with respect to m and n. We conjecture that, as
in Welch's method [11], overlappings of 50 per cent in
each direction of the windowed data could suffice for
smoothing of IU(m,nn;w,k)[z.Then, the spectrogram is
only computed for m=iiM/2 and n;=fi;N/2 with the above
restrictions and even M and N. Since the smoothing win-
dow is much morefrequency bandlimited than the data
window,a similar argumenE shows that P(m,0;w,k) should
be computed only for m=m LN/2, where LN describes the
time duration of w. We use formula (7) with the modifi-
cation that the sum is only taken over points m=mM/2
and x=niN/2. P(m,0;w,k) is required for we2wri/N
{(i=0,...,N-1) and k=wts for given vectors s=s1,...,sK.
As usual, we have to interpolate. Space does not permit
a discussion.

Special Cases

1) Let us consider semi-homogeneous random fields con-
sisting of planc waves with fixed velocity ¢ of
propagation. The model (1) simplifies to

_.m/T JwT (m+sx)

(13) Y(m,x) f_“/Tfse T ()
where S is the perephery of the sphere with radius
|s|=1/(ct). A_(w,wTs) must have a spectral represen-

fejet

at 8=0. If we consider spectral distributions over S
instead of R4, the results of the paper can be
transferred to this case. Especially, we can write
(13) in Cartesian coordinates for d=2 and a point
x=(0,p)

¥ (m, %)

(w,wTs)Z(dw,wtds),

t

tation, Hw S(de), where IHw S(de)] is maximal
I’ ’

_ /T 27 jw(tmtp/csina)
N f—n/TIO €

Arm+p/csina(w'a>z(dw’da)’
where o is the angle between the x;~axis and the vec-
tor s. The evolutionary frequency-angle spectral

: . - 2
density is fm’p(m,a) lA1m+p/csina(w'a)l f(w,a) when

f exists. If a long line array located on the
Xp-axis is used for estimating that density, we can
use the technique of the beforegoing sections with
the restriction that the windowsonly use sensor posi-
tions on the line array. For example, we find

EP(m,0;w,0) = fflG(E—w,(Béina—wsina)/c)IZ
I_L w(m-m,-p)f— (w,q)dwds
m p m,p
with the known problems induced by the argument of G.

2) A distant target radiating noise in a model (13) is
characterized by a discrete point in the distribu-
tion over S. The noise generated by the target alone
and received at position x can be described by

/T ejw‘r(m+sox‘)

1 =
(14) Y (m,x) f—n/r T(m+sox‘)(w'wTSO)
*Z(dw,wTsy) ,
where s is the direction of the target. If sox' is

an integer, Y(m,x)=Y(m+ssx',0). Defining Zx(dw) =

Jutsyx! _
e Z(dm,wrso) and ATm,x(w)~A (w,0TSp) ,

T (m+spx')
we can interprete Y(m,x) as a semi-stationary process
in the sense of Tong, cf. [10],{8]. All results a~
bout evoluticnary spectra and cross spectra of bi-
variate processes are directly applicable to an anal-
ysis of the two signals received at different sensor
positions.

3) If the noise received from a point target is repre-
sentedby (14) and Z contains a discrete part Q(uwy)
at frequency Wy, then the discrete part of Y (m,x) is

+ '

QJuoT (msex") T(m+sox.)(wo,worso)g(wo).
Martin [4] called the corresponding part in the evo-
lutionary frequency spectrum a modulated line and
analysed the phase of the short-time Fourier trans-
form at wsy by a regression with linear splines and
unknown knots to estimate the instantaneous frequen-
cy of the modulated line.
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11.

12.
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