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RESUME

On definit le probléme d'estimation de phase et
de décodage simultané de symboles de données en bande
de base. On suppose que la séquence de phase est une
séquence aléatoire sur le cercle et que les symboles
équi-probables sont transmis sur un canal parfaite-
ment égalisé. Un algorithme de programmationm dynam-
ique [algorithme de Viterbi] est donné pour le
décodage d'une séquence de symboles et phases, maximum
a postériori (MAP) sur un treillis de symboles et
phases de dimension finie. Un intéressant principe
d'optimalité pour simultanément éstimer la phase et
décader les symbolés codés phase-amplitude, con-
duit & une méthode efficace: & deux étapes. Les
resultats de simulation pour des ensembles de symboles

8-ARY PM et 16-QASK transmis sur um canal
présentant une gigue de phase sinusoidale ou aléatoi-
re avec incrément normal et indépendant, sont présen-
tés et comparés aux résultats que l'on peut obtenir
avec des algorithmes a décision dirigée ou autres,

SUMMARY

The problem of simultaneously estimating phase
and decoding data symbols from baseband data is posed.
The phase sequence is assumed to be a random sequence
on the circle and the symbols are assumed to be equal-
ly-likely symbols transmitted over a perfectly equal-
ized channel. A dynamic programming algorithm
(Viterbi algorithm) is derived for decoding a maximum
a posteriori (MAP) phase-symbol sequence on a finite
dimensional phase-symbol trellis. An interesting
principle of optimality for simultaneously estimating
phase and decoding phase-amplitude coded symbols leads
to an efficient two step decoding procedure. Simula-
tion results for 8-ARY PM, and 16-QASK symbol
sets transmitted over random walk and sinusoidal
jitter channels are presented and compared with re-
sults one may obtain with decision-~directed and other
algorithms.

I. Introduction

On telephone lines linear distortion and phase
jitter dictate the use of a channel equalizer and some-
kind of phase estimator to achieve high rate, low
error probability, data tramsmission. A common
approach to phase estimation and data decoding is to
use a decision-directed algorithm in which a phase
estimate is updated on the basis of old phase esti-
mates and old symbol decisions. The DDPLL of [5] is
a first-order digital phase-locked loop (PLL) in which
the phase estimate is updated on the basis of a new
measured phase and symbol decision. In the jitter
equalizer (JE) of [3] and [4] a complex gain is up-
dated according to a simple decision directed stochas-
tic approximation algorithm. The complex gain is used
to scale and rotate the received signal, thereby cor-
recting phase jitter and rapid fading variations.
Although there is no explicit interest in phase esti-
mation itself in the JE, it is possible to interpret
the structure as an adaptive gain-phase correcting
equalizer.

In [1] Ungerboeck recognized the potential of
maximum a posteriori (MAP) sequence estimation for
jointly estimating phase and decoding data symbols.

A path metric was derived and its réle in a forward
dynamic programming algorithm for obtaining MAP phase
symbol sequences was indicated. Because of the way
phase was modelled in [1], the dynamic programming
algorithm could not be solved directly. Using two
approximations, Ungerboeck derived an implementable
algorithm and obtained performance results that were
on the order of 3dB superior in SNR to the DDPLL in a
16-QASK system at interesting values of the phase
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variarce parameter. See [1] for details. The reader
is referred also to [5] and [6] for discussions of
other sub-optimum, but computationally tractable,
algorithms for simultaneously estimating phase and
decoding data symbols.

In this paper we observe that baseband data is
invariant to modulo-2m transformations on the phase
sequence. This motivates us to wrap the phase around
the circle, so to speak, and obtain folded probability
models for transition probabilities on the circle.
When the phase process is normal random walk on the
circle, then the transition probabilities are de-
scribed by a folded normal model. This model has also
been used in [7] and [8]. It is then straight-forward
to pose a MAP sequence estimation problem for simul-
taneous phase and symbol sequence decoding as de-
scribed in [8] and [9]. The basic idea is to dis-
cretize the phase space [-w,n) to a finite dimensional
grid and to use a dynamic programming algorithm
(Viterbi algorithm) to keep track of surviving phase-
symbol sequences that can ultimately approximate the
desired MAP phase-symbol sequence. The MAP phase-
symbol sequence, itself, is the entire sequence of
past phases and symbols that is most likely, given an
entire sequence of recorded observations. Details of
the algorithm are given in [8] and [9]. For PSK and
QASK symbol sets an interesting principle of optimal-
ity leads to an efficient two-step decoding procedure.
With this procedure computational complexity is re-
duced by a factor near to the square of the number of
admissible phase values per amplitude level. This
amounts to a factor of 16 for the 16-point QASK dia-
gram that has been recommended by CCITT for data
transmission on telephone lines at 9600 b/s. Finally
in order to make the computation and storage require-
ments tractable in the Viterbi algorithm, we use it
in a fixed delay mode, as do other authors. By
appealing to known results for fixed-lag smoothing
of linearly-observed data, we are able to intelligent-
ly choose the fixed delay. Without significant per-
formance loss we decode phase-symbol pairs at a depth
constant of k=10. This obviates the need for huge
storage requirements for long sequences.

Simulation results for the proposed Viterbi
algorithm (VA) are presented for several symbol sets
including 8 or 16 points. Several types of
phase jitter are investigated such as Gaussian and
non-Gaussian random walk, and sinusoidal phase jitter.
The resulting error probability is compared with that
of the simple JE. As expected, performance of the VA
is always superior to that of the JE. On the other
hand the increase in computational burden is substan-
tial and the improvement in performance is not always
great enough to warrant the use of the VA. In our
concluding remarks we discuss situations in which one
might reasonably use the VA rather than a simpler
decision-directed algorithm (such as the JE) or approx-
imate VA of the type discussed in [1].

II. Signal and Phase Models

Assume complex data symbols {a,} are phase or
phase-amplitude modulated onto a carrier and trans—
mitted over a channel with linear distortion and phase
jitter. At the receivetr the output of a bandpass
filter/quadrature demodulator/complex ada%§§ve equal-
izer is a complex sequence xk=xk(l) + 3% which is
a noisy, phase-distorted, version of the original
transmitted sequence. Thus we write

i¢
x = ae k+nk, keNT (€Y

The sequence {¢,} represents phase fluctuations
(jitter and frequency drift) in the channel. The

RS TN

L. (2)

complex noise sequence n% n +~jnk is assumed to be
a sequence of independen igentically distributed 9
(i.1i.d.) complex Gaussian variables with nk:Nnk(O,Wn)

Consider now the phase distortion {¢k}. We model
it as

keN© (2)

P T ke T e
where {w, } is a sequence of i.i.d. random variables
with even probability density h(w). When w :N (0,0 ),
then {¢,} is the so-called normal random walk. Y Y
detail %his model falls well short of a reputable prob-
abilistic model for phase, because at low frequencies
the spectrum is unbounded. Furthermore the spectrum
is not integrable, corresponding to the unbounded
growth of the variance in the diffusion model of (2).
However, in gross terms, i.e. for short-term fluctua-
tions, the model captures, with appropriate selection
of h(w), the correlated evolution of phase. The main
virtue of the independent increments model is that it
forms a convenient basis from which to derive estimator
structures which may then be evaluated against more
realistic phase sequences.

As the measurement model of (2) is invariant to
modulo-27 translates of ¢, we may represent phase as
if it were a random sequence on the unit circle C or
equivalently on the interval [-m,w). This means ¢k’
modulo-27w, has transition density

e
f(¢k+1/¢k) = li_w h(py =t ~22m) = ¢, ) (3
We often denote the sum in (3) by gl(-) and call it
the folded density of the phase incTFements. Usually
the phase increment is small and its distribution h{(-)
is very narrow with respect to 2m. Therefore, in the
sum of (3) only one term is relevant and f(¢k+l/¢k) =
In the normal case this implies o, << 2w,
v is the variance of V-

k

where

In the normal case [7], [8], the density 81

(b1 47~
¢y ) may be written kel

@

z

2
N (¢, +227,0%) 4)
R ¥

81 (e =

In the normal and Cauchy cases it may be shown that
8- (x) achieves its maximum at x=0 and that it is mono-
tone decreasing on 0 < x < 7.

K is Markov. Therefore, we may

The sequence {¢ }l
gensity of the K phases {¢k}§

write for the joint
K

FLo 3D = T £y, /60 (%)
k=1

f({¢l/¢0) 4 f(¢1) : the marginal density of o1
Usually ¢, is uniformly distributed on C, because phase
acquisition starts at k=1 with no prior information
about its value. By the independence of the n, in (1)
it follows that the conditional density of the measure-
ment_sequenge {x;, }-, given the phase and data sequences
K £® k1
{631, (o )y, is

K 3¢
K, k
{ak}l)— g NX (ake

2
,0.) . (6)
k=1 Fk n

K K
£(Ux 11/40, 0T

Equations (3)-(6) form the basis for the deriva-
tion of a MAP sequence estimator. The key element is

lThat is, h(w) = h(-w).
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that {¢, } is a Markov sequence with a bounded range
space [=r,r). Discretization of this bounded interval
leads to a finite-state model from which a finite
dimensional dynamic programming algorithm can be de-
rived.

IITI. Decision-Directed Algorithms

The usual way of dealing with phase fluctuations
is to design a phase estimator and use the estimated
phase, call it ¢k’ to rotate the received signal as
follows:

M e— s keN+ . (D

The phase corrected signal y, is then fed to a
decision device which, in turn, delivers the symbol
estimate & Typically the phase estimate §, is func-
tionally dependent on the o0ld measurements {..., X

} and the past symbol estimates {..0, &, 9 k %
I% a carrier is sent, ¢ is obtained from a -
phase-locked loop (PLL) In suppressed carrier sys-—
tems such as PSK or QASK systems the PLL is "decision-
directed". That is, $, is updated on the basis of
ak—l' For instance in [5]

. » T3
dpg1 = O HIm[x e 7] (8)

¢k + uksin(argxkuarga ¢k sHy =H |x ]

where * denotes complex conjugate and u is a constant
that depends on the signal-noise ratio. The estimator
of (8) is called a DDPLL.

In the jitter equalizer (JE) of [3] and [4] X
is rotated and scaled as follows:

Y = "8 €))

*
G = Gy TG Y%

The complex gain G, is the single complex coefficient
of a one-coefficient rapidly-adaptive equalizer,. We
may think of G /|G | as the phase correction e ~0k
and [G ] as a gain correction & . Thus, although
there Is no explicit formulation of a phase-gain esti-
mation problem in [3] and [4], the net effect of the
JE is to correct phase and rapidly fading variationms.

IV. Map Phase and Symbol Sequence Decoding with the
Viterbi Algorithm

The basic idea behind MAP sequence decoding is to
find a sequence of phase-symbol pairs {¢ ,ak}K that,
based on the observation sequence { y appears most
likely, The application of this idea %o phase coher-
ent data communication was first proposed in [1] and
refined in [9]. The most likely sequence, call it
{¢,,8,}, is the sequence that maximizes the natural
logarithm (or any other monotone function) of the a
posteriori den31t§ of {¢ . } , given the sequence of
observations {xk} Thus we pose the maximization

problem:
n f({¢k 1 {a k) /{xk}l) . (o)
{¢k 1° {ak 1
Using the result of (5) and (6) we may write
£ }K, {¢ }K, {a }K) = 7 N_ (ae ,0.) -
e YRl Y1 el X ok n
£8 /0D Ea D BNGED

Assuming the {a, }X to be a sequence of indepen-
dent, equally likely symbols, using (3), and neglect-
ing uninteresting constants, we may write the maximi-
zation problem as

max FK

K K
CH AR

K i¢
L= - =5 & lxoae P+ (12)
20, k=1
K
T ofn g (b~ 1) + 2 £ .
k=2
Note that Pk satisfies the recursion
Fk = rk—l + Py k = 2,3,... (13)
i¢
S S k2 - =
P T T2 e 71T+ o gy (00 ) ok2.3,
i 3¢
-1 12
I, = - =5 lxpmage 7|7+ 20 £G4
where p the so-called path-metric. For conveni-

ence, let us make explicit in I the last phasi and
symbol: T_(¢_.a,). The other arguments {¢. }-

{ak}l— ,‘§Emain implicit. Then, from (13)¥

Te(gsag) = Tp 1 (g 158g 1) + Pr(Xysapsbpsdy 1)
(14)
Thus, the maxlmlzlng sequence, call it ({¢, } {a }

passing through (¢K 10 aK l) on its way to %¢K aK ,»
K-2
must arrive at (¢K 1° aK l) along a route ({¢ } )

fﬁk}K 2) that maximizes Ty (¢K_ ,a ). It is this
observation that forms the %3513 of forward dynamic
programming. In the actual implementation of a dynam-—
ic programming algorithm, one must discretize the
phase space C to a finite dimensional grid of phase

values = = & } The function 2n gl(q)k ¢k—l) is

then deflned on the two-dimensional grid = x = .
However, as discussed in [8] and [9] the resulting mxm
matrix of conditional probabilities has Toeplitz sym-
metry which means only an m vector of conditional
probabilities must be computed and stored.

The Viterbi algorithm for simultaneous phase and
symbol decoding consists simply of an algorithm which
determines survivor phase-symbol sequences terminating
at each possible phase-symbol pair. One of these sur-
viving sequences is ultimately decoded as the approxi-
mate MAP phase-symbol sequence. The complexity of the
computation lies ma1n1¥ in the evaluation of mM possi-

ble values of I -a e k|2 at each step of (13). Here
M is the symbolling alphabet size and m is the number
of discrete phase values. For each of these calcula-

tions of |x§—a e there are six (6) real multipli-
cations to be performed (plus the additions). Com-
pared to this computational load of 6mM multiplica-
tions, the determination and addition of 20< %n g

(¢ ¢ ) that appears in (13) is negligble? %act
the lat%er function would likely be tabulated and
stored in ROM. From this discussion it is clear that
computation complexity is proportional to mM. When
there are many symbols and short-term phase fluctua-
tions have small amplitude (o small), so that m must
be large for accurate phase tracklng, then the com-
plexity is very large. For example with M=8 and m=48,
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c is proportional to 384. As we show in the next
section the complexity of the Viterbi algorithm can
be dramatically reduced by making a change of vari-
able and tracking a total phase variable that is the
sum of ¢ and the symbol phase, arg a,. And, of
course, %or PSK symbol sets M may be set to unity be~
cause only one symbol amplitude is admissible and
admissible symbol phases may be chosen to fall on one
of the discrete phase values. Thus for PSK symbol
sets the complexity is simply m. Even this figure
may be reduced by using one of a variety of so-called
M-algorithms in which all survivor states are saved
but only a handful of candidate originator states are
considered for each survivor.

V. A Principle of Optimality for Phase-~Amplitude
Coded Symbols and an Efficient Two~-Step
Decoding Procedure

In order to simplify matters and to illustrate
the key ideas, let us consider PSK symbols of the form
30
a =e k (15)
with {6, } drawn independently from an M-ary equi-
probable alphabet @={ (2= l)ZW/M} Write the mea-
ment model of (1) as
ka
x = e + n (16)

where the total phase wk is represented as follows:

Ve T b T Oy
k
ek = 3 Ael, Aek = ek - ek_l, Ael = el . Aan
2=1
. ko
It i = 6. =9, - ©
t is clear that ek 151 Ae2 and ¢k wk Bk. Thus

we may replace the MAP sequence estimation problem
posed in (12) by the problem
K
max £({x, 1>, {y } s {Ae i) (18)
{wk}K {8 }K k l k'1 k'l

The joint density f 4 £(.,.,.) in (18) may be written

K Jv
fK = I N (e k
*x

2 k-1
X ,cn)f(wk,Aek/{wj}l

k-1
,{Aej}l )
19

where for k=1, f(wl,Ael/.,.) is simply the marginal
density £(y,, 6,).” The conditional density on the
right hand side of (19) is easily evaluated with Bayes'
rule:
k-1 k~
f(wk,Aek/{wj}l s {Aej}l

1 a
)=f(wk/{¢j} {Ae }l)

k-1 k-1
f(Aek/{wj}l ,{Aej}l ) . (20)

Now A6, is independent of the previous data, additive
noise and phase fluctuations. Thus

k-1 k-1, _ 1
f(Aek/{wj}l , {Aej}1 ) = ¥ . (21)

Moreover if we rewrite wk as

Ve Ty T T O H O T8

Vgt 08+ s

we see immediately that

(22)

k-1 k
f(wk/{wj}l ) {Aej}l) = gl(wk—wk_iﬂek) .(23)

Recall y, is defined on the circle C. Therefore, for
emphasis we might think of w as w + A8, + w,,
whose density is folded in —n L) . _}uttlng this
together, we have for the joint density £K

Jv
N (e k,oz)
k=1 *x n

K

K
fo = I

1
M 81 (V¥ m80)

A8 (24)

A A
1- 8% % =0

Principle of Optimality: Call {wk}l, {ae, } the MAP

sequences that maximize f ; {40 }K enters only in the
gl( ) term on the right hand 315e of (24). Now let us
suppose (as is usual) that gl(w), which is even, is
also unimodal with a peak at"w=0. This single-mode
assumption for g, () is valid in particular when the
phase increment %, in the Markov-process (2) has a
Gaussian or Cauchy distribution h(w).

It follows that £ is minimized by choos-

ing
86y = [h=by 4] (25)
where [x] denotes the closest value of (£-1)2n/M to x.

By substitution of the comstraint (25) into {(24) and
defining the "rest" function R(x) on the circle C by

R(x) = x -[x] (26)
we find that

e n N @ 5o L RO ) 26)

A X .
The maximization of £~ with respect of {wk}l is for-

mally equivalent to maximizing the joint density

f({x K } ) when the total phase 1% follows a
Markov—modek similar to (2):

b = g oy @7)

Here the independent increments uy have probability
density, folded on the circle C,

£ - 3 g RGw) . @8)

This interpretation is purely formal since f(u)
is not generally a probability density. However when

- r
g (W) =0, [u] >y (29)
then f(u) is a probability density because in ‘that
case
R
—gl(R(u))~ﬁ T I h[Ru)-22r-(m-1)2mw/M] . (30

=1 f2=—c

Thus (28) can be interpreted as an approximate
density when the peak of g(u) is narrower than the
minimum phase distance between the symbols. This con-
dition is always satisfied in communications applica-
tions. Otherwise phase distortion is so large that
data transmission is not possible. Thus we have a
pure phase-tracking problem as in [8] and [9] and we
may Eroceed accordingly. Taking the natural logarithm

of £X we have the maximization problem:
maxK FK
o
b e oA 1 1,2
Tp = T _gtepsTis - ;;i'lxl"e |“+2n gy (R(,))
n
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1 30
- =3 ka—e

k2
, |“ + 2 g RGy-vy DT (31
n

P

which is solved by the dynamic programming algorithm
discussed in Sectiomn IV.

Now the complexity of the computation lies mainly

s . k .
in the evaluation of ka—e ] at each step, since

2
th 1 ft i -
e m values o he function 20n in gl[R(wk wk_l)]

will be gﬁecomputed and stored. For each evaluation

2
of [xk—e kl there are two real multipliers (plus the
additions). Thus the complexity is proportional to m.
Compared to the brute force approach of Section IV the
reduction in complexity is actually greater than M (4
and 8, respectively for 4-ary and 8-ary PSK).

Usually, the phase is differentially modulated
rather than directly modulated and therefore the rele-
vant symbol is A6, itself (see (17)). For the purpose
of data transmissIon, there iskno need to reconstruct

the absolute data phase 8, = El A6,. This recon-
struction has, however, been cErrie& out in the simu-
lations in order to recover the estiamtes ¢, =y, -8, of
the phase fluctuations, and to get the approximate
variance of the phase estimates.

This principle of optimality is easily (but te-
diously) extended to phase-amplitude encoded symbols.

VI . Simulation Results: Gaussian Increments

For all simulation results discussed in this
section the phase space [~w,7) has been discretized
to 48 equally-spaced phase values and a Viterbi algo—
rithm has been programmed to solve the MAP sequence
estimation problem. The principle of optimality estab-
lished in Section V has been used to derive the appro-
priate path metric and thereby reduce computational
complexity. The choice of a fixed-lag decoding (or
depth) constant is k,=10. Source symbols have been
generated independengly. The random phase sequence
has been governed by, the independent increments model
of (2) with wk:N(O,U ) and initial phase uniformly-
distributed on [-m,m). See [10] for results relating
to sinusoidal phase jitter. Initial phase acquisition
has been achieved by transmitting a preamble according
to one of the following schemes.

a) During a pre-transmission period of length N,
the sequence of transmitted data is known to the re-—
ceiver. Thus, in the DBVA and VA systems that are
based upon MAP estimation, the Viterbi algorithm works
as a pure phase estimator during that period. At the
end of the preamble, the Viterbi algorithm is turned
into a joint phase~data MAP estimator. In theDDPLL
and JE systems that are based upon decision-directed
algorithms, the algorithm is directed by the true data
during the preamble period.

b) During the preamble period, identical (but
unknown) data are emitted. This keeps the phase away
from severe sudden fluctuations, and makes the joint
phase-data estimator able to adequately acquire the
initial phase.

The VA reaches the same data-error probability
during the emitting period for both methods; i.e. its
performance doesnot depend upon which learning proce-
dure is used. On the other hand, theDBVA is very sen-—
sitive to the learning procedure. Eor exagple, at a
SNR of 20 dB, with phase variance ¢~ = 4 ¢°, for a
learning period of N=60 data, the niimber of errors
during an emitting period of 490 data values jumps

from 7 for procedure a) - known data - to 59 for
procedure b) -~ constant but unknown data. Moreover
the DBVA requires a longer learning period than does
the VA, roughly twice longer. Namely N=50 is suffi-
cient for the VA, while the DBVA needs N=100 learning
iterations. The decision-directed systems (DDPLL and
JE) work as the VA in these respects. That is, a
preamble period of 50 data values is sufficient, and
these data may be unknown to the receiver, provided
they are kept constant (procedure b) without degrada-
tion.

8-PSK: Shown in Figure 1 are simulation Eeiu}ts for
8-PSK when SNR ran§es from 16-19dB and (o <:n)/2 remains
fixed at 4.4 x 1073 rad?. The solid circle® corre-
spond to the VA and the solid triangles correspond to
the markedly simpler JE. Also shown on Figure 1 are
performance bounds for fullg coherent 8-PSK and 16-PSK
symboling. The values of ¢ under investigation

range from 1.6° to 2.2° and"the ratio 02/¢° is very
small rvanging from 0.03 to 0.12., In this Case neither
the VA nor the DBVA provides significant improvement
over. the JE or DDPLL. The latter two receivers are
markedly simpler than the DBVA which, in turn,.is
markedly simpler than the VA. Therefore for such
cases of weak phase noise, the VA is of no interest.

A different conclusion is reached for high phase noise
cases and phase-—amplitude coded symbols, as discussed
in the next example.

16-QASK: Shown in Figures 2, 3 and 4 are simulation
results for 16-QASK symbols encoded according to the
(4,4) CCITT rule. The decoding procedures are JE,
DDPLL, DBVA aad VA, £-r three distinct values o7 the
ratio cw/on. Figure 2 is concerned with a weak phase

noise (cé/cﬁ = 0.25), Figure 3 is concerned with an
average phase noise (Géloi = 1) and Figure 4 is con-

cerned with a large phase noise (03/02 = 4). We re-
call [1] that the DBVA performs some Rind of phase
estimation along a path that satisfies

~

L N > (32)
using a Viterbi algorithm. The DBVA that we have
simulated is somewhat different from Ungerboeck's
DBVA, in which the number of possible phase states at
each iteration is limited to 6 or 8. 1In our simula-
tion the number of phase states is not limited, thus
avoiding one possible cause of errors and improving
the error rate, but also increasing the computational
complexity with respect to [1].

VII. Conclusions

We have derived a principle of optimality for
phase-amplitude encoded symboling that allows one to
simultaneously track random phase and decode data
symbols using the VA derived in [8] and [9].

The VA is designed to face a phase process that
is a random walk, i.e. a very severe type of phase
fluctuation with rapid and large variations, and in
addition the possibility of very large peaks. For
such severe cases, the VA gives excellent performance .
However, the number of discretized phase levels, and
thus the complexity of the VA increases as the phase
fluctuations decrease, i.e. when the transmission con-
ditions improve. Thus its use must be restricted to
the cases of severe phase noise, which happen usually
when the data diagram has many points (8, 16 or more).

Finally, we remark that the robustness of ‘the VA,
DDPLL, and JE appears superior to that of the DBVA.
This issue will be explored more fully in a forth-
coming paper.
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Fig. 1 P(E) vs. SNR. 8-ary PSK
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