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RESUME

Pour obtenir numérigquement les spectres
fréquentials & l'aide d'échantillage, on
prend ordinairement les valeurs du signal
intermediares entre les points de mesure etre
intepolée par la série de SHANNON. La trans-
formationh de FOURIER appliguée & un signal
donnée par cette série conduit & la trans-
formation discréte de FOURIER., Si c'est
utilisée pour le calcul du spectre d'un
signal, on obtient des erreurs guand le
signal n'est pas & bande limite.

Nous montrons que c'est possible de
circumvenir cette probléme si l'on utilise
la série infini de NEWTON-GREGORY a la place
de la série de SHANNON. Cette série converge
si c'est égal & la transformation de POISSON
d'une série polynémiale de LAGUERRE, C'est
une interpetation singulier a une transforma-
tion conservant le produit de convolution
parce que la transformation de POISSON est
utilisée d'obtenir une séguence des échantil-
lons réels a la place d'une autre sorte d'un
signal discret. Les signaux avec échantil-
lons gue on peut obtenir dans cette maniére
satisfont un théordme nouveau d'échantil-
lonage. Avec cet théor&me nouveau, c'est
possible d'obtenir des spectres fréquentials
plus précisement.
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SUMMARY

To compute spectra, it is usual to
assume that the analog signal which a given
sequence of sample values represents can be
taken to be the bandlimited signal the
SHANNON series fits through the samples.
The FOURIER transform of this series gives
the discrete FOURIER transform computing
formula. This formula gives a computed
spectrum which can be badly distorted by
aliasing if the true analog signal is not
well bandlimited.

We will show that this distortion can
be averted if one uses the infinite NEWTON-
GREGORY series instead of the SHANNON series
to interpolate signal values between
sampling instants. The NEWTON-GREGORY
series converges when it can be generated by
POISSON transforming a LAGUERRE polynomial
series term by term. This gives an unusual
interpretation to a convolution preserving
transformation because it uses the POISSON
transform to mathematically generate true
signal samples, instead of to represent an
analog signal by an alternative type of
digital signal. The signals whose samples
this convolution preserving transformation
generates from LAGUERRE series obey a new
sampling theorem; and when it applies, a
signal can be specified by its samples using
a NEWTON-GREGORY series whose FOURIER trans-
form gives a computing formula yielding
alias-free spectral values.
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1, - INTRODUCTION

C. BOzZZ0 [1] has presented a survey
describing a number of transformations which
allow a function of a continuous variable to
be transformed into a number seguence Sso
that the operation of convolution is pre-
served. It is usual to view these trans-
formations as mathematical devices for
specifying digital signals other than
periodic samples, with which analog filtering
can be imaged by digital filtering. We will
show that it can be useful to give a totally
different interpretation to at least one
convolution preserving transformation, and
to regard it as a mathematical device for
generating a true sequence of signal samples.

If a function can be represented as a
series of LAGUERRE polynomials, then the
POISSON transform of the series generates
samples of an analog signal whose values
between sampling instants are correctly
interpolated by a convergent NEWTON-GREGORY
series.. . This says that the infinite NEWTON=-
GREGORY series can interpolate analog signal
values between sampling instants for signals
whose samples can be generated by this con-
volution preserving transformation, much as
the SHANNON series can do this for signals
which have bandlimited spectra. Since the
generating function must be representable as
a. LAGUERRE series, it should be possible to
exploit the LAGUERRE transform as well as
the PQISSON transform to analyze the proces-
sing of samples of these analog signals.

To be useful, this representation must
be applicable to signals encountered in
applications of signal processing. The
purpose of this paper is to show that it is
applicable to an important class of signals,
We will show that these signals are governed
by a new sampling theorem which allows an
unbandlimited signal to be specified by its
samples if the poles of its LAPLACE transform
all have frequencies below one-sixth the
sampling rate. The FOURIER transform of the
NEWTON-GREGORY series representation these
signals have can be used to compute spectra
without the aliasing distortion which usually
occurs when signals are sampled at less than
the NYQUIST rate.

2, = THE INFINITE NEWTON-GREGORY SERIES

C. LANCZOS [2] has shown that those
positive-time signals whose samples can be
generated by POISSON transforming a LAGUERRE
series, and for which the infinite NEWTON-
GREGORY series

@ (k)
;o) B, t>o0 (1)

f(t) =
k=0 k!

gives a correct convergent interpolation
through unit spaced samples f(n) are uniquely
characterizable by their being capable of
being generated by a function g(a) satisfying
the condition

JO lg(a) e %aa < = (2)

using the integral
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This last formula is the convolution preserv-
ing POISSON transform when +t+ is an integer.
AKF (0) denotes the k-th forward difference of
£f(t) at t = 0 and %5 equal to the sum AKf(0) =
F(k) - £(k=-1) + (k(2)/21)£(k-2)-=~ + (-1)K£(0)
of the first k + 1 signal samples weighted
w%t? alternating-signed binomial coefficients.
t(K) denotes the k-th descending factorial
power of t and equals the product of the k
factors t(t-1) (£=2)---(t-k+l).

To delineate types of signals which the
infinite NEWTON-GREGORY series can inter-
polate correctly between sampling instants,
note that the constraint (2) makes g{(a) have
a LAPLACE transform

G(s) = J g(a)e—sada (4)
0

which converges when Re(s) > 1/2. It is
straightforward to show that G(s) is related
to the z-transform F(z) of the samples £f(n)
which the POISSON trangform specifies by

I O£z ™ = G(s)
n=0 s=1-z

F(z) = (5)

-1 "

This restricts the values of z where F(z) can
have poles to those corresponding to values
of s where G(s) can diverge and have poles.
These are given by z = 1/(l-s) with

Re(s) < 1/2, and correspond to points inside
a unit radius circle around the point z = 1 +
j0 on the z-plane. For the pole at

z = exp(v)exp(jw) of the z-~transform F(z) of
a sampled signal exp(c + jw)n to be within
this circle, the signal must have a fregquency
lw|] < /2 radians/sampling interval and a
decay factor exp(o) < 2 cos(w).

Regtricting w and o in this way is
equivalent to restricting exp{o + jw) to
equal 1 + ¢ where 7 is a complex number with
magnitude ?Cl < 1. (1 + )% is the signal
which formula (3) yields when g(a) =
(L + z)~lexp(z/(1 ¥ z))o. This g(a) has the
LAGUERRE polynomial series representation

g .
1 T+t ¢ k
e = ¥ L (@) , a>0
1+ z k=0 k -

where Ly (o) = A¥(a™/n1)|p_o. If this is
transformed term by term using formula (3),
one obtains the NEWTON-GREGORY series

t > 0. (7)
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When t is an integef, this is just the
familiar binomial theorem. When t is not an
integer, it is an infinite series equal to

the TAYLOR series expansion of (1 + o)t as a
function of ¢ and converges when |z| < 1.
As we have already noted, when |z| < 1, the

complex number exp(¢ + jw) = 1 + ¢ has an
angle |w| < m/2 and a magnitude exp(c) <

2 cos(w). Then, the values of the signal
exp(o + jw)t are correctly interpolated
between sampling instants by the NEWTON-
GREGORY geries (7). By differentiating (7)
term by term with respect to g, it can be
shown that any signal of the form

tlexp(o + jw)t, n > 0 is interpolable by a
NEWTON-GREGORY series when w and ¢ satisfy
these inequalities.

3. -~ SAMPLING THEQREM

Although it is impossible to sample a
signal forever, a signal exp(c + jw)t with
o < 0 can be sampled until its amplitude has
decreased to a negligible value. If ¢ < 0,
the condition exp(c) < 2 cos(w) is always
satisfied when |w| < 7/3 radians/sampling
interval. Using the superposition principle
and changing notation so as to explicitly
include the sampling interval T, this gives
the sampling theorem:

Any positive~time signal of the form

o .t
cos(wkt + ek) ’

oy < 0 (8)

with np > 0 is uniquely specified by its
values at sampling instants t = nT, n =
0,1,2,... 1if T < n/3 for every k; or
equivalently, §f all the poles sy = o) + jug
for its LAPLACE transform F(s) have frequen-
cies |fy| = |wp/27m| below 1/6 the sampling
rate 1/T (or between 1/6 and 1/4 the sampling
rate with oy satisfying the tighter con-
straint exp%ckT) < 2 cos(ka)).

4, - COMPUTATION OF FOURIER INTEGRAL

The NEWTON-GREGORY series, whose terms
are not bandlimited and have non-zero FOURIER
transforms both above and below the folding
frequency, can be FOURIER transformed term by
term.

In numerical computation one can only
use the FOURIER transform of the signal given
by a NEWTON-GREGORY series with a finite
number of terms:

& (k)

Tk
kEOAf(o)T r >0 (9)

fitting an n-th degree polynomial through the
first n+l samples. The fact that the n+l
coefficients AKf(0) depend only on the first
n+l sample values, regardless of the value

of n, makes. them the correct first n+l
coefficients of the series for a signal which

is only interpolable exactly by an infinite
series. Nonetheless, the NEWTON-GREGORY
series is only suited for interpolating
signal values between sampling instants and
not for extrapolating beyond the sampling
range, Therefore, we FOURIER transform the
truncated in time polynomial

n

(k)
kzo %200 - tut) - ult-n)]

(10)

instead o?k(9). Using STIRLING numbers
sk,V), t ) can be re-expressed in terms of
ordinary powers of t as

L0 _

%

X 3
1 Sk, )t (11)
=0

The formula can then be FOURIER transformed
so as to obtain the computing formula:

n k k
A AKg(0) X
F(jw) = 2 z S(k,%)
k20 KU 420 Gw) T T
. 2 . m
1. emien j Uem) (12)

=0

for the approximation to the FOURIER transform
F(jw) of £(t) given by the FOURIER transform
of a truncated polynomial fitted through n+l
signal values. This formula specifies an
aliags~free value of the spectrum of the trun-
cated polynomial at any frequency.

Figures 1l-4 show plots of sgpectral
amplitude versus frequency in radians/sampling
interval for signals truncated after the num-
ber of sampling intervals N noted in each

figure. Figure 1 is for a parabolic pulse of
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Fig, 4. Spectra of signal with an alias
with w < 7/3.

finite duration exactly interpolable by a
NEWTON~GREGORY series. The computed spectrum
accurately reproduces the oscillations which
the GIBBS phenomenon gives to the spectrum as
a result of truncation. In the other figures,
the true spectra shown are for untruncated
signals. In Figs., 2 and 3, where the signal
is not truncated until it has decaved to a
small value, the true and computed spectra are
indistinguishable. Fig. 3 also displays the
usual periodic DFT spectrum computed for the
same signal from the same set of samples. It
has been scaled by a factor of .609 to make it
agree with the true gpectrum at w=0 and make
it easier to see how its form is distorted by
aliasing. The computed spectra in Figs. 2

and 4 are identical because Fig. 2 is for a
lower frequency alias with the same set of
sample values as the signal in Fig. 4 whose
LAPLACE transform has a higher pole frequency
than the sampling theorem allows.

5. - CONCLUSIONS

It has been shown that the infinite
NEWTON-GREGORY series interpolates correct
signal values between sampling instants for
superpositions of damped sine waves when the
poles of their LAPLACE transforms all have
frequencies below 1/6 the sampling rate.
Plots of computed spectra have been exhibited
which show that it can be possible to numeri-
cally evaluate the spectrum of a signal
satisfying this sampling criterion using the
FOURIER transform of a few terms of a NEWTON~
GREGORY series. By showing alias-free
spectral values computed both above and below
the folding frequency, these plots show that
aliasing distortion is ecircumvented when
spectra are computed in this way.
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To obtaln these results, we have not
had to use the fact that the POISSON trans-
form specifies samples of these signals so
that the discrete convolution of two sample
sequences is imaged by the continuous con-
volution of their generating functions.

This makes the application of the mathematics
of convolution preserving transformations [11}
to extend the analysis presented here an
inviting area for further research.
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