usion de données

An Efficient Approximation Scheme
for Distributed Multiple Hypothesis Testing!

Une stratégie efficace d’approximation
pour un test d’hypotheses multiples distribuées

par Jason D. PAPASTAVROU

School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA.

Abstract

In the general distributed detection problem a set of decision makers (DMs) receive
observations of the environment and transmit finite-valued messages to other DMs
according to prespecified communication protocols. A designated primary DM
makes the final decision on one of the alternative hypotheses. All DMs make
decisions so as to optimize a measure of organizational performance. Since the
"quest for optimality” in problems in this framework is associated with great
computational and inherent complexity, simple approximate solutions which take
into consideration the specific characteristics of the problem should be employed.
This approach is demonstrated by addressing the issues involved with reducing
a complex M-ary hypothesis testing problem into a sequence of simpler binary
hypothesis testing subproblems. An approximate decision scheme is derived that
is computationally easy to implement and performs very well by exploiting the
structure of the alternative hypotheses of each particular problem.

Key words : Distributed Multiple Hypothesis Testing, Approximation Scheme

Résumé

Dans le probléme général de la deetection distribuée, un ensemble de preneurs
de décision regoit des observations de I’environnement et transmet des messages
prenant des valeurs finies a d’autres preneurs de décision selon des protocoles de
communication préétablis. Un preneur de décision choisi comme primaire, prend
la décision finale sur I’une des hypothéses possibles. Tous les preneurs de décision
décident de maniére a optimiser une mesure de performance d’organisation.
Puisque la «quéte d’optimalité» dans ce type de problemes s’accompagne d’une
grande complexité et d’une lourde charge de calcul, des solutions approximatives
simples qui tiennent compte des caractéristiques spécifiques du probléme devraient
étre employées. Nous présentons cette approche en convertissant les questions
impliquées dans la réduction d’un probléme complexe de test d’hypothéses M-
aires en une suite de sous-problémes de test d’hypothéses binaires. Nous derivons
une stratégie de decision approximative facile a implanter numériquement et qui
est tres efficace car elle utilise la structure des hypothéses possibles dans chaque
probléme particulier.

Mots clés : Test d’hypothéses multiples distribuées, Stratégie d’approximation

1. Introduction and Motivation

The problem of distributed decision making in a hypothesis test-
ing environment has attracted considerable interest during the past
decade. This framework was selected because it combines two de-
sirable attributes; the mathematical problems are easy to describe
so that researchers from diverse disciplines can understand the
models and their conclusions; also, the problems have trivial cen-
tralized counterparts, so that all the difficulties arise because of
the decentralization of the decision making process. On the other
hand, these problems are also known to become computation-
ally intractable (NP-hard) even for a small number of decision

1. This research was supported by the National Science Foundation under grant
DDM-9309579.

makers (DMs) and a small number of communication messages
[25]. Thus, in order to overcome the limitations caused by the
combinatorial complexity, it would be desirable to develop com-
putationally efficient approximate procedures, which hopefully
will not cause significant deterioration in the performance of the
organization.

We examine problems of cooperative organizations which consist
of a number of DMs and perform M-ary hypothesis testing. Even
though we attempt to keep the combinatorial complexity under
control, considerable difficulties arise from the intrinsic complex-
ity of the distributed problems. We present alternative decision
schemes for these organizations, analyze them in a quantitative
manner and compare their performance and computational re-
quirements to the performance and computational requirements of
the optimal decision rules. We investigate whether some "common
sense” and intuitively appealing” procedures, which are easy to
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implement, perform satisfactorily in this framework. (Similar ap-
proaches that analyzed other aspects of the decision making pro-
cess were followed in [12] and [13].) The objective is to analyze
the well-known trade-off : optimality versus computational effi-
ciency. We argue that the proposed decision scheme performs very
well compared to the optimal, and therefore should be preferred
due to the tremendous reduction in computational complexity.

The Bayesian decentralized detection problem was first consid-
ered in [24], where the optimality of constant threshold strategies
was established; this was formalized and generalized in [27]. Sev-
eral generalizations of the basic detection model have appeared in
[51, {22], [11, [2], [8] and [6]. The parallel architecture with iden-
tical sensors has been analyzed in [8], [18] and in [ 19]. An explicit
asymptotic solution for a special case of the parallel architecture
performing M-ary hypothesis testing appeared in [16]. Multiple
hypotheses were also considered in [17] and [23]. Asymptotic
results were established in [25] for the parallel architecture and
in [12] for the tandem (serial) architecture. The Neyman-Pearson
formulation of similar problems is considered in [ 7], [19], [20], [7]
and [29]. The optimality of a monotone threshold strategy for the
case of independently randomized decision rules was established
in [30]. The effects of randomized decision rules were considered
in {14]. In [33], different team architectures are compared for the
Neyman-Pearson formulation. Different team architectures, for
the Bayesian case, are also compared in [19] (numerically) and
very extensively in [13] (analytically). In [11] and [32], the ef-
fects of communication costs were considered. In [15] and [31],
hypothesis testing models are used to analyze sensor decision in-
tegration. Two thorough overviews of the field appeared in [28]
and [3].

In section 2, the distributed hypothesis testing framework is
defined and the M-ary distributed hypothesis testing problem
is formally presented together with the optimal solution. The
team has to select one of M alternative hypotheses, taking into
account different costs for hypothesis misclassification. The team
consists of N DMs; one of them is referred to as the primary
DM and is responsible for the final team decision, and the rest
are known as the consultant DMs (Figure 1). Each consultant DM
receives his/her observation and then computes and communicates
a U-ary message to the primary DM. Upon receipt of his/her
own observation and the messages from the consultant DMs, the
primary DM makes the final team decision declaring one of the
M hypotheses to be true. In general, in order to determine the
optimal team configuration (i.e., the optimal primary DM), the
problem needs to be solved N times; each time with a different
primary DM,

In section 3, an approximate decision scheme is presented which
has a dual objective. The first objective is to make an educated
selection, among the DMs of the team, for the DM that will
be designated as the primary DM. The second objective is to
decrease the computational complexity of the original problem
by reducing the complex M-ary hypothesis testing problem into
a series of binary hypothesis testing problems. This is achieved
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through a corrected adaptation of the scheme in [4] for object
recognition with a single sensor. Furthermore, several suggestions
are made for improving the approximate decision scheme by
taking maximum advantage of the particular structure of the
problem; thus the philosophy and benefits of the proposed problem
dependent analysis are demonstrated. In section 4, we analytically
discuss two numerical examples that demonstrate the efficiency
of the approximate decision scheme and in section 5 we present
our conclusions.

2. The M-ary Distributed Hypothesis Test-
ing Problem

It is well-known that the combinatorial complexity of the dis-
tributed hypothesis testing problems almost always explodes as
the number of the team DMs, or of the hypotheses, or of the
messages increases. On the other hand, simple, approximate and
usually intuitive solutions have been shown to perform relatively
well. Moreover, in [13] it was shown that the optimal team ar-
chitecture in general depends on the characteristics of the envi-
ronment. Therefore, it becomes apparent that it is worthwhile for
the designer of the team to : (i) sacrifice some of the team per-
formance, in order to keep the complexity under control and, (ii)
take into consideration the specific characteristics of the environ-
ment in which the team operates, in order to improve the team
performance. To demonstrate this approach, a complex multiple
hypothesis testing problem with a team consisting of several DMs
is presented.

PROBLEM. Consider a team which consists of N DMs and
performs M-ary hypothesis testing. Each hypothesis H,, occurs
with a known prior probability p,, = P(Hy,), form =0, 1, ...,
M — 1. DM n(n = 1,2, ..., N) receives an observation y,, with
a corresponding probability density function P(y,|H,,) given
hypothesis H,,. The observations are conditional independent
given the true hypothesis. One DM is designated as the primary
DM and the others are referred to as the consultant DMs (Figure
1). Each consultant DM n transmits to the primary DM an U-
ary message u,, € {0,1,...,U — 1} based on his/her observation
Yn- The primary DM considers his/her own observation and the
communications from the consultant DMs and makes the final
team decision uqx € {0,1,...,.M — 1}, declaring one of the
hypotheses to be true. There exists a cost J(uy, H) associated
with the team deciding u, when H is the true hypothesis?. The
objective is to determine the decision rules for the DMs that
minimize the team probability of error taking into account the
different costs for hypothesis misclassification.

2. Throughout this discussion we assume that the cost function is such that it is
more costly for the team to err than to be correct (i.e., J(k, Hn) > J(m, Hp,),
forallk,m =0, 1, ..., M — 1 with k # m). This logical assumption is made in
order to express the optimal decision rules in the convenient likelihood ratio form.
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Figure 1. ~ The Team of the M-ary Distributed Hypothesis Testing Problem.

Given the communication vector ¥ = (uz,us,...,uy) €
{0,1,...,U — 1}~ transmitted from the consultant DMs to the
primary DM, the optimal decision rule of the primary DM is given
by the following likelihood ratio tests with constant thresholds :

M—-1 N

: ; P(uy, | Hm)
A m | (& Hpm) — J (4, H, —_—
mZZI m(yl)p [ ( ) (4 m)]r; P(uanO)
uy #1
U117y
for:i=1,2,...,M—2, and j = m+1,m+2,..., M—1, where :
P(yn | Hm)
Am(yn) = 5755
) = By, [ Ho)

m=1,2,.,.M-1,n=12_.,N. (2

The optimal decision rules of the consultant DMs are given by :

M=1 M1
Z A (Yn )P Z [P(u | up =1, Hy)

m=1 u1=0

UpFEL
—P(uy | Up = J, Hpn)|J (w1, Hy) 2
UnF#J
uni | M-1
2 po Y [P(ur | un = j, Ho)
Un#]J u1=0
—P(uy | un =i, Ho)|J (u1, Ho) (3)
for:i=0,1,..,U~-2;7=1+1,i+2,U—-1;n=2,3,...,N.

Suppose that the optimal team configuration (that is, the optimal
placement of the DMs within a given architecture) is to be
determined for some given prior probabilities and some given
costs. The M-ary distributed hypothesis testing problem needs
to be solved N different times each time with a different primary
DM to obtain the optimal team performance. Recalling the results
of [13] for a team with a single consultant DM performing binary
hypothesis testing, one concludes that the optimal configuration
for the team can only be determined in this manner because it
depends both on the prior probabilities and on the associated costs,

Remark 1. The U-ary messages from the consultant DMs to the
primary DM are denoted as 0, 1, ..., U —1 for the sake of simplicity.
For that matter they can be denoted with any U distinct symbols
or names. Note that consultant DM transmitting a 0 message does
not necessarily indicate that Hy is the correct hypothesis. The
important fact is that each consultant DM has a U-ary message in
his/her disposition and should try, together with the primary DM,
to make optimal use of them so that the team expected cost be
minimized.

Remark 2. In the sequel, we set U = M that is, the number of
messages that each consultant DM can transmit to the primary
DM is equal to the number of the hypotheses. In [17], it was
suggested that this a sufficient number of messages for the team
to perform well relative to its centralized counterpart.

A Gauss-Seidel algorithm for determining the optimal decision
rules was presented in [23]. But, the optimality conditions of
Egs. (1) and (3) are just necessary conditions. If there exists a
suboptimal set of decision rules for the team which satisfies these
conditions, then the algorithm could converge to a suboptimal
cost. Even if we assume that this does not occur for some *well
behaved’ probability density functions, implementation of the
algorithm for six or more hypotheses is highly non-trivial even if
the consultant DM can only transmit binary messages; it is hard to
determine the two five-dimensional decision regions and calculate
the corresponding probabilities. In fact, we do not have any feeling
for what these regions would look like. It should be an interesting
problem for future research to implement an algorithm which
solves a (Gaussian) six hypothesis testing problem for a team
which consists of six DMs and binary communications. Since the
thresholds on the likelihood ratio hyperplane can be translated
to thresholds in the observation axis, this should provide some
insight on how information should be summarized and fused.

In conclusion, the determination of the optimal decision rules
and their associated decision regions is highly non-trivial, even
for a small number of alternative hypotheses and communication
messages; this suggests that it should be worthwhile to abandon
optimality for an approximate solution which is easily obtainable.
This is in accordance to a very interesting and widely accepted
theory of Simon; the theory of satisficing [21].

This theory claims that decision makers do not search for the
optimal decision, but rather for a decision which is “good enough.”
Simon sees decision makers as agents of bounded or limited
rationality. The bounds of rationality depend on several factors
like the expertise of the decision makers involved, the importance
of the intellectual task and the availability of relevant tools.
Decision makers will be satisfied with a decision which yields
even a small improvement compared to the present and will try to
avoid uncertainty. They will usually settle for a smaller expected
pay-off if this implies a smaller variance. Decision makers are
content to look at a drastically simplified model of the world
and to examine just two alternatives, if these meet some minimal
requirements : the same course and one new course. Therefore,
this further suggests that it can be very beneficial to reduce the
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complex M-ary distributed hypothesis testing problem into a
series of (simple) binary hypothesis testing problems. This is
exactly what the approximate decision scheme of the following
section is trying to accomplish.

3. The Approximate Decision Scheme

In this section an approximate decision scheme for the M-ary
distributed hypothesis testing problem is presented and analyzed.
As was explained in the previous section, the two main objectives
of this decision scheme is (a) to significantly reduce the exploding
computational complexity of the original problem, and (b) to
maintain a near-optimal performance.

To achieve the first objective the M-ary distributed hypothesis
testing problem is reduced into a series of binary hypothesis test-
ing problems, where the hypotheses are not some of the original
(single) hypotheses of the M -ary hypothesis testing problem, but
rather composite hypotheses (each composite hypothesis consists
of a set of the (single) hypotheses). For example, consider the
problem of a radar operator who has to determine presence or
absence (hypothesis Hp) of an airplane. If a plane is present the
radar operator has also to decide whether it is an F-16 (H;), a
Mirage (H>), an Airbus (Hj3), or a Boeing (Hy). The radar op-
erator may first consider the problem of the presence or absence
of an airplane; the presence of the airplane corresponds to the
composite hypothesis Hy, Ho, H3 and H,, and the absence of the
target corresponds to Hy. If the operator decides that a plane is
indeed present, then the operator may consider the binary problem
“military airplame” (H; and H») versus “commercial airplame”
(H3 and H,). Finally, depending on the operator’s decision on the
second binary composite hypothesis testing problem, the operator
has to consider a final binary hypothesis testing problem (either
H; versus Hs, or H3 versus Hy).

The composite hypotheses are formally defined in the following
section. But, in order to have a well-defined binary hypothesis
testing problem the “’prior” probabilities and the “misclassifica-
tion” costs for these hypotheses need to be defined. For this reason,
the normalized prior probabilities, that take into account both the
original prior probabilities and the original misclassification costs
of the M -ary hypothesis testing problem, are introduced now.

3.1. THE NORMALIZED PRIOR PROBABILITIES

(i). Elementary Hypotheses

The definition of the decision threshold for binary hypothesis
testing is well documented in the literature (for example, see [13]) :

_ P(Ho)[J(1, Ho) — J(0, Ho)]
7= P(HE)IO, Hy) - J(L; Hy)]

4)
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From Eq. (4), it is clear that the ratio of the additional costs
incurred by the team when it makes the wrong decision influences
the decision in the same way that the ratio of the prior probabilities
does; for example, doubling the additional cost incurred by the
team when it makes the wrong decision under hypothesis H is
interpreted by the team, in the optimal decision rules, as doubling
the relative frequency of occurrence of H. We try to extend
this notion to the M-ary hypothesis case by introducing the
normalized prior probabilities.

We try to summarize all of the information given by the prior prob-
abilities and the misclassification costs into “relative frequencies”
and thus define the (elementary) normalized prior probabilities as
follows :

M-~
Z —[J(u, Hn) = J(m, H)|

Tm = 3

M— 1 M-1
q (J(u, Hy) — J (g, Hy)]

dop
q=0

u=0 q

form =0,1,...,M; (5)
The restrictive assumption, implied in the above definition, is
that given the true hypothesis H the relative frequencies of the
different types of error are given by the prior probabilities.

Note that for the binary hypothesis testing (where given the true
hypothesis only one type of error may occur), the normalized prior
probabilities are “optimal” in the sense that their ratio is equal to
the decision threshold 7 (i.e., 5 = mg /7). Furthermore, in the
case of the minimum error cost function (i.e., J(u, Hy) = 1 if
v # m, and J(u, H,,) = 0 if u = m) the normalized prior
probabilities reduce to the actual prior probabilities; since all
errors are equally costly the relative frequencies of the hypotheses
are not affected.

(ii). Composite Hypotheses

Consider Fy and F1, two distinct subsets of {0,1,..., M — 1},
and the binary hypothesis testing problem between the following
two composite hypotheses, that is hypotheses which consist of a
set of elementary hypotheses :

HFO Z quFo Pq

meFo

P(y| Hn)

vs. Hp, : = Py | Hn) (6)
m;l quFl q

For this binary problem the hypotheses occur with prior proba-

bilities :
> Pm
meF;

q€F0UF1

; fori =0,1. (7)
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The normalized prior probability of F; for this binary problem is
defined as :

Z Dm Z J(’LL H ) J(m7Hm)]
meF; ueFi1_; Z Pq
qul %
TFF,_; =
DTS J(u, Hy) = J(m, Hyn)]
J=0 meF; ueF1_; Z
geF,_;
(8)

The two sets Fy and F; of the hypotheses have to be mutually
exclusive, but do not have to be collectively exhaustive (i.e.,
FonFy = 0FyUF; 2 {0,1,..,M — 1}). Note that in the
case of the minimum error cost function, the normalized prior
probability of F; of Eq. (8) reduces to the prior probability of
F ; of Eq. (7). Moreover, the decision threshold for the composite
binary hypothesis testing problem is given by :

Z Pq Z Pm Z Pu[J(u’Hm) — J(m, Hp)]
H(Fo,Fl) _ qeFy  meF, ueF;

D e D pm Y pulJ(u,Hy) — J(m, Hy)]

geF,  meF, ueF, (9)

Hence just like in the usual binary case, the decision threshold
can be broken down as the product of two ratios; the first being a
ratio of the prior probabilities and the second being a ratio of the
(weighted) additional costs.

3.2. THE BINARY DECISION TREE

Consider the following approximate decision scheme for a single
DM to perform M -ary detection. The multiple hypothesis testing
problem will be broken into M — 1 binary hypothesis testing prob-
lems. For this an appropriate binary decision tree® is constructed
i(Figure 2). Consider any tree with M leaves (i.e., terminal nodes)
having the following property : there exists a single non-terminal
node that has exactly two edges emanating from it, and the rest of
the non-terminal nodes have exactly three edges emanating from
them. It is not hard to see inductively that such a tree contains ex-
actly M — 1 non-terminal nodes. The special non-terminal node
with just the two edges is referred to as the source node and the
other M — 1 non-terminal nodes are referred to as the decision
nodes; also every one of the M terminal nodes corresponds to
one of the M hypotheses. The hypotheses can be assigned to the
terminal nodes in any order.

3. A tree is a connected acyclic graph. A binary decision tree is defined as a
directed tree which has the following three properties : one source node (i.e., a
node with no arcs directed into it); there are exactly two directed arcs emanating
from each non-terminal node; each teminal node is a destination (i.e., the node’s
single arc is directed into it). For a complete treatment of graph theory, the reader
is refered to [PS82).

A Distributed Multiple Hypothesis Testing

In the decision tree, there exists a unique (directed) path from
the source node to each and every of the terminal nodes; in fact,
starting from the source node any hypothesis can be declared
(i.e., any terminal node can be reached) with a series of binary
decisions. There is a total of M — 1 binary decisions that can be
made; one in each decision node of the tree. Consider any node
t (except the source node) of the decision tree. The immediate
predecessor of ¢ on the path from the source node to ¢ is called the
parentnode of t, Similarly, consider any non-terminal node ¢; the
two nodes £( and ¢; adjacent to ¢, which are not the parent of ¢, are
called the children nodes of ¢. Finally, for any node ¢, the terminal
nodes of the subtree with ¢ as the source node is referred to as
the feasible set of t and is denoted by F(¢). Note, that the feasible
set of the source node consists of all the hypotheses Hy, H, ...,
H -1, and that the feasible set of any terminal node consists of
the one hypothesis that has been assigned to that terminal node.

Consider any non-terminal node ¢ and denote by ¢y and ¢, its two
children. Then, the binary decision that is to be made at node
t, is conditional on one of the hypotheses on the feasible set of
t being true, and requires the selection between two composite
hypotheses : the feasible set of o and the feasible set of ¢;; that
is:

Hy,: Y —Z—Py|Hm)
mEF(to) Z Dq
q€F (to)
vs.Hyt Y Ply| Hy) (10)
meF(t,) Z Pq

qeF(t,)

The prior probabilities for the hypotheses were defined in Eq. (7),
as was the decision threshold in Eq. (9). Thus, at every decision
node t, the primary DM will be employing a single likelihood ratio
test by comparing the likelihood ratio of the probability density
functions defined in Eq. (10) to the decision threshold of Eq. (9).

3.3. THE APPROXIMATE ALGORITHM

An approximate algorithm is now proposed for solving the M-
ary distributed hypothesis testing problem of section 2. Thus the
team architecture with a single primary DM, the consultant DMs
and the binary communications is preserved so that the structure
of the original problem be preserved. In order to compensate for
the extra error incurred by the team, the algorithm needs to be
computationally simple and easy to implement.

Suppose for the moment that a specific configuration for the team
is given (i.e., the primary DM has been specified); this assumption
will be relaxed in the sequel. Moreover, suppose that there exist
exactly M — 1 consultant DMs. This is not a really restrictive
assumption. If the actual number of consultant DMs is less than
M —1, some “dumb” (totally worthless) DMs can be added to the

4. The source node does not have a parent node.
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team; if more than M — 1 consultant DMs exist, the primary DM
can fuse the messages of some groups of DMs into single binary
messages using some threshold rule (for example, see [13]).

Given a primary DM and an associated binary decision tree,
the consultant DMs will be assigned so that they can assist
the primary DM in making the team decision. The suggested
way to do this is to assign one consultant DM to each decision
node. Then at every decision node ¢, the primary DM and the
corresponding consultant DM will behave like a two DM tandem
team (a primary DM with a single consultant DM [5], [13],
[19)) in order to make a decision for the binary hypothesis
testing problem (H;, vs. H:,). It is important to note that,
unfortunately, when composite hypotheses are considered, the
conditional independence assumption is lost because, given the
true state of the environment, each and every DM can update
his/her “beliefs” on the probability distributions of the other
DMs. (To see this, consider the composite hypothesis which
consists of gaussian elementary hypotheses with different means
and very small variance; then, knowledge of the true hypothesis
clearly gives specific information on the probable values of this
observation.) As we are trying to design an approximate decision
scheme, each two DM tandem team is analyzed as though the
conditional independence assumption was still valid. The two
DM tandem team that performs binary hypothesis testing has been
extensively analyzed [13]; the three decision thresholds (two for
the primary DM and one for the consultant DM) which completely
define the optimal team decision making process are as follows :

For the primary DM :
up=11_— P§
Ifu.=0: = 1
U 0 A(yp)up<:01_Pc77 770 (l )
up=1 Pc
fue=1:  AW) 2 pen=m (12)
up—
For the consultant DM :
uc—l PF PO
- = 13
A(ye) 2 uc<— Pl Po 77 Ne (13)
where : P(y | Fl)
Y
Ayn) = Ply | H9) (14)

is the likelihood ratio of the observation of DM n, and 7 is
defined in Eq. (4); with P}, and P} respectively the probability

5. The two messages assigned to the consulting DM do not have to be denoted 0
and 1. For that matter they can be denoted m1 and mo. Without loss of generality
assume that :
P (uc =m I Ho)
P(’u,c =my | Hl) -

Then it can be shown that when the primary DM receives u. = my, it will always
be more likely to decide up = 0 and when he receives u. = my, it will always
be more likely to decide u, = 1. Hence the interpretation of m1 as 0 and of m2
as 1.

P(uc = my | Ho)
P(uc = mg | Hy)
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of detection and probability of false alarm for the primary DM
when u, = i was send by the consultant DM (i = 0, 1) ® and, P§
and Pj. respectively the probability of detection and probability
of false alarm for the consultant DM.

Then the optimal decision rules for the DMs of the two DM tandem
team that tests Hy, versus Hy, can be written by inspection :

For the primary DM :
upp=11 Pc ,t
Hucs =0: Alyp) 2 - Pctn 1o 15)
Up t— -
Up =1 Pc t
fuc,=1: (yp) 2 Pctnl Mt (16)
'up t—
For the consultant DM :
uc=1 pl pO
A c —F_— c 1
(y )uc_0 Pl = PO” n (17)

where the notation has the usual meaning and the subscript t
indicates that the thresholds are associated with decision node
t (i.e., Hy, vs. Hy,).

3.4. DISCUSSION

The approximate decision scheme performs especially well as
compared to the optimal decision scheme, when there exist
particular hypotheses (different for each DM) which a DM can
detect better than others. Such DMs are assigned at the decision
node of their “expertise”, thus reducing the loss of information
caused by the processing of their observations into messages, and
consequently reducing the degradation of the team performance
caused by the approximate decision rules.

Reviewing the decision scheme of the section 3.3, one DM is
designated as the primary DM (DM 1 is the primary DM for
the team of Figure 1), just like in the optimal decision scheme.
Then the multiple hypothesis testing problem is broken down into
a sequence of M — 1 binary hypothesis testing problems with
composite hypotheses; this sequence is represented by a decision
tree (Figure 2). The consultant DM that is associated with every
such binary problem and the primary DM operate as a two DM
tandem team. Every time the primary DM makes a decision, the
process effectively moves into a new node in the decision tree and
a new consultant DM comes to assist the primary DM. The new
two DM tandem team will make its decision based only on the
observations of its two DMs. Thus, it is assumed that the primary
DM does not take explicitly into consideration the messages that
he/she may have previously received from other consultant DMs;
these messages are taken implicitly into consideration by the
arrival of the decision making process at that particular decision
node. When the process reaches a terminal node of the tree, the
hypothesis corresponding to that terminal node is declared to be
true as the final team decision.
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According to the approximate decision scheme, all of the con-
sultant DMs are not taken into consideration in every decision.
Therefore, this scheme ignores some of the available information,
and hence sacrifices some performance, but in the same time offers
two main advantages. First, as was already mentioned, the com-
putational complexity is considerably reduced; in fact by choos-
ing the decision tree appropriately, the on-line complexity can
be reduced to O(log, M) and thus the decision process is sped
up. Second, each of the consultant DMs improves his/her perfor-
mance by adjusting his/her binary message to the particular binary
detection problem,; that is, each consultant DM concentrates on a
particular binary problem and gives a better “expert” opinion for
(or more applicable to) that problem.

The decision scheme can be characterized as quasi-sequential. It
is not sequential in the traditional sense which wants DMs to have
the options to stop and decide in favor of some hypothesis, or to
receive more information. But, it is sequential in the sense that
the final team decision is reached with a sequence of preliminary
decisions. At every step the primary DM receives a controlled new
observation (decision) from the appropriately selected consultant
DM, but does not receive a new (personal) observation; moreover,
at every sequential step the primary DM is faced with a different
binary hypothesis testing problem.

The approximate decision scheme has been presented and the
optimal decision rules for the members of the team have been
derived. Then three important questions, which deal with the
optimal team architecture and configuration, naturally arise from
the above discussion :

(1) Which of the DMs of the team should be designated as the
primary DM ?

(2) How can the optimal binary decision tree be constructed ?

(3) Which consultant DM should be assigned to each decision
node of the tree?

The following three subsections attempt to address the above
questions.

3.5. SELECTING THE PRIMARY DM

In [13], problems of small cooperative organizations that perform
binary hypothesis testing were examined. The objective there
was again to keep the combinatorial complexity under control;
thus, the difficulties of the problems arose only from the intrinsic
complexity of the distributed problems. Different architectures
for these organizations were analyzed in a quantitative manner
and their performance was compared. Some “common sense”
and “intuitively appealing” beliefs were investigated to determine
whether they are indeed always true in this framework.

One of the problems examined was to determine the optimal
configuration for the tandem team (i.e., determine which DM
should be made the primary one). If one DM is better than the

other, it is intuitively appealing that the better DM be made the
primary DM. Given two DMs one would expect to have the better
DM make the team decision, independent of the prior probabilities
and the cost assignments. If this was the case, then the optimal
way of organizing two DMs would not change, say, as the prior
probabilities of the underlying hypotheses vary. This has also been
supported with explanations on data compression [5] and with
numerical results [19]. But, it is not true in general; it was shown
that the optimal configuration depends on parameters external to
the team, namely the prior probabilities, on the cost assignments
and, in a counterintuitive manner, on the number of messages
which the consulting DM is allowed to transmit to the primary
DM.

Therefore, it should be evident that no ’globally optimal’ primary
DM exists for all possible prior probabilities and costs. Conse-
quently, an intuitive and logical approximate solution is to em-
ployed that is not demanding computationally. Furthermore, it
was also shown in [13] that assigning the best DM as the primary
DM leads to very good performance (optimal in most cases and
very close to optimal in the rest). Thus, consider the DM with
the minimum individual normalized probability of error (or an
approximation to it, if the calculation of actual error probability
is too demanding), for the given priors and costs, and designate
that DM to be the primary DM. This choice for the primary DM
is ’robust’ in the sense that it leads to good performance, as com-
pared to the optimal, even for a bad choice of the decision tree
and consultant DMs.

3.6. CONSTRUCTING THE BINARY DECISION
TREE

There exists an exponential number of binary decision trees
and there are several approximate ways of selecting one for
the problem. We will use a corrected variant of the algorithm
presented in [4].

Define the following set which consists of the [M(M — 1)]/2
possible permutations of pairs of hypotheses (pairs with identical
elements are not included) :

H2 = {(Hmqu)lm = 0, 1, ,M — 2’
andg=m+1,m+2,..,M —1}(18)

Consider the DM who has been selected to be the primary DM;
the observation y; of the primary DM is distributed with density
P(y1|Hp,) under H,,(m = 0,1,...,.M — 1). Then assign to
each pair (H,,, H,) the distance d(H,,, Hy, T, 7q), Where d(-)
is some selected stochastic distance measure (for example, the
variational distance or the J-divergence; see [9]) that is weighted
by the 7,,’s, the normalized prior probabilities of H,, defined in
Eq. (6). Note that a small stochastic distance measure indicates
similarity (i.e., closeness) between two hypotheses; hence, a small
distance measure implies a difficult decision (i.e., a decision with
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large error probability). Suppose that M > 2 ; the decision tree
is created as follows 7 :

ALGORITHM.

STEP k (k = 1,2, ...,[M(M — 3) + 4]/2). Consider the pair of
hypotheses with the k-th smallest distance. Then, there exist three
possible cases :

CASE I. If neither hypothesis of the pair belongs to the feasible set
of a previously defined decision node, then define two terminal
nodes at the lowest level of the tree and assign one of the two
hypotheses to each. Connect the two terminal nodes by arcs to
a new decision node at the second level of the tree; direct the
arcs towards the terminal nodes. By definition, the feasible set of
the newly generated decision node consists of the union of the
feasible sets of the two terminal nodes; that is, it consists of the
two hypotheses of the pair with the k-th smallest distance.

CASE II. If only one hypothesis H* of the pair belongs to the
feasible set of a previously defined decision node, denote by t* the
node whose feasible set F(¢*) contains H* and has the maximum
cardinality. Then, define a new terminal node at the same level
as t* and assign H* to it. Connect the newly defined terminal
node and ¢* by arcs to a new decision node at the next higher
level of the tree; direct the arcs towards the new terminal node
and towards ¢*. By definition, the feasible set of the new decision
node is F(t*) U {H*}; if this set has cardinality M then stop.

CASE I11. If both hypotheses of the pair belong to the feasible set
of some previously constructed decision node(s), then there exist
two possibilities. If both hypotheses of the pair belong to the same
feasible set of some previously defined decision node, then go to
the next step k+ 1. Otherwise, if both hypotheses of the pair do not
belong together to any feasible set of a previously defined node,
denote by to(t1) the node of the feasible set with the maximum
cardinality that contains the first (second) hypothesis of the pair;
connect these two nodes with an arc to a new decision node ¢ at
a level that is one higher than the maximum level of ¢y and %;;
direct the arcs towards ¢ and towards ¢;. Again, the feasible set
of t consists of the union of the feasible sets of £y and ¢;. If the
feasible set has cardinality M, then stop.

The last node generated by the above algorithm is the source node.
If a new decision node is defined at the k-th step of the algorithm,
then the feasible set of the newly generated decision node contains
the two hypotheses having the k-th smallest distance. The decision
tree is generated in such a way so as to postpone the most difficult
decisions (i.e., decisions between pairs of hypotheses with small
distances). We correctly assume that a *close’ error will be less
costly, since in the determination of the distance between the
hypotheses not only the probability density functions, but also
the prior probabilities and the costs were considered (through the
normalized prior probabilities).

6. If M = 2 the construction of the tree is trivial.

7. Note that the algorithm described in [4] is not correct; it needs some correction
50 as to avoid a deadlock.
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EXAMPLE. CONSTRUCTING THE BINARY DECISION TREE

A seven hypothesis example is presented to demonstrate the
construction of a binary decision tree. Before considering the
symmetric distance matrix of Table 1, note that it does not have to
necessarily be symmetric because the distance measure may not
be symmetric (for example, I-divergence).

The algorithm proceeds as follows to generate the decision tree
of Figure 2 :

STEP 1. d(Hy, H,) = 1; D is created; F(D;) = {Hy, H, }.
STEP 2. d(Hz, H3) = 2; D5 is created; F(Dy) = {Ha, H3}.
STEP 3. d(Hs, Hg) = 3; Dj is created; F(D3) = {Hs, Hg}.

STEP 4. d(H1, H3) = 4; Dy is created;
F(D4) = {HO?HI’HQ)H3}'

STEP 5. d(Hy, H3) = 5; go to Step 6.
STEP 6. d(Hy4, Hs) = 6; Dy is created; F(D5) = {Hy, Hy, Hg}.
STEP 7. d(H,, Hg) = T; go to Step 8.
STEP 8. d(Hy, H2) = 8; goto Step 9.

STEP 9. d(Ho, Hy) = 9; S is created,;
F(S) = {Hy, Hy, Ho, H3, Hy, Hs, Hg} : STOP.

In Figure 2, the terminal nodes are white, the decision nodes are
gray and the source node is black. As expected six (6) terminal
nodes generate five (5 = 6 — 1) decision nodes. The intercsted
reader should note that the algorithm of [4] would brake down
because at Step 4 node Dy would not be constructed and the
algorithm would not recover.

Table 1. - Distance Matrix for the Binary Decision Tree Example

Hy Hy, H, Hs Hy Hs H
o H2 F2 Hs g fe e

H, & 5 10 i0 1
H 1 - 10 4 10 10 10
H, 8 10 — 2 9 10 10
L5 4 2 Z 10 10 10
Hi10 10 9 10 - 6 7
Hi 10 10 10 10 6 -

Hi 10 10 10 10 7 3

Figure 2. — The Binary Decision Tree of the Example.
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3.7. ASSIGNING THE CONSULTANT DMs

In the previous two sections, an algorithm for selecting a primary
DM and, given a primary DM, an algorithm for reducing a multiple
hypothesis testing problem into a sequence of binary hypothesis
testing problems have been presented. Given a primary DM and
a binary decision tree, it remains to be seen how should the
consultant DMs be assigned to the decision nodes of the tree.

The assignment problem is formulated as a maximum weight
bipartite matching problem®. The two sets of nodes of the
bipartite matching problem consist of the M — 1 consultant DMs
and of the M/ — 1 non-terminal nodes of the tree. Each consultant
DM n is connected to every decision node ¢ with an arc which
has an associated weight wy, s < 0; thus the maximum weight
matching will also be a maximum matching (i.e., all the nodes
will be matched), since each consultant DM will be matched with
anon-terminal node and vice-versa. How should the weights w, ;
be selected so that the solution to this matching problem yield a
good solution of the original M -ary hypothesis testing problem?

Consider some non-terminal node ¢ of the decision tree. There
are three factors that need to be considered for a successful
assignment of a consultant DM to the binary problems of node t.
The first factor is the conditional normalized probability of error
that the consultant DM incurs when he/she solves the problem
represented by ¢, conditional on the true hypothesis belonging to
the {easible set of ¢. It is conditional because by the definition of
the approximate decision scheme, the consultant DM at decision
node ¢ makes his/her decision conditional on the true hypothesis
being on the feasible set of ¢ (Eq. (17)). Furthermore, if an error
has already occurred in the decision process, the message of the
consultant DM, who is supposed to address the wrong problem,
is not going to significantly alter the performance of the team
(recall that as the decision process moves down the decision tree,
the hypotheses become “more similar” both in probability and
in cost). Clearly, the smaller the normalized probability of error
of a consultant DM the more suitable the DM is for that binary
problem.

The second factor that needs to be considered is the individual
performance of the primary DM at each decision node ¢ (i.e.,
the primary DM’s normalized probability of error conditional on
one of the hypotheses in the feasible set of ¢ being true). It is
obvious that the better the performance of the primary DM, the
less the need for a consultant DM and vice-versa. Denote by Py,
the normalized probability of error (or its approximation) of the
primary DM 1 at the decision node t (i.e., Hy, vs. Hy, ), conditional
on the true hypothesis being on the feasible set of ¢.

The third factor is the prior probabilities and the detection costs.
Consider some DM 7n who can be associated with either of two de-
cision nodes; decision node ¢ or decision node s. Furthermore, as-
sume that DM n has the exact same performance (i.e., normalized

8. For an in depth treatment of combinatorial optimization the reader is refered to
[10).

probability of error) at both decision nodes ¢ and s, conditional
on the true hypothesis being in the feasible set of ¢ and s respec-
tively. Other things being equal, on which of the two decision
nodes should DM 7 be assigned?

DM 7 should be associated with the decision node whose feasible
set has the larger sum of elementary normalized prior probabil-
ities. This is easier to comprehend in the case of the minimum
error cost function; in this case, DM n should be associated with
the decision node whose feasible set has the larger sum of prior
probabilities. This should be intuitive as, by being associated with
the decision node whose feasible set has the larger sum of prior
probabilities, DM n’s decision will be taken into account by the
team more often.

Thus, the weight wy, ; of assigning the consultant DM n to the
binary hypothesis problem of a non-terminal node ¢ of the decision
tree is defined as follows :

Wne=(1—P )P, |=log | 1= > mp (19)
meF(t)

Remark 1. Clearly : wp; < 0.

Remark 2. The logarithm in Eq.(19) is included to emphasize the
assignment of the better DMs to the ("important’) non-terminal
nodes which are high on the tree (because these nodes have
large normalized prior probability 7;). In fact, note that since for
the source node 7, = 1, the consultant DM with the smallest
normalized probability of error for the source node’s binary
problem (i.e., Hy, vs. H,,) will always be assigned there.

Remark 3. There exist several algorithms to solve the maximum
weight bipartite matching problem which require O(M?3) time
[10].

Remark 4. As has already been mentioned, the (restrictive) im-
plicit assumption in the definitions of the normalized prior prob-
abilities for both elementary and composite hypotheses (Eqs.(5)
and (8) ) is that, given the true hypothesis, the relative frequencies
of the different types of error are given by the prior probabilities.
In the decision scheme that was presented, the M -ary hypothesis
testing problem was broken down into a sequence of compos-
ite binary hypothesis testing problems; the composite hypotheses
consist of similar hypotheses. Thus even though the assumption is
not true in general, it is quite reasonable for the proposed decision
scheme especially if the probability density functions are smooth.

Remark 5. To compute the decision thresholds a Gauss-Seidel
algorithm similar to the one described in [23] should be employed.
As stated earlier, the algorithm is guaranteed to converge to
decision rules which satisfy the necessary optimality conditions,
but there are no guarantees that these will actually be the optimal
decision rules. Still, in the binary hypothesis testing case there
exists a single likelihood ratio for each DM; therefore, we can
perform one dimensional search and guarantee that the algorithm
converges to the optimal decision rules. This is an additional
computational advantage of the approximate decision scheme.
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3.8. IMPROVING ON THE APPROXIMATE
DECISION SCHEME

The approximate decision scheme described above employs com-
mon sense and intuition, together with some straightforward math-
ematics, to yield a very good approximate solution for the very
complicated Problem of section 2. Because of the several sub-
jective and arbitrary choices that are made (selection of the pri-
mary DM, construction of the binary decision tree and the match-
ing problem), it is virtually impossible to obtain analytically any
meaningful bounds for the performance of the decision scheme;
this could be an interesting topic for future research.

We do not claim to have derived the “best” approximate solution.
On the contrary there exist several ways to improve it, but our
objective was just to demonstrate that relatively simple procedures
may be designed for successfully tackling complicated problems.
Indeed, the performance of the decision scheme can be improved,
without forbidding increases in the computational complexity
being induced if, for example, one or more of the following factors
are taken into consideration :

1. A better algorithm for the generation of the binary decision tree
should be derived. This should take into account its particular ap-
plication in our problem. For example, in the proposed algorithm
the pair of hypotheses with the kth smallest distance is considered
at each step k. Once two elementary hypotheses are to be com-
bined into a composite hypothesis, the probability distribution
of the composite hypothesis consists of a weighted convolution
of the distributions of the elementary hypotheses. Therefore, it
should be preferable at every step of the algorithm to calculate
a new distance matrix by taking explicitly into consideration the
newly generated composite hypothesis, instead of always using
the initial distance matrix (i.e., the distance matrix between the
elementary hypotheses).

2. A more sophisticated selection of the weights for the matching
problem.

3. Relevant results from information theory should be employed
in this framework.

4. For the decision of a particular consultant DM to be considered
by the primary DM, a particular sequence of decisions must be
made first. For example, for the decision of the consultant DM
corresponding to decision node D2 (H, vs. H3) to be considered,
the team must decide O at the source node S and decide 1 at
decision node Dy. This provides some additional information to
the consultant DM corresponding to Ds; he/she can therefore
update his/her beliefs of the distribution of the observation of the
primary DM, in order to produce an even better decision.

Furthermore, the most important advice for improving the per-
formance of the approximate decision scheme is to try to take
maximum advantage of the particular structure of the problem.
We should carefully examine the characteristics of the problem
(i.e., DMs, hypotheses, costs, etc.) and try to assist the *mathemat-
ical solutions’ by making educated choices, which the (simple,
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approximate) analysis may overlook. Keeping this in mind, we
present the following specific example :

EXAMPLE. A MULTIATTRIBUTE HYPOTHESIS TESTING
PROBLEM

Considera particular instance of the Problem of section 2, in which
each of the multiple hypotheses consists of a set of independent
or loosely dependent attributes. For example, suppose that the
multiple hypotheses describe the characteristics of a refrigerator;
the size, the color, the weight, the temperature and the motor
of the refrigerator are almost independent attributes (the size
of a refrigerator contains almost no information about its color
and temperature), but knowledge of all of them can provide
considerable information on determining the its exact model and
make.

Moreover, suppose that the observation of each of the consultant
DMs contain information on just one of the attributes. In the
refrigerator example, one consultant DM has a tape measure and
can measure its size, another has a chart and can determine its
exact color, another has a scale and can weight it, another has a
thermometer and another has a voltmeter and an ampmeter. On
the other hand, the observation of the primary DM contains some
information about all the attributes. The objective is to design a
decision protocol that will optimize the team performance.

The problem just described fits the framework of the more g=neral
problem introduced in section 2 since the team performs muitiple
hypothesis testing and consists of a single primary DM, and
several consultant DMs. We are going to argue that the additional
structure imposed on the original problem leads to very good and
considerably simpler solutions.

The observation of only one of the DMs contains information on
all the attributes of the hypotheses; this DM presents us with a
clear-cut choice for the primary DM of the team. Furthermore,
since each of the consultant DMs is an “expert’ in just one of
the attributes of the hypotheses, he/she is immediately *matched’
with a particular subproblem, and can use his/her messages to
transmit to the primary DM information about just this partic-
ular attribute without any degradation in the team performance.
Therefore, the optimal configuration of the team is determined by
inspection. Finally since the various attributes of the hypotheses
are independent or loosely dependent, the primary DM and the
appropriate consultant DM can indeed perform as a two DM tan-
dem team because the conditional independence assumption will
not be violated.

Hence, the only remaining issue that needs to be resolved involves
the sequence with which the decisions are made; that is, it involves
the construction of the decision tree (Figure 3). The decision tree
will be a little different than the one described in the previous
section. First, it does not have to be binary; for example, if the
refrigerator can have one of three different colors, it should be
worthwhile to endow the ’color expert’ with three messages, one
for each color.
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H 2 H 3 Hs Hs H7 H.

Figure 3. — Decision Tree for Three-Attribute Problem.

Second, since the attributes are independent with each other, the
depth of the decision tree will be constant (since knowledge of
one attribute does not contain any information about another, all
the attribute combinations are possible).

Third, note that in this type of problem every consultant DM
is associated with an attribute of the multiple hypothesis, and
is not associated with a composite hypothesis testing problem.
Consequently, each consultant DM will be associated with all the
decision nodes at a given level of the decision tree and will not
be associated with just one decision node (for the decision tree
of Figure 3, the consultant DM for the first attribute is associated
with node A, the consultant DM for the second (third) attribute
is associated with all the B (C) nodes). To see this, consider
again the refrigerator example and suppose that its attributes are
examined in the given order : size, color, weight, etc.. In the third
stage of the game when the weight of the refrigerator is examined
(the C nodes in Figure 3), independent of the team decisions up
to that point (i.e., the decisions on size and color), the two DM
tandem team consisting of the primary DM and the ’weight expert’
consultant DM will always have to decide on the weight of the
refrigerator. Thus, the *weight expert’ is associated with all the
decisions that take place in the third level (from above) of the
decision tree.

Therefore, to construct the decision tree only a testing sequernce
for the attributes of the multiple hypotheses has to be generated. To
do this, we employ some stochastic distance measure and arrange
the sequence of the decisions in such a way, so that the more
difficult decisions are postponed for later (i.e., the lower levels of
the tree).

4. Numerical Examples

Two numerical examples follow to demonstrate the benefits of the
approximate decision scheme. The organization consists of three
DMs, denoted A, B and C. There are three different possible states
for the environment (i.e., hypotheses); hypothesis H,,, occurs with
an a priori probability P(H,,, for m = 0,1, 2. The objective of
the organization is to detect the value of a signal; under hypothesis
H,, the value of the signal is y,,, (the same one for all three DMs).
The observation of DM n (n = A, B, C) is corrupted by a zero

mean gaussian noise with variance o2, The minimum probability
of error cost function is employed; that is :

1 ifrtu#Em

J(u,Hm):{O U= m for:u,m=0,1,2. (20)

Each consultant DM communicates to the primary DM one of
three possible messages (call them 0, 1 and 2). Three computer
programs were developed; one obtains the optimal decision rules
of Eqgs.(1)-(3), one determines the decision rules of the approxi-
mate decision scheme, and one solves the centralized version of
the problem.

EXAMPLE 1.

The possible values for the signal are : yg = —10, y; = 0
and ps = 10. The prior probabilities of the hypotheses are :
P(Hy) = 0.2, P(H;) = 0.3 and P(H3) = 0.5. The variances
of the observations of the DMs are : 64 = 0% = g% = 100.
We decided to assign equal variances to all three DMs in the
first example so as to avoid the problem of determining the best

configuration for the organization.

The optimal decision rules for the two consultant DMs are :

2; yg > 6.1670
up=vp(yg) =< 1; 6.1670 > yp > —8.7463 (21)
0; —8.7463 > yB

2; yo > 4.5424
ue =vc(ye) = ¢ 1; 4.5424 > yo > —9.3605 (22)
0; —9.3605 > yo

Even though both consultant DMs are identical, their optimal
decision rules are not identical (or even symmetric). This is further
confirmation of the results in [24] (for exponentially distributed
observations) and in [26] (for discrete observations). The optimal
decision rules of the primary DM are given by :

us =va(ya,up = Luc =1)
2; ya > 37.1381

={1; 371381 > y4 > 12,5427  (23a)
0; 12.5427 > ya
ua =v4(ya,up =1, uc = 2)
2, ya > 24.5722
={1; 245722> y4 > —0.6766  (23b)
0; —0.6777> ya
us =7v4(ya,up = l,ux = 3)
2; ya> 10.4742
={1; 104742> y4> —13.4110  (23¢)

0; —13.4110 > ya

ua =vaya,us = 2,uc = 1)
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2; ya > 24.0025
=< 1; 24.0025 > y4 > —1.1176 (23d)
0; —1.1176 > ya
ua =7v4(ya,up = 2,uc =2)
2 ya> 11.4365
1; 114365 > ya > —14.3380  (23¢)
0; —14.3380 > yau
U4 =74 yA,UB—2 uc = 3)
ya> —2.6614
—2.6614 > y4 > —27.0713  (23f)
© _97.0713 > ya
ua =v4(ya,uB = 3,uc = 1)
ya>  9.9512
© 9.9512> y4 > —14.2765  (23g)
{ 0; —14.2765 > ya
=v4(ya,up = 3,uc = 2)
2; ya > —2.6147
1; —2.6147 > y4 > —27.4970 (23h)
{0, —27.4970 > ya
ua =va(ya,up = 3,uc = 3)
2 ya > —16.7126
={1; —16.7126 > y4 > —40.2302 (234

0; —40.2302 > yg4

These decision rules result in an expected cost (i.e., probability
of error) of 0.2558.

The proposed approximate reduces the problem into two bi-
nary hypothesis testing subproblems. The first subproblem tests
compares hypotheses Hp, and Hp,, where Fo = {0,1} and
F; = {2}; that is, it compares H; with the composite hypothesis
of Hy and H;. (Note that H; is stochastically closer to Hy than
to H; because, while the absolute magnitude of the difference in
the means of H, and Hy and of H; and H; is equal, their prior
probabilities are closer.) The decision rules are for the consultant
DM :

) 1 yp > 0.7658
up =vB(yB) = {0 0.7658 > yp Y

and for the primary DM :

a1 =Y4,1(Ya,up =0)

C1; ya > —4.1999
{0; —4.1999 > y4 (25a)
ua1 =74,1(ya,up =1)
C1; ya > 13.9842
= {0; 13.9842 > ya (250)
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The second subproblem compares H; to Hy. The decision rules
are for the consultant DM :

) (1 yo > —6.6243
uc =c(yo) = {0; —6.6243 > yo %
and for the primary DM :
ua2 =742(ya,uc = 0)
e ya > —16.1273
= {0; ~16.1273 > ya e
ug2 =v4,2(ya,uc =1)
{0 6.9401 > ya 210)

These result in a probability of error of 0.2918. Therefore, the
deterioration in the team performance if the approximate decision
scheme is employed is 14.1%. On the other hand, the approximate
decision scheme reduces the computational requirements by more
than 60%. In fact, the optimal distributed decision rules for the
organization with ternary communication messages are defined
by twenty two thresholds (two for each of the consultant DMs,
and two for the primary DM for each of the nine possible sets of
messages that can be received from the consultant DMs), while
the approximate decision scheme requires the determination of
only six thresholds (one for each consultant DM and two for the
primary DM for each of the two subproblems). It should be clear
that the approximate decision scheme is computationally much
more efficient.

The optimal decision rules for the centralized case are :

2; 7> 3.2072
T=75ya,yp,yc) = 1; 3.2972> 7> —6.3516 (28)
0; —6.3516 > 7

where : 5 o s 2 5 9
—_ 0BOcYA+0503YB +0408YC (29)

y= 0402 + 02,02 4 g2 02

BOC T 0504 T 040

These result in a probability of error of 0.2404. Therefore, the
optimal solution for the distributed problem is within 6.6% of
the centralized solution. This is another confirmation for the
conclusion of [17] that, in the distributed hypothesis testing
environment, a small number of communication messages (a
number comparable to the number of hypotheses) is sufficient for
the distributed organization to perform very well when compared
to the centralized counterpart.

EXAMPLE 2.

The possible values for the signal are : pg = —5, y1 = 0
and po = 10. The prior probabilities of the hypotheses are :
P(Hy) = 0.3, P(H1) = 0.4 and P(H3) = 0.3. The variances of
the observations of the DMs are : 03 = 50, 0% = 100, 0% = 150.
The explicit decision rules are not presented because they do not
provide any additional insight to the problem.
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The optimal solution requires that DM A be the primary DM and
results in a probability of error of 0.34103

The approximate decision scheme again reduces the problem into
two binary hypothesis testing subproblems. In the first subproblem
the team decides between H and the composite hypothesis of Hy
and H;. In the second subproblem, the team has to decide between
H() and H 1.

The three DMs receive observations corrupted by zero mean
gaussian noise. The variance of DM A is the smallest and the
variance of DM C is the largest. Therefore, DM A and DM C
are the best and worst DMs respectively. Consequently, DM A
is designated as the primary DM, DM B is designated as the
consultant DM for the first subproblem and DM C' is designated
as the consultant DM for the second subproblem. The resulting
probability of error is 0.36469.

The deterioration in the performance of the team if the approxi-
mate decision rules are employed is 6.9% of the optimal, but the
reduction in the computational requirements is more than 50%
(assuming that the correct primary DM is known a priori; oth-
erwise the reduction in the computational requirements jumps to
85%).

The probability of error for the centralized case is 0.3325. There-
fore, the optimal solution is within 2.6% of the centralized so-
lution, again confirming that ternary communication messages
result in very good performance in ternary hypothesis testing.

5 e Summary

As the number of the DMs, or of the hypotheses, or of the
messages increases, the combinatorial complexity of problems
in this framework increases exponentially. In order to keep the
complexity under control, approximate solutions need to be
developed. Since we also desire that the approximate decision
schemes achieve good performance, the particular characteristics
of the problem should be taken into account. This leads to problem
dependent analysis which, we believe, should be the focus of
future research. To demonstrate this approach, we discussed the
issues involved with the reduction of a multiple hypothesis testing
problem into a sequence of simpler hypothesis testing problems,
under different operating conditions. Numerical examples were
used to show that the deterioration in performance if the proposed
approximate decision rules are implemented is more than offset
by the reduction in the combinatorial complexity of the problem.
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