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Abstract

A method to generate a desired two-dimensional beam pattern of specified form
without loss of energy by phasing a two dimensional array is given . By changing
the phase terms it is possible to adapt the beam pattern of the array for different
applications .

Keywords : Beamforming, phased array, spatial frequency modulation, broadband
beam-pattern, array processing .

1. INTRODUCTION

Without phasing the narrowband horizontal and vertical beam
pattern of an array are mainly determined by the dimensions of
the array. For a line array of length L with uniform weighting,
the beamwidth in degrees is given approximately by 50 L, where
A denotes the wavelength [2] . The shape of the beam pattern,
especially the sidelobes, can be influenced by an amplitude
weighting of the individual sensors . This is a standard topic treated
in many books and papers on windows, array and antenna theory,
see for example [2;5 ;7 ;10;11 ;12] . Amplitude weighting leads to
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Résumé
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an undesired energy reduction . Especially, if beamwidths much
larger than the natural beamwidth of the uniformly weighted
array are required, the amplitude weighting leads to an important
reduction of the effective aperture . This results in a large loss
of signal-to-noise ratio for receiving arrays or signal power for
emitting arrays .

In practice the possibility of generating beam-pattern with vari-
able shapes and large beamwidths without loosing energy is of
interest . For example, in many sonar applications, the emitted
signal energy must be very large, leading to a considerable physi-
cal extension of the emitting array. On the other hand, operational
aspects require that a large sector has to be illuminated instanta-
neously, hence a large beamwidth is required .

Both requirements cannot be satisfied simultaneously by the
conventional approach of amplitude weighting or windowing .



apply

In fact, in the narrowband case a solution can be obtained by
phasing the array, which means applying a complex weighting
with (nearly) constant amplitude, see sections 3 and 4 .
For time signals the energy-spectrum can be transformed into a
specified form by frequency modulation (see Papoulis [8]) .

Equivalently for spatial signals the "spatial energy-spectrum"
can be forced into a specified shape by a corresponding "spatial
frequency modulation" . This means, phasing the aperture function
of an array in a certain way results, for a specified frequency, in a
prescribed energy-pattern .
It turns out that combining the calculated phasing for different fre-
quencies leads to a well defined broad-band time-delay. Applying
this time delay to the individual sensors leads to a frequency in-
dependent prescribed broadband beampattern .

Of course, time-delay beamforming is required to achieve this in
a hardware implementation .
In [9] the broadening of the natural narrow beam of an unphased
planar or cylindrical array by linear spatial frequency modulation
is described . In [3 ;4] the 1-dimensional and narrowband case is
treated .

In this paper the general method of 2-dimensional spatial fre-
quency modulation is presented .

It should also be noted that the approach presented here is
an analytical method wich can be applied successfully to very
large arrays with several hundreds of sensors . Search methods or
numerical optimization methods as in [1 ;6] are very difficult to

in this case .

2. THEORETICAL DERIVATION
OF BEAMFORMING WITH SPATIAL
FREQUENCY MODULATION

In general the pattern function B(f) of an arbitrary three-
dimensional array with aperture function b(r) is given by the
three-dimensional Fouriertransform

B(fr) _ f b(r) e a27T -* .r dr fr = ur/a,

where u 0 is the vector indicating the direction of a monochromatic
plane wave of wavelength A . Using azimuth and elevation angles
Oh and 0,,, the components of U r are given by

{u,, uy , uz } = { SinOhCOSO v , COSOhCOSO„ , sinOv } .

In this paper we restrict ourselves to a two-dimensional array
b(x, y) in the x - y plane, which leads to a pattern function
B(fx, f,) .
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We start from an arbitrary desired magnitude pattern S(u, uy ),
which may depart strongly from the natural pattern of the un-
weighted aperture (figure 1 shows the unweighted pattern of a pla-
nar array) . Dependent on the application, a fan beam, a cosecant-
square pattern, or a sector beam with beamwidths much larger
than the natural beamwidth is desired . We want to find the (fre-
quency dependent) phased aperture function that gives the desired
magnitude pattern S(u, u y ) .

PROBLEM

A separable two dimensional aperture function

a(x,y) = a x (x) .ay (y)

with
ax(x)>O and ay(y)>O

and a separable two-dimensional real function

with

S(ux , uy) = Sx(ux)' Sy(uy)

S., (u,,,) > 0 and Sy (uy ) > 0

are given .
Further the energy of ax and Sx as well as a y and Sy must be the
same (by Parsevals theorem)

a~(x)dx= f SX(u x )dux , fa(Y)dy=fS(uy )du y .yy~ d1

	

(1)
The task is to find a spatially frequency modulated aperture
function

b(x y) = a(x y) eiz1t0a(x,y)

B(fx, fy) I = A S(ux, uy) .

	

( 3)

(2)

with a frequency dependent phase function DA (x, y), such that the
absolute value of its Fourier transform approximates the specified
frequency independent function S

This means, by phasing the two dimensional aperture function
a(x, y) the two dimensional beam pattern shall be forced into a
specified shape .
An overview of the procedure is given in the scheme "Concept of
Phase Modulation" .
It is now possible in the following way to obtain a

SOLUTION

Define the "instantaneous spatial frequency Components"
fTZ(x,y) := (fx ,i(x), fy, i (y)) as the gradient of the phase
function 4),\ (x, y)

ff,i(x) = a P),(x,y) , fy,i(y) = ay 1)a(x,y) .

	

(4)
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To determine the desired frequency dependent phase function
ca (x, y), we first restrict ourselves to the normalized case A = 1 .
For A = 1, the instantaneous frequency is denoted as ur , i ( x, y) =
(ux , i ( x), uy , i (y)) and is given by the gradient of a frequency
independent reference phase function 4)(x, y)

ux,i(x) = a D(x,Y) , uy,i(y) = (y(D(x,y) .

	

(5)

Following Papoulis proof for one-dimensional time signals [8],
the instantaneous spatial frequency components can be found by
solving the integral equations

By substitution methods, it can be shown easily that a frequency
dependent phase function

'ba (x, y)

	

--1)(x, y)

yields the desired frequency independent magnitude pattern :

IB(fx, fy)I ~ AS(ux , u y )

	

(10)

It should be noted that the wavelength-dependent phase
(Da(x, y) = a,P(x, y) corresponds to a uniform time-delay for
all signal frequencies . This means that in a broadband case, time-
delay beamforming can be used to realize the desired beampattern .

HOW GOOD IS THE APPROXIMATION (10)?

By using the symmetry property of the Fourier transform, we can
extend the result from [8] to obtain the following .
The approximation (3) is satisfactory at ux = ux ,i (x) resp .
u y = uy,i(y) if the gradients of the aperture function a(x, y)
and the magnitude pattern S(ux, u y ) are both bounded in a
. aiahh ,,,rhnn 1 of im ,,,i raen io, a, i in tha fnllnn, na xx,nv

In contrast to the certainly difficult task of finding a closed solution
of these equations, the numerical solution by straightforward
numerical evaluation of the integrals is performed quickly by a
simple computer program, and for each (x, y), the corresponding
instantaneous spatial frequency (ux,i(x), uy , i (y)) is obtained.
Using the relation (5), the corresponding reference phase function
is given by

-b (X, y) = -,D x (x) + -Dy (y)

	

(7)
with components

x

	

y
(Dx (x) =

J
ux,i(x')dx' , 4) y (y) = J uy,i(y ')dy . (8 )

00

	

00

In the separable case this is a direct consequence of the one-
dimensional result and again, the solution by numerical integra-
tion is straightforward .
For the reference case À = 1, the phase function (D(x, y) results
in a desired magnitude pattern

IB(ux, uy) I

	

S(ux, uy)

	

(9)
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To get a good approximation, the aperture function a x (x) is
smoothed by flattening slightly the steep flanks at the ends . This
takes into consideration conditions (11), (12) and removes the
points of infinite gradients .

Again the vertical side lobe level is reduced by using a Hamming
weighting a, (z) .

Figure 2 shows the aperture functions ax (x) and az (z) and the
phase function 4)a, x (x) and (,, 0 (z) in degree .

azimuth angle x elevation angle, each in [-pi/2,pi/2]

Figure 3 .

Figures 4 and 5 show, for a one-dimensional cut, the case that
conditions (11), (12) are not fulfilled . In this case the desired mag-
nitude pattern is not differentiable at several points . Therefore, the
approximation in the neighbourhhood of these points is obviously
not good .

Figures 6 and 7 show the effect of slightly smoothing the aperture
(resulting in a small loss of energy) and the desired pattern . The
result is much better .

Figure 3 demonstrates the corresponding three-dimensional pat-
tern, a fan beam .

Some comments are necessary at this point . It is very difficult to
obtain precise bounds in the conditions (11) and (12) . But in fact
it is possible to extract guidelines for successful pattern design
from these conditions .

To get good approximation results, firstly the aperture function
a(x, y) as well as the desired magnitude pattern S(ux , uy ) have to
be sufficiently smooth, high slopes have to be avoided, otherwise
(11) and (12) cannot be fulfilled and a bad approximation will
result. This is illustrated in the simulation section .

Also, the bounds are less tight if the wavelength A decreases,
leading to a better approximation; see figures (8) to (10) .

Secondly (11) and (12) mean that S ((")) and yy (Y) ) have to be
bounded from below and from above simultaneously. This means
that the aperture function and the magnitude pattern should have a
similar shape! This is reflected in the well-known fact that the time
envelope of a linear frequency modulated signal is reproduced in
its magnitude spectrum .

3. SIMULATION RESULTS

As examples some horizontal and vertical pattern of a planar
array in the x-z plane are shown. This orientation is typical for
most Sonar and Radar applications . Without amplitude weighting
as well as phasing, the aperture function is given by a(x, z) _
rest(L- ) . rect( L) with dimensions length Lx = 40 cm and
heightL,z = 40cm . If there are no further remarks, the simulations
are carried out for A = 2 cm .

Figure 1 shows the 'natural' three-dimensional pattern of the un-
phased planar array. To reduce the side lobes, a typical amplitude
weighting for ax(x) and a, (z) (Hamming) is used .

Choosing the desired magnitude pattern S(ux , uz ) = rect(ux )
6(uz ) with a rectangular part of width wx and an impulse function
6(uz ), the resulting phase function 4) A (x, z) = (D,\, x (x), and the
phasing only affects the horizontal pattern .

Theta(vert.) x Theta(horiz.), each in [-pi/2,pi/2]

Figure 1 .
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Figure 6.

	

Figure 7.

Figures 8, 9 and 10 show similar pattern as in Figure 7 for

	

shown. In fact, depending on the application of the array, the
different wavelengths from A = 1 cm to A = 3 cm together

	

phasing function can be adapted according to the specific problem.
with the 'natural' (unphased), hamming weighted pattern .

	

As a typical example, the problem of transmitting wide beams of
In the approximated pattern functions for different wavelengths,

	

high level with extended arrays can be solved .
small differences are observed and the approximation is better for
the smaller wavelength, as can be expected from condition (11)
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