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SUMMARY
A whole family of Lk norm adaptive transversal filters is introduced and analyzed, in the context of plant
identification, under hypotheses that are validated by simulation results . The analysis allows to establish general
convergence conditions and to compare the performance of the elements of the family from the point of view of
their speed of convergence-degree of convergence (final residual error variance) compromise ; the results of these
comparisons depend on the plant noise distribution characteristics . The deterministic optimization of the adaption
step is also formulated and evaluated by means of simulation . Finally, open research lines in this area are
indicated .
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RÉSUMÉ
On introduit et analyse une famille complète de filtres transversaux adaptatifs avec norme Lk dans le contexte de
l'identification de systèmes (plant identification), sous des hypothèses qui sont validées par les résultats des
simulations. L'analyse permet d'établir des conditions générales de convergence et comparer la prestation (perfor-
mance) des éléments de la famille du point de vue du compromis entre la vitesse de convergence et le degré de
convergence (variance de l'erreur résiduale finale) ; les résultats de cette comparaison dépendent des caractéristiques
de la distribution du bruit du système. L'optimization déterministique de l'incrément d'adaptation est aussi formulée
et évaluée au moyen des simulations . Finalement, on présente des lignes ouvertes de recherche .

MOTS CLÉS

Norme Lk , adaptatif, identification, bruit de système, convergence, optimisation .

1. Introduction

The three most usual adaptive techniques employed
in control and signal processing are recursive least
squares, Kalman, and the family of stochastic gra-
dient algorithms: many texts on modern control
and [2] illustrate this fact .
Among these possibilities, stochastic gradient algo-
rithms offer simplicity, robustness, and good perfor-
mances (whenever the input signal does not possess
a large eigenvalue spread) . The LMS algorithms is
particularly interesting [8, 9, 3], since it emphasizes
these advantages. Then, any study about similar pro-
cedures will be useful in both control and signal
processing.
In fact, the LMS algorithm can be considered as an
element of a family which uses the instantaneous
estimate of the gradient of a general error cost func-
tion to change the coefficients of a transversal filter
to decrease the error ; here, we will analyze those
corresponding to the k-th power of the absolute error,
i. e ., an L k norm family [7, 4, 5] because they are
simple and they serve to build a first approach to
other cost functions .
To keep our approach as general as possible, we will
refer to a widely applicable scheme for control and
signal processing applications : the plant identification
depicted in Figure 1 . We assume the plant and the
adaptive filters being equal length (N) FIRs, and we
use x (n), u (n), E (n), to indicate the input, plant noise,
and identification error sequences, respectively .

u(n)

Fîg. 1 . - Plant identification . x (n) : input process; u (n) : plant noise;
c (n) : residual error.
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Section 2 will be dedicated to establish the adaption
equations of these Lk norm adaptive algorithms and
to analyze the evolution of the identification error
variance under some usual hypotheses and consider-
ing noise-free and representative plant noise cases .
The conditions to guarantee convergence are bounds
for the adaptation constant that we discuss in
Section 3 . A comparative analysis of the speed of
convergence is presented in Section 4. Section 5 pro-
poses and evaluates a deterministic optimization of
the adaption constant, along with a first discussion
of its stochastic optimization. Finally, the main con-
clusions of this study are summarized .

2. The algorithms and their error variance
analysis

As the LMS does, the general algorithms we are
discussing try to minimize E [ I s (n) + u (n) h`] by using
the local estimate

ÔE{[Ic(n)+u(n)l']} =V[Is(n)+u(n)Ii] ;

then, since

(1) V[Is(n)+u(n)I i]
=V{ I [cp - c (n)] T x (n) + u (n) l'` }

= - k [c (n) + u (n)] I c (n) + u (n) j" x2 x (n)

the Lk algorithm is

(2) c(n+l)=c(n)+gk[c(n)+u(n)]

x JE(n)+u(n)i'-'x(n)

To analyze the behaviour of (2) without excess of
mathematical difficulties we will assume the following
usual hypotheses :
(a) x (n) and u (n) are white, zero mean, mutually
independent, wide sense stationary random processes,
having variances cy'

	

6,2„ respectively ;
(b) c (n) and x (n) are (approximately) independent
random vectors ;
(c) the convergence is enough to consider that x (n)
and c (n) are approximately uncorrelated: we accept
this approximate uncorrelation as independence (to
calculate means of products as products of means) .
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(b) and (c) are, in fact, false hypotheses ; but (b) is
nearly true if µ is small enough, and (c), although
theoretically weak when the convergence error is high,
behaves well enough even in these cases (see simula-
tions) .
Now, we will obtain a general recursive formula for
the mean square identification error E [E 2 (n)], that
equals 6E (n), the variance of E (n), since x (n) [and
thus E (n)] has zero mean .
Substracting both terms of (2) from c i,, and multiply-
ing terni by term the transpose of the result by this
result, we have, using v(n)=c,-c(n)

(3) VT (n+1)v(n+l)

v' (n) v (n)-2µk [E (n) + u (n) ] I E (n) + u (n) Ik-2

X vT (n) x (n) + µ2 0 I E (n) + u (n) Il 1-1 xT (n) x (n)

taking expectations and considering that, using
hypothesis (a) and (b)

(4 a) 6E (n)=E{[vT(n)x(n)]2}
N-i

=E
C

` v;(n)x(n-i)]2

N-i
= 6x

	

E [v 1~ (n)] = 6x E [VT (n) v (n)]
i=°

and also that, under hypothesis (a),

N-1

(4b) E[xT (n)x(n)]=EC

	

x 2 (n-i)1=N6z
i=0

and, finally, regarding hypothesis (b) and (c) and
multiplying both terras by C2, we arrive to

(5) 6É(n+1)=6 (n)-2µkaz

x E { E (n) [E (n) +u (n)] I E (n) + u (n) Ik-2
}

+µ2 k 2 N6XE[Ie(n)+u(n) 2k-2]

that can we written in the form

(6)

	

6É (n+l)=6É (n) [l - µS1 (n)+µ2 S I (n)]

where

(7a) S1(n)=2kc E{E(n)[E(n)+u(n)]
x IE(n)+u(n)Ik-2 }/o (n)

(7b) S 2 (n)=k 2 No E[IE(n)+u(n)I 2k-z]/cr (n)

Now, for simplicity, we develop these formulas under
two different assumptions .

2 . 1 . NOISE-FREE PLANT CASE

We accept a Gaussian x (n), and, then, a Gaussian
E (n) . Thus, since [6]

(8 a)

	

E [E2 m (n)] _ (2 m -1)1)!! ci' ' (n)
(8b) E[I E (n)I2 m- 1]= /2/, 2m -1 (m-1)i6E m-1 (n)

where (2m-1)!! equals 1 .3 .5 . . . (2 m - 1). Making
u (n)=0 in (7 a), (7 b) and using (8 a), (8 b), we arrive
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to

(9 a)
(9 b)

(11 a)

(11 b)

2 k (k -1) !! 6x a 2 (n), even k
S1(n)={2 2rn k(k_l)!!a_2(n),

	

Jx6Éoddk

(10 a)

	

{

	

N c /6É (n), k =1

(10h)
SI(n)-

Nk2 (2k-3)!! 5. 2(k-2) (n), k>1

These formulas are also gond approximations for
large N .

2 . 2. Noise PLANT CASES

Now, we will assume again Gaussianity for x (n)
(E (n)), and we will accept independence between E (n)
and u (n) [the saure comments that those correspond-
ing to general hypothesis (c) can be applied here] .
To allow easier calculations, it is convenient to write

Si (n)=

where

(12) (p;(n)=E{Ej+i(n)uk-1-'(n)sgn[E(n)+u(n)]}

and

(13) S 2 (n)=[k2N Cl/G2 (n)]

2k-2 2k-2
x

	

(

	

)E[Ej(n)]E[U2k-2-j(n)]
j=0

	

Jj

To compute the above formulas, it is necessary to
assume statistical distributions for u, independently
of n, since we have established a stationary plant
noise [e (n) has been assumed Gaussian, and it has a
variance function of n, c (n)] . It is classical in these
cases to explore distributions having long, inter-
mediate, and short tails, since this characteristic is the
essentiel to get representative results. Here we will
use exponentiel, Gaussian, and uniform distributions
for u ; remarking that the qualitative results can be
extended in the form the above reasoning indicates.
The respective probability density functions are
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[2 k 6x/6É (n)]

k11

Ck-1)j=0(
E [c» 1 (n)] E [u k-1-

j
(n)], even k

k

[2 k 6z16É (n)]

~1
~ k -1

j=o xip j (n), odd k

To calculate (11 a) and (13) under (14 a), (14 b), (14 c)
is easy. To solve (12), and consequently (11 b), we
write it in the form

(15a) cp ; (n) = f
'0

Ej+ i
(n) gj [E (n)] f [E (n)] de (n)

(14a) f 1 (u)=(1/ 26„)exp(-IuI/6„)

(14 b) f2 (u)=(1/\/2itc)exp(-u2/2a,2,)

(14 c) f3- ~
1 /2 / IuI <,6 u

0, IuI > /3- 6u



where

(15b) gj [c (n)] = f ~ uk-1- j sgn [E (n) + u] f (u) du

E (n)

uk 1 j f (u) du + f

	

uk-1 sj f (u) du

Since we are assuming even densities for u, we have
finally

(15'b)

(15" b)

(20 a)

(20 b) S 1 (n)=

(20 c)

2 sgn [E (n)]

I E (n) IX

	

uk 1 j f (u) du,

ogj [E (n)] =

	

even k -1- j

2 f~ uk-1- j f (u)du
IE(n)1

odd k-1-j

(15' b), (15" b) have been solved for k = 1, 3, and the
plant noise distributions (14 a), (14 b), (14 c). Introduc-
ing also the results of (11 a) for k = 2, 4, and (13) for
k = 1, 2, 3, 4, under the saure distributions, we have the
following results for the four lower order algorithms

k=2

S1 (n)=4 6s
S2 (n) = 4 N 6x (1 +s 2 )/s 2

2cx6„
{ 2 s1 \ _ +[1-erf (s)] es2 },

exponential u
2/it C y 2

x[1+2s2 +s2/(1+s2 )]/ l,/1+s i,
Gaussian u

66x a.

	

+S2/ -)
x erf ( J3/2 s 2 ) + /2/7r e -3 .2 /2 ],

uniform u
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(21 a)

	

27N G4 C 2 (2 + 2 s2 + s4)/s 2 ,
exponential u

(21 b)

	

27 N o o.2 (j + s2) 2/s2,
SZ (n) =

	

Gaussian u
(21 c)

	

27N6Xo (3/5+2s2 +s4)/s 2 ,
uniform u

k=4

(22)

(23 a)

(23 b)

(23 c)

Using (16a) to (23c) [along with (9a), (9b), and
(10a), (10b)] in (6) serves to evaluate the dynamic
behaviour of the identification error variance r (n)
as a function of the adaption parameter g, the plant
noise, ax and a,2, (we will check the adequation of
the theoretical expressions to simulated cases in a
further Section) . Thus, these results can be employed
as aids for particular case design and evaluation . But
we are interested in a general comparison ; then, we
will start by discussing the convergence conditions .

3 . Convergence conditions

Introducing the quadratic polynomial in g

(24) P(g ; N, 6x,6û, 6É(n)) =1- gSl(n)+g2 S2(n)

(6) becomes

(25) 6E (n + 1)=o (n) P(g ; N, o , o , aÉ (n))

and it is clear that the convergence conditions depend
on the characteristics of P in the range of .r (n)
included in [o (0), aÉ (co)] .
Before discussing these conditions, we must remark
that P is a positive polynomial . Considering

S2 (n)
R=(26)

(27)

	

R <

S1 (n)=24o 6û (1+s2)
240 N c cr (6 + 6 s 2 + 3 s4 + s 6)/s2 ,

exponential u
240 N cy' (1 + S2)3/s2,

S2 (n) =

	

Gaussian u
48N(y4

X

(9/5 + 15 s 2 + 15 s4 + 5 s 6)/s 2 ,
uniform u

4 S2 (n)
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E2 {E(n)sgn[E(n)+u] I E(n)+ulk-1 }

NE [c 2 (n)]E[1E(n)+ul 2k-2 ]

where we have used (7 a), (7 b) and E [e2 (n)] for
r (n), and since ~E (n) ? E (n) sgn [E (n) + u)] in any
case, and putting E (m) _ ( E (m) l 2

E2 [IE(n)I IE(n)+ulk-1 ]
NE [le(n)12]E[lc(n)+ul 2k- 2]

according to the Cauchy-Schwartz inequality
(E2 [XY] < E [X 2 ] E [y2] )l we obtain 0 :9 1/N ; if N >_ 2,

[we use s2 = 6É

k=1

(n)/aû, and

erf

	

(2/n)
fo, exp

(- t2 ) dt]

(

	

2 6x2./ 6u) [1-erf (s)] e,2,

(16a) exponential u
2, /ito /6„ Jl +s 2 ,

(16 b) S1 (n)

(16c)
Gaussian u

2 c erf ( J3/2 s2)/

	

6,,,

(17)

uniform u

S2 (n)=N 6x/6û s 2



P < 1 ; thus, the discriminant of P is negative ; there-
fore P is a positive polynomial, since S 2 (n) is always
positive, see (7 b) .
Since P > 0, (0 <) P < 1 (d n) is the convergence condi-
tion for the sequence of error variances . This condi-
tion is equivalent to

(28)

	

(O<) µ < min [S 1 (n)/S2 (n)]
n

To make easier the discussion of (28), we will divide
again our study into noise-free and noisy plant cases .

3 . 1 . NOISE-FREE PLANT CASE

We will use here CÇ (n)=S 1 (n)/S2 (n) for the k-th

oddk>1

and, from these expressions, convergence condition
(28) in the segment [0, oo) becomes

Note the apperance of the well-know 1/N as constant
bound when k = 2 . For k > 2, the convergence depends
on the initial conditions. When k = 1, we will see that
the variance always converges to a value determined
by the step we use.
If we decide to implement a (deterministically) varia-
ble step size (to speed up the convergence), we should
not surpass locally C k (n) .
Assuming the convergence bounds are verified, we
have a variable Pk (n) if k :~4- 2, and a constant P2 < 1
if k=2 ; then, the mean square error convergence rate
is constant if k=2 and variable if k :02. Since
lim Pk (n) -> 1 as we will see at the end of this Sec-
n - w

tion, the asymptotic convergence rate of the non-
quadratic algorithms is zero : i . e., there is a "satura-
tion" effect for these algorithms. This does not
exclude the possibility of local convergences faster
then the k = 2 one (in fact, they occur frequently in
the first iterations), but the saturation effect is a
drawback, in particular when the starting point is
good enough .
We will discuss now the asymptotic variance value
under convergence conditions .

3 . 1 . 1 . Asymptotic variance in k>2 cases

If we accept ci,' (oo)>0, from (6)

(31) aE(00)=aE(00)[1 - i1S1(CO)+11 2 52(DO)]
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therefore, using (29 b), (29 c)

(32)

	

Il =S1(c)/S2(oo)=g(k)/aÉ-2 (00)

since ak-2 (eo) < aE -2 (0), (32) is not compatible with
(30c) ; hence, aE(oo)=0 .

3 . 1 .2. Asymptotic variance in k = 2 case

Since P2(.<1) is a constant, aE (n + 1) = P2 aE (n) ; then

(33)

	

cri2 (n+ 1)=Pz c (0)

from which

(34)

	

lira aE (n + 1) = Cy2 (0) lira P2 = 0
n - w

	

n - w

3 . 1 . 3 . Asymptotic variance in k = 1 case

Let µ be

(35) µ=(2 2/n/N ax) T= [S1 (n)/S2 (n)] T/aE(n)

with 0 < T 2 < aE (0) . This is equivalent to a bound

(36)

	

µ < ( 2 J2/it/N az) aE (0)

Introducing (35) into (6), we have the first equation

(37) ae(1)=C (0) [1 -TS1(0)/ac(0)S2(0)
+T2 S1 (0)/aE(0) S 2 (0)]

Cy2 (0) - [a, (0) -T] TS2 (0)/S2 (0) <
Cy2 (0)

The last inequality being due to the bound of T .
Substracting T2 from both sides

(38) aE (1) - T2
= aE (0) -T 2 - [ac (0) - T] TSi (002(0)

=[ac (0)-T] [ac(0)+T - TS1(002(0)]

but

(39)

	

Si (0)/S 2 (0) = (8 ax/n)/N az = 8/N n

therefore, for N>2,2, Si (002(o)<2 ; and according
to it, we can obtain from (38)

(40)

	

c (1)-T 2> [ac(0)-T]2>0

i . e., T 2< Cy2 (1) . Repeating this argument,

(41)

	

T2<a'(n+1)<aE(n)

and it becomes clear that aE (n) is a monotonie
decreasing sequence limited by T 2 as long as we
choose µ as given by (35) .
After this, we can verify that lim Pk (n) -> 1, as pre-

n -+ 00

viously stated .
If k > 2, since aE (oo) = 0, and S 1 (n) is given by (9 a),
(9b), S 2 (n) corresponds to (10b), it is clear that
lim S 1 (n) -> 0, lira S 2 (n) -> 0, and, then according
n - w

	

n -+ cc

to (6), the above lirait for P k (n) holds.
When k = l, according to (41), aE (oo) =T2 , and
µ=[S1(co)/S2(co)]T/c (oo) ; substituting into (6)

volume 4 - n° 5 - 1987

order algorithm. Starting from (9a), (9b), (10a),
(10 b), it is trivial to obtain
(29 a) 2 J2/1o (n)/N c r'

k=1
(29 b) 2(k-1)!!/Nk(2k-3)!!axcr 2 (n),

(29 c)

Ck = even k
2 J2/i (k -1) !!/N k (2 k - 3) !! ax aÉ-2 (n),

(30 a) µ 1 <C 1 (co) (k=1)
(30b) µ2 <C2 =1/Nc (k=2)
(30 c) 11k < Ck (0) (k > 2)



with n -a ce, we obtain

(43) 1-S1(oo)T/S 2 (co)6E (co)
+S2(cc)T2/S2(o) 6É (cc)=1

considering the equality between 6I (oo) and T 2 .

3 . 2. Noise PLANT CASES

First ai all, we will remark Chat, when the plant noise
is not zero, the identification error variance will not
tend to zero if a finite µ is used. Considering (7 a),
(7 b), it is clear that, when aE (n) -* 0, i. e., g (n) -> 0

(44 a)

	

lim 6E (n) S 1 (n) -> 0
a, (n) -. 0

(44 b) lim cr (n) S 2 (n) -> k 2 N 6x E [u21c-2 (n)]
ae (n) - 0

then, (6) is not compatible under 6E (co) ->0, unless
g->0 .
Now, we will consider only the k -r 1, 2, 3, and 4 cases
assuming exponential, Gaussian, and uniform distri-
butions for u. Using the previously calculated values
for S 1 (n) and S 2 (n) we can compute
C k [s (n)] =S 1 (n)/S 2 (n), where s2(n)=6'(n)/U2, and
discuss condition (28) .

3 .2 .1. k=1
It is easy to find

These three functions grow monotically with s .
If we choose g= C l (S I ), we can write (6) in the form

(46) 6E (n+1)=6E (n)[1-C 1 (s o)S 2 (n)

x {C l [s (n)] - C l (S I )

and, assuming convergence, this is reached when
C1 [s(oo)]=C 1 [s o ] ; therefore, the steady-state corre-
sponds to

(47)

	

6É (00) =s0 6u =èC1 1 (µ)l 2 su

The

	

convergence

	

is

	

guaranteed

	

because
C1 [s (n)] > C 1 (SOI = µ for any finite n .

3 .2 .2. k=2
Here, we have
(48)

	

C 2 [s(n)]=K's2/(1+s2)

independently of the distribution of u . This function
also increases monotonically with s; hence; we can
repeat the discussion of the previous k = 1 case. Note
that, in both k = 1 and k = 2 cases, the selection of
the adaption constant fixes the final convergence .

3 .2 .3 . k=3 and k=4

In these cases, C 3 [s (n)] and C, [s (n)] have not mon-
otonic character; they offer a maximum in :
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k = 3, exponential u: s 4 dB, Gaussian u: s 4 dB,
uniform u: s ~ 2 dB,
k = 4, exponential u : s -4 dB, Gaussian u: s ^-, 0 dB,
uniform u: s -2dB
and they decrease from this maximum to zero when
s -> 0 or oc . Their forms are represented in Figure 2
(k=3) and 3 (k=4) between s = 20 dB and s = - 30 dB
for Gaussian u (the other cases show equivalent
f orms) .

C 3 = 6 103

s =20

	

1

	

1

	

1

	

r

	

-30

Fg. 2. - C3 (s) . Gaussian noise (6z = s.'=1) .

1	1	1	1	1	1	1	1

N=20

Fig . 3. - C4 (s), Gaussian noise (6x=a.=1) .

These forms force a local examination of each particu-
lar initial and final conditions, since the C k [s (n)] can
reach their smallest value at one of these points .
If we select µ = C, [s e] and Ck [s0 ] < C [s (0)], we can
offer the saure discussion as previously; when the
initial condition is such that CI [s (0)] < Ck [s0], thesys-
tem will diverge from its initial condition . If we select
9=Ck [s(0)] to avoid it, we will have the equation (6)
taking the form

(49) 6E (n+ 1) = 6E (n) { 1-Ck [s (0)] S2 (n)

x { Ck [s (n)] - Ck [s ( 0)] }}

that forces the steady state s (oc) = s (0) and

( 50) 6E(oc) = S2 (0)c = èCk 1 (p.)]262 <S2

the process being not finished at SI, to stop here, it
is necessary to change g to µ' = C k [s0 ] after arriving
to n = no such that Ck [s (n o )] > Ck [s o ] .
In any case, note that situations having
Ck [s (0)] < Ck [s0] are not usual in the practice .
Note that, on the other hand, we have the possibility
of reducing the final identification error variance as
much as desired by reducing the adaption constant .
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(45 a) K1 s2 [1-erf (s)] es2 , exponential u

(45 b) C1 [s (n)] = K2 s 2/ /i + s 2 , Gaussian u

(45 b) K3 s 2 erf (,~/3/2 s2 ), uniform u



4. Discussing the relative performances

To compare the speed of convergence versus the
degree of convergence of the different algorithms, we
introduce the parameter [1]

(51) X[aE (n)]=-10log[c (n+l)/c (n)]
_ -10 log P(µ; N, Cj2, 6u, c (n))

that measures the reduction of the identification error
variance at each iteration .
As (51) shows, 1 depends on several parameters . Since
µ=S 1 (o0)/S 2 (cc) is proportional to G2, we will avoid
the dependence on 6s by normalising it to 1 ; thon,
everything depends only on t, s0 , N, the ratio
6e (n)/6,2„ and the plant noise distribution .
We will select a representative case, in which the final
convergence is forced to s o = - 30 dB, starting from
s (0) = 20 dB, and we will discuss the speeds of conver-
gence by looking the k [6E (n)] vs s (n) = 6E (n)/6„ cur-
ves for k = 1, 2, 3, and 4, under exponential, Gaussian,
and uniform plant noises, and using N as a parameter :
N=10, 20 and 40 (to check the tendency with the
plant length) .

S=20

S=20

S= 20

(a)

(b)
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Figure 4 shows the L 2 case, that is independent of
the plant noise distribution. Note that the speed of
convergence romains constant until the plant noise
becomes important [s (n) -15 dB in our case],
decreasing after this.

Hg. 4. - Speed of convergence for LZ
(dB/iter., 6x = 6~ =1) .

Figures 5 a, b, c, show the behaviours of L 1 , L 3 and
L4 schemes, respectively, under uniform plant noise ;
Figures 6 a, b, c, are equivalent assuming Gaussianity,
and Figures 7 a b, c, correspond to exponential plant
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(a)

(b)

(C)

	

(c)
Fig. 5 . - Speed of convergence (dB/iter) . Uniform noise
(a'=csû=1) . (a) L, algorithm. (b) L 3 algorithm. (c) L 4 algo-

	

Fig. 6 . - Speed of convergence (dB/iter) . Gaussian noise
rithm

	

(6x=o = 1) . (a) L, algorithm (b) L 3 algorithm, (c) L 4 algorithm.



(a)

(b)

(c)

Fig. 7 . - Speed of convergence (dB/iter). Exponential noise
(al=su=1). (a) L l algorithm. (b) L3 algorithm.
(c) L 4 algorithm

noise distribution . Note the following general charac-
teristics :
- the L t algorithm shows a nearly flat local speed
for identification errors of similar or slightly lower
level that the plant noise, and lower in other cases;
- the L3 and L4 algorithms have very high speed
when the identification error is much greater than the
plant noise, but their speed decreases very quickly
when this situation disappears .
AI] the schemes offer saturation effects .
On the other side, as expected, the speed of conver-
gence decreases when the plant length increases .
To show clearly the relative advantages, Figures 8a,
b, c indicate comparatively the performances of the
four algorithms for N=20, the other parameters
being as above, for uniform, Gaussian, and exponen-
tial plant noises, respectively . The main conclusions
are:
- for uniform (short tail) plant noise, higher the
order is faster the convergence results ;
- for Gaussian (intermediate tail) plant noise, L 2 is
the best algorithm, except in (initial) high identifica-
tion error situations;
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s=0

(a)

(b)

-30

(c)

Fig. 8 . Speed comparison (dB/iter., ax=a,.,=1, N=20) . (a) Uniform
noise. (b) Gaussian noise . (c) Exponential noise.

- for exponential (long tail) plant noise, the lower
order algorithms offer faster convergence rates, with
the saure exception indicated in the previous case .

5. Optimizing the adaption constant

5 . 1. DETERMINISTICALLY VARIABLE ADAP-
TION STEP

The previous discussion reveals that it is possible to
increase the speed of convergence by using at each
step an appropriate adaption constant ; i . e ., selecting
an optimal µo (n) which minimizes P(µ ; N, 6x, sû),
considering (24),

(52) aP(µ; N, 6X, o , 6É (n))/Sµ Jµ= µ0 (n)

= - S) (n) + 2µo (n) S2 (n) = 0
and, then,

(53)

	

go(n)=St (n)/2S2(n)=Ck(n)/2

(according to this, convergence is guaranteed) . This
value needs to be computed step by step, and requires,
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obviously, to apply formulas (16 a) to (23c), accord-
ing to the case ; note that s = ci, (n)/a n can be computed
if we know cy,' by applying the basic formula (6) ;
to know cr (0) (or a good estimate of it) is not very
usual .
The values or forms of µ 0 (n) correspond, according
to (53), to (half) those discussed in Section 3 for
Ck (n) .
The optimal reduction of aÉ (n) is, using µ o (n),

( 54) Po (N, a', a', ae (n))
=P(µ, N, ax,2x, au, ae2 (n)) N = NO(n)

=1 -Si (n)/4 S 2 (n)

and, according to the first discussion of Section 3,
Po ( .) < 1 if N >_ 2; i . e ., convergence is guaranteed, as
previously said.
We will present our comparative discussion consider-
ing the usual cases .

5 . 1 . 1 . Noise free plant case

It is easy to obtain from (9 a), 9 b), 10 a), (10 b), (10 c)
and (54)

odd k, k *1

Note the expressions do not depend on ax . Table
show values of (55 a), (55 b), (55 c) for different algo-
rithm orders and plant lengths .

TABLE

Values of Po ( .)

Note that the optimized L 2 algorithm presents the
best behaviour (the convergence rate is - 10 log Po ),
and that to increase k (k > 2) and N decreases the
speed of convergence . For large N, all the algorithms
tend to be equivalent .
We must remark that, according to (53) and (9 a),
(9b) and (10a), (10b) the formal expression of the
optimum adaption constant is

(56)

	

µo (n)=F (k)/N ax aE-2 (n)

being F (k) a function of the order. This optimum
step size depends on n except when k = 2, in which
case it becomes a constant, µ o =1/2 N ax: this is an
advantage of the L 2 algorithm, that can be optimized
without additional computations .
When k = 1, µo decreases with n [it varies with a,, (n)],
forcing a zero final identification error variance.
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X= .22

S=20

(a)

-30

S:20

s_20
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(b)

(c)

-30

-30

FIg. 9 . - Optimum speed comparison (dB/iter ., ax=a.'=1, N = 20) .
(a) Univrom noise, (b) Gaussian noise, (c) Exponential noise .

When k > 2, µ o is proportional to a value increasing
with n, 1/aÉ -2 (n) : this forces an unbounded sequence
of step sizes, sonce aÉ (n) -* 0 .
According to the previous fact, we can say the optimi-
zed L2 algorithm is the best choice assuming a noise-
free plant .
Note this discussion cannot be applied when the plant
noise is not zero .

5 . 1 .2 . Noisy plant cases

We will use again representative plots, since the ana-
lytical expressions do not allow an easy discussion .
Figures 9 a, b, c, show a, o (n) = - 10 log Po ( .) for
uniform, Gaussian, and exponential plant noises,
respectively, using N = 20 and comparing, thus, the
speed of the L l to L4 algorithms. We explore the
band from 20 dB to - 30 dB for s = aE (n)/a,, .
For high values of s (near the noiseless case), it can
be seen that the performances follow the conclusions
of the noise-free case : the optimized L2 is the best
algorithm, and the optimized L 4 worse. However,

k
N 1 3 4 5 6
10	 .936 .900 .915 .940 .961 .976
20	 968 950 .958 .970 .981 .988
40	 . 984 .975 .979 .985 .990 .994

(55 a) 1-[(k-1) ,]2/N(2k-3) ,

(55 b)

even k
1- 2/n N,

Po ( .)= k=1
(55c) -2k{[(k-1)/2]!}2/nN(2k-3),,



S-8
dB

-30

S=8

- 30

n

n

(a)

(e)

F1g. 10. - Theoretical vs . simulated results. Exponential noise. (a)
L,

	

algorithm

	

(µ=8 .40x 10 - ') .

	

(b)

	

Lz

	

algorithm

when s decreases, there are different behaviours
according to the assumed plant noise distribution :
- for uniform (short tail) noise, higher order algo-
rithme tend to offer convergence rates better than
those of L 1 and LZ algorithms (when s is low enough
(under^-, - 8 dB for k=4 and -1 dB for k=3 in
the case of the Figure 9 a) ;
- for Gaussian (intermediate tail) noise, L 2 performs
better in any circumstance ;
- for exponential (long tail) noise, L 1 tends to
become the best when s decreases (under - 7 dB in
the case of the Figure 9 c) .
These results are coherent with those of the previous
Section, and serve to the designer to select the appro-
priate algorithm.

5 .2 . FIRST COMMENTS ON AN (STOCHASTICALLY) ESTI-
MATED STEP SIZE

We must start by saying that it possible to think in
modifying the value of g according to the estimated
(instantaneous) value of 6E (n), trying to select the
best adaption constant at each time ; this is a very
natural way of thinking, since it is clear from the
previous discussion that there is an optimum value
of g depending on ci, (n) (in different forms) .
This approach will avoid the need of knowing cr (0)
and using the theoretical formula (6) to compute g o
at each step. But note that all the previous analysis
cannot be applied, since we have assumed a deter-
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S78

(57)

-30

Sr,8

-30

n

n

K

g'0 = Y- gk1El
k=1

and the study of this possibility is equivalent to a
combination of the schemes we are considering .

6. Simulation results

To verify the main aspects of our analysis and discus-
sions, we present here some simulations results .
As a first example, consider the plant

(58)

	

cp(i)=(-1)x[1-0.05il ,

	

0<_i :99

excited by a white, Gaussian sequence having 6z =1.
The initial setting for the adaptive filter is c (0) =0 .
The first group of simulations correspond to the use
of constant values of g. These values are selected to
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(b)

(d)

(µ=2 .15 x 10 - s) . (c) L 3 algorithm (µ=4 .97 x 10 - e) . (d) L 4 algo-
rithm (µ=5 .27 x 10 -7) .

ministic g in our statistical analysis. Then, an addi-
tional formulation is needed ; we will dedicate our
further research effort to this possibility, since we
have verified by simulations its potential advantages .
Hovewer, a series of simple approaches can be explo-
red without much reelaboration of our previous
analysis; for instance, if we use instantaneous estima-
tes for g, and we accept a low-order approach for its
variation, we will have

k

8000

8000



S=8

-30

S=8

-30

n

n

(a)

(b)

Fig . 11. - Constant vs. optimum i. convergence comparison. Gaus-
sian noise. (a) L2 algorithm (µ=3 .15 x 10 -5) . (b) L 2 algorithm
[optimum µo (n)].

obtain 6É (00)/6 2 = - 25 dB. All the figures show 4
averaged results for 8,000 iterations; we have also
smoothed the curves with a constant moving-average
window of length 50. The simulated results are pre-
sented jointly with the corresponding theoretical cur-
ves .
Figures 10 a, b, c, d, present results for exponential
plant noise cases. The higher order algorithms con-
verge slower than the L 1 when the presence of the
plant noise is appreciable compared with the identific-
ation error. For brevity, cases with Gaussian and
uniform plant noises will not be presented here, never-
theless their simulated results fit, in a similar way of
Figure 10, the theoretical ones .
Thus, the observed characteristics agree, then, with
the theoretical analysis . We must remark that the
rule of having better performance of high/low order
algorithms when the plant noise has short/long tails
is just the predicted by classical works when applying
the L k norm to the objective c (n) + u .
The second group of simulations is carried out using
optimum values of p, computed from
p (n) = S 1 [s (n)]/2 S Z [s (n)] starting from a first estimate
of aÉ (0) given by the average of four values of e2 (0)
obtained with c (0) =0. We show only 3,000 iterations
of 4 averaged realizations, smoothing with a window
of length 30 . Again for brevity, we present only results
corresponding to Gaussian plant noise and L 2, L3
algorithms, showing the agrement with the theoretical
curves and the advantage respect to the constant
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S=8

- 30

S=8
dB

-30
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3000

n
(b)

3000

Fig . 12 . - Constant vs. optimum µ convergence comparison . Gaus-
sian noise . (a) L 3 algorithm (µ=1 . 11 x 10(b) L 3 algorithm
optimum µo (n).

algorithms [µ to obtain 6É (00)/6,~, _ - 25 dB]: this
agreement and advantage are similar for the other
plant noises .

Figures 11 a , 12 a correspond to deterministically
optimozed p, and Figures 11 b, 12 b to constant p. It
can be observed that the optimized convergences are
very similar, and that they are much faster than the
constant µ convergences, mainly in the first steps
(nearly noiseless condition) . In these figures, the con-
vergence to zero of the optimized algorithms cannot
be observed .
As a general result, we can conclude that the closeness
of theoretical and simulated results is so high that we
can validate the hypotheses and analysis used .

7. Conclusion

We have studied a family of L k-norm adaptive
transversal filters which use the gradient of the k-th
absolute moment of the overall error to update their
coefficients in a plant identification application .
The assumed hypotheses and the analysis of the evolu-
tion of the identification error variance are validated
by simulation results.
The comparative conclusions among the elements of
this family are :
(1) Assuming a constant adaption step and zero plant
noise, all the algorithms converge to zero in the mean
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square sense except the L l , which converges to an
identification error variance depending on the adap-
tion step used. The L2 algorithm converges for step
sizes under 1/N 6z, and the k > 2 schemes for bounds
related with the initial error variance Cy2 The con-
vergence rate of the L 2 algorithm is constant, and the
k > 2 cases show a saturation effect .
(2) Considering a constant adaption step but non-
zero plant noise, all the algorithms converge to a non-
zero identification error variance which depends on
the adaption step . When, k > 2, the initial state has to
be considered to avoid divergence . The convergence
speed is related to the plant noise distribution: when
it has short/long tails, higher/lower order schemes
perform better, respectively . For a Gaussian distribu-
tion, the L 2 algorithm is the best in a wide range of
the identification error variance .
(3) Using a deterministiç rule to optimize the adap-
tion step, and assuming zero plant noise, the optimi-
zed L2 algorithm offers the best performance, and
also a constant value for the optimum setp size .
(4) Deterministically optimizing the step size and con-
sidering non-zero plant noise cases, all the algorithms
clearly increase their convergence rates with respect
to their constant step versions . The differences in
performance according to the plant noise distribution
are reduced a lot, all the algorithms offering very
similar results: this observation and the easier com-
putation of the adaption step for the L 2 algorithm,
that does not depend on the plant noise, make this
scheme preferable .
We must remark that, assuming a Gaussian input or
a long plant filter, all these conclusions do not depend
on the norm we use to measure the performance,
since there is a direct relation between a Lk norm and
the L 2 norm for a Gaussian error : that used in our
analysis to give the k absolute moment as a function
of the variance .
The line of introducing a stochastic optimization of
the adaption step, as well as the possibility of using
a general cost function to be selected according to
optimization or robustness requirements, remain
open. To extend this generalization to other adaptive
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schemes is also an interesting research field. Finally,
the possibility of applying these Lk schemes to practi-
cal applications, such as equalizing and echo concell-
ing in communications, needs to be considered .

Manuscrit reçu le 7 octobre 1986 .
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