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Contrôle non destructif

par la méthode électromagnéto-ultrasonore

SUMMARY
An overview is given of the EMUS transduction technique, its physical foundations, transducer construction,
laboratory developments and applications . The flexibility in transducer construction permits the excitation of a
large variety of bulk waves and guided wave modes . Important application fields for the EMUS transducers are
nondestructive testing with Rayleigh waves, SH waves and shear waves with normal incidence since, for these
wave types, conventional excitation through a couplant suffers serious drawbacks .
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RÉSUMÉ

On présente un aperçu de la technique de transduction électromagnétique ultrasonore (EMUS) comprenant les
fondements physiques, la construction du transducteur, les développements en laboratoire et quelques applications .

Par sa souplesse de construction, le transducteur permet l'excitation d'une grande diversité d'ondes ultrasonores et
de modes guidés. Un domaine important d'application des transducteurs EMUS est le contrôle non destructif par
utilisation des ondes de Rayleigh, des ondes de cisaillement polarisées horizontalement et des ondes de cisaillement
sous incidence normale, parce qu'il n'est alors pas nécessaire d'utiliser un liquide de couplage ce qui est un
inconvénient sérieux avec les transducteurs convenventionnels .

MOTS CLÉS

Ondes de surface, EMUS, EMAT, conversion magnéto-acoustique .
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1. Introduction

The development of electromagnetic-ultrasonic
transducers (EMUS transducers) has offered new pos-
sibilities in the field of mondestructive testing by ultra-
sonic waves. The main reasons are : EMUS transdu-
cers don't need liquid couplants ; they offer a high
degree of reliability ; they can operate at elevated
temperatures; the flexibility in layout and construction
provides a large variety of excitable wave modes ;
especially tangential motions in the surface of the test
piece can be exited . The reader who wants to get a
deeper insight into the development of the EMUS
transduction technique is referred to a review article
by H. M. Frost [1] .

2. Physics of EMUS transduction

Electromagnetic generation of a ultrasonic wave is
performed by superimposing high frequency eddy cur-
rents to a low fresuency magnetic bias field in conduc-
ting non- or ferromagnetic material. The eddy cur-
rents are induced through a HF transmitter coil energi-
zed by a current pulse or burst. In many cases a
meanderlike shape HF coil (Fig. 2. 1) is used . In the
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Fig. 2 .1 . - Principle of the electromagnetic excitation
of ultrasonic waves vibrating in the plane of incidence .
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inverse process, an ultrasonic wave, impinging on the
surface of a material with the aforesaid properties,
under the action of a magnetic bias field generates
an electromagnetic field which leads to induction of
a HF voltage signal in a receiver coil. The generating
phenomena can be described through a physical
model which comprises Lorentz forces, magnetic for-
ces and magnetostriction. Such a model has been
developed and used to calculate the transfer impe-
dance of a system consisting in the EMUS transmitter
and receiver and the elastic material to be tested [2] .
The transfer impedance is the ratio between the vol-
tage amplitude UR induced in the received coil and
the current amplitude IT flowing in the transmitter
coil and is an absolute measure of transducer effi-
ciency.
Figure 2 .2 shows the theoretical and experimentical
and experimental directivity patterns of SV waves
generated by a meanderlike coil in a soft steel half
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Fig. 2 .2. -- SV wave directivity pattern of an EMUS angle
transducer with tapered HF coil in soft iron .

cylinder with a magnetic bias field normal to the
transfer impedance drawn in a logarithmic scale
picked up by a received-line-probe, which was moved
along the cylindrical surface of the sample . The
transmitter coil has a Dolph-Tschebyscheff-tapering
in order to obtain the lowest side lobe levels and the
smallest main lobe width which are simultaneously
possible. The transfer impedance measured at the
maximum main lobe is about 20% lower than, and
the measured side lobe level is somewhat higher than,
the calculated values .
The angle of incidence of the main lobe depends
on the frequency. Figure 2 . 3 shows calculated and
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Fig. 2 .3 . - Transfer impedance at the main lobe maximum
(EMUS angle transducer-EMUS fine probe) .



measured values for the transfer impedance at the
maximum main lobe of the same system as in the
foregoing figure for different frequencies and corres-
ponding angles of incidence . The largest dicrepancy
between experimental and theoretical values is about
20%. These results demonstrate the usefulness of the
applied model to calculate absolute transducer efficien-
cies and directivity patterns .
The small value of the ratio between the transfer
impedance and the electrical resistance of EMUS
transducers ( =10 fl) shows that the insertion loss of
EMUS transducers is considerably higher than that
of piezoelectric transducers . The numerical model is
a strong engineering tool which optimizes transducers
and especially reduces their insertion loss; it has
already been used in this way .

3. Wave types and transducer configurations

Depending on the geometry of the HF coil and the
orientation of the magnetic bias field a large variety
of wave types and modes can be excited (Fig. 3 . 1) .
Meanderlike coils with magnetic bias fields alternati-
vely parallel or normal to the surface and perpendicu-
Jar to the HF current are used for the transduction of
oblique-incident SV waves, Rayleigh waves and Lamb
waves. The model, cited above, shows that in these
cases with bias field parallel to the surface, transduc-
tion occurs in paramagnetic conducting materials
through Lorentz forces and in ferromagnetic materiats
mainly through magnetostriction ; whereas with bias
field normal to the surface, it occurs through Lorentz
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Fig. 3 . - Variants of EMUS excitation .
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forces and in ferromagnetic materials additionally
through magnetic forces . Meanderlike coils with bics
feld parallel to the surface as well as to the HF
current are used for the transduction of SH waves in
magnetostrictive materials . Transduction of SE waves
in paramagnetic conducting materials is performed by
transducers with a periodic bias field produced by a
stack of magnets with alternating orientation . The
last mentioned configuration was proposed by
R. B. Thompson [3, 4] in 1979 . Normal incidence of
linearly polarized shear waves and longitudianl waves
is performed by flat rectangular frame HF coil in a
bias field with altering flux direction ; radially polari-
zed shear waves are excited by flat spiral (pancake)
coils in a homogeneous bias field normal to the sur-
face. The angular ranges, where these wave types be
excited with EMUS transducers most efficiently, are
shown in Figure 3 . 2.
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Since they extend over several wavelengths, transdu-
cers with a meanderlike coil create a narrowband
signal. In order to produce broadband signais, the HF
coil has to be segmented into several elements, and
the HF pulses energizing the different elements have
to be shifted against each other by certain time delays
corresponding to the time-of-flight which the ultraso-
nic wave requires to propagate from one element to
the other (Fig . 3 . 3) . The signal received in the diffe-
rent elements has to be shifted analogously . Such
phased-array-systems have been built up successfully
at laboratory and prototype stages . Pulse lengths of
two wave lengths have been achieved [5] .

4 . Laboratory developments and applications

At the IzfP the development of the EMUS transduc-
tion technique for the solution of NDT problems has
been concentrated on plate modes [6], tube modes [7],
surface waves [8] and bulk waves [5, 9] . Rayleigh-,
SH- and shear-waves with normal incidence are of a
special importance for industrial applications ; these
wave modes require no liquid couplant, respectively
tangential HF-forces for excitation .
A system for the automatic surface inspection of
railway engine wheels is presently in its testing
phase [10] . The transducer system is integrated into
the rail (Fig. 4 . 1) ; the testing is performed while a
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Fig. 4 .1 . - Principle of the surface testing
of railway wheels .

wheel is passing. Triggered by the wheel when it
contacts the transducer two Rayleigh wave bursts are
excited simultaneously travelling along the wheel
tread clock- and counter- clockwise . Deffect echoes
are detected by two recaiver systems (channel A and
B) . At the present time up to six wheel pairs can be
tested in one inspection cycle . Figure 4 . 2 shows a test
result with a defect echo of a wheel appearing in the
oscilloscope traces (channel A and B) .
SH waves can be used advantageously in the testing
of structures with columnar grains like weldments
and calddings. These structures have an anisotropic
acoustic impedance which, in the case of shear waves,
also depends on their polarization . This results in
significant reflections of SV waves at the interface
between the base- and the weld-metal while SH waves
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Fig. 4 .3 . - Detection of a notch in an austentic
weld by electrornagnetically excited SI-1 waves .

are transmitted through most incidence angles [11] .
In the case of a cladded inside wall, this range of
angles permits the testing from the outside, of the
outer surface zones and of the cladding and the base
metal above (Figs. 4, 3, 4 . 4) .
Since SH waves propagate also at grazing incidence
along a surface, unconventional testing geometry can
be used, for example when testing the inner surface
of a nozzle in a PV wall (Fig. 4 . 5) . For this purpose
the transducer is positioned on the PV wall, inclined
at a certain angle relative to the radial direction at
the nozzle center, and moved along a circle or an
ellipse around the nozzle . Figure 4 . 6 shows a resul-
tant echo from a crack at the inner surface of a
nozzle .
Shear waves with normal incidence polarized at right
angles to each other permit the determination of struc-
tural or stress-induced anisotropy by relative time-of-
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flight measurements. Figure 4 . 7 shows the influence
of external stress on the backwall echo sequence of
radially polarized shear waves [12] . Due to acoustic
birefringence beats occur in the amplitude of the
backwall echoes, which allows the quantitative
determination of shear-wave-velocities polarized "in"
and "perpendicular" to the plane of incidence and
therefore enable stress analysis without knowing or
measuring sound pattes .
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Mg . 4.7 . - Backwall echo sequence
in an A 1 sample under stress .

5. Transducer performance

Table 5 . 1 gives a comparison of the performance of
piezoelectric and EMUS transducers . EMUS transdu-
cers have higher insertion loss than piezoelectric ones .
The dead zone of normal probes can be minimized
to a practicable value whereas the dead zone of
EMUS angle probes is large compared to conven-
tional ones . Any drawbacks which result from the use
of a couplant are eliminated with EMUS transducers,
however an EMUS transducer has to be close to the
surface: the loss due to lift-off amounts to 80-100 dB
per transducer period. The scanning speed achievable
with EMUS transducers is limited only by mechanical
conditions . These advantages are the basis to the
requirement to overcome the drawbacks of high inser-
tion loss and large dead zone .

6. Conclusion

This paper described the amount of constructional
variety that is accessible in the desing of EMUS
transducers. Several examples were given where ultra-
sonic testing with EMUS transducers can be per-
formed in an unconventional manner. The capabilities
and engineering requirements of EMUS transducers
have been discussed . Future work has to bring even
more of these capabilities into practical use .
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Piezoelectric
transducers

EMUS
transducers

In relation
to piezo
electric

transducers

Insertion loss	 10-20 dB 40-50 dB

Gain in reserve	 50-70 dB < f 55 dB, ferritic steel
_ ( 45 dB, austenitic steel J

Dead zone	 0
3 min (normal probe)
15 mm (angle probe)

35 mm (segmented probe)
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