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SUMMARY
The eigenfrequencies of a cylindrial obstacle (of finite or infinite length) can be interpreted as the resonances
due to phase matching of circumnavigating helical surface waves. For the case of a cylinder of finite length, the
pitch angle of the helix can assume a discrete set of values only . Resonant eigenvibrations can be excited by
waves incident in an oblique fashion, which generates the helical waves . A refraction effect is found to take
place between the incident and the helical-wave directions . We obtain pole diagrams of the scattering amplitude
in the complex-frequency plane, by using the T-matrix approximation for finite cylinders . In addition, pole
diagrams for spheroidal scatterers are obtained by the use of the T-matrix and of spheroidal wave functions .
While the poles of symmetric scatterers (spheres or infinite cylinders) are degenerate in the azimuthal quantum
number in, the degeneracy for the potes of finite cylinders and of spheroids is lifted . This m-splitting is explained
by the phase matching of helical waves with various allowed pitch angles . Dispersion curves for the phase and
group velocities and attenuations of the helical waves are obtained
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RÉSUMÉ
Les fréquences propres d'un obstacle cylindrique (de longueur finie ou infinie) peuvent être interprétées comme dues
à l'accord entre les phases d'ondes se propageant sur la surface d'une façon hélicoidale. Dans le cas d'un cylindre
de longueur finie, l'angle de pas de l'hélice ne peut prendre qu'une série de valeurs discrètes . Des vibrations propres
résonnantes peuvent être excitées par des ondes incidentes de direction oblique, ce qui produit les ondes hélicoïdales .
Un effet de réfraction est trouvé entre les directions de l'onde incidente et de l'onde hélicoïdale . On obtient des
diagrammes de pôles de l'amplitude de diffusion dans le plan complexe de la fréquence, par un calcul utilisant
l'approximation de la matrice T pour des cylindres finis. En plus, on obtient des diagrammes de pôles pour des
obstacles sphéroïdaux en utilisant la matrice T, ou des fonctions d'ondes sphéroïdales. Tandis que les pôles d'obstacles
symétriques (sphères, ou cylindres infinis) dégénèrent vis-à-vis du nombre quantique azimuthal m, cela n'est plus le
cas pour les pôles de cylindres finis et de sphéroïdes . La séparation résultante entre les valeurs de m s'explique
alors par l'accord de phases des ondes hélicoïdales possédant différents angles d'inclinaison permis . On obtient des
courbes de dispersion pour les vitesses de phase et de groupe des ondes hélicoïdales .

MOTS CLÉS

Cylindres finis, cylindres infinis, sphéroïdes, fréquences propres, résonances, ondes de surface hélicoïdales, incidence oblique, pôles de fréquence
complexe, écartement (dédoublement) en m, courbes de dispersion, vitesse de phase, vitesse de groupe .
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1. Introduction

The most general case of the scattering of waves
obliquely incident on an infinite cylinder has first
been considered by White [1] ; he deals with a plane
wave in an elastic medium incident on an elastic
cylindrical inclusion. This theory has recently been
completed by Delsanto et al . [2, 3] ; it is based on
the classical normal-mode (or partial-wave) Rayleigh
series expansion . Special cases have been investigated
in greater detail : acoustic waves incident on an elastic
cylinder [4] or shell [5], or on a fluid cylinder [6, 7],
and elastic waves incident on a fluid-filled cylindrical
cavity [8] (in a similar fashion, elastic waves on a
spherical cavity have also been studied [9]) . In these
latter investigations, the complex eigenfrequencies of
the mentioned obstacles have been explicitly calcula-
ted, as well as the excitation of the corresponding
eigenvibrations . While analogous calculations cannot
be carried out for the case of cylinders of finite length,
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due to the non-separability of this problem, results
for the eigenfrequencies can nevertheless be obtained
here by the use of special methods . If only the interior
vibrations of a fluid cylinder in vacuo are considered,
the problem is still exactly soluble, and the correspon-
ding eigenvibrations have, for the first time, been
interpreted as being due to the phase matching of
helical surface waves [10] (of internal type, in this
case) . For the non-separable exterior problem of fini-
te-length impenetrable cylinders, the T-matrix method
of Waterman [11] has been employed, modified so
as to furnish complex eigenfrequencies [12] . A very
comprehensive study of this probelm has recently
been carried out, on the basis of this method, which
is contained in a paper [13] that also discusses the
acoustic eigenfrequencies of impenetrable spheroids
obtained by the use of spheroidal functions . In this
study, the phase matching of external helical surface
waves has been invoked as an explanation for the
finite-cylinder eigenfrequencies, and for their splitting
into components corresponding to different values of
the azimuthal quantum number m (the latter being a
measure for the pitch angles of the helical waves,
which due to the finite cylinder length form a discrete
set) . As to the excitation of helical surface waves by
incident sound, if was found [6,13] that this takes
place in a refractive way, the helical pitch angle being
different from the indident angle . Experiments on
the scattering of obliquely incident sound by elastic
cylinders have recently been initiated [14] .

2. Internat helical waves
A fluid cylinder in vacuo, of radius a and length L
admits an internat acoustic field (wave vector k, with
k = w/c) :
(2 .1)

where :
(2 .2 a)

	

K2=k2 -k,2 1

p(r)=J,,,(Kr)eti4ape iik ~Z,
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the single-valuedness condition under cp --1• (p+21t
gives :
(2 .2b)

	

Ic,=m/a,

	

m=1, 2, . . .,
and the boundary condition at the end faces leads to :
(2 .2 c)

	

k Z =j n/L,

	

j =l, 2, . . .
The Dirichlet boundary condition at r =a gives :
(2 .2d)

	

K=xmn /a,

	

n=1, 2, . . .,

where xmn is the n-th zero of J m (x) . [The Neumann
condition for a fluid cylinder in a rigid enclosure
would lead to the zero of J '„ (x) .] Inserted in
equation (2 .2 a), this gives the eigenvalues kmnj of k .
We now introduce a tangential wave vector k, of the
surface field, with :
(2 .3)

	

kZ =k~ +kZ,

which describes the propagation of helical surface
waves. The conditions (2 .2 b) and (2 . 2 c) then repre-
sent the phase matching of such waves after circumna-
vigating the cylinder, and/or getting reflected from
the end faces. Equations (2 .2 b), (2 . 2 c) inserted in
equation (2 . 3) furnish eigenvalues (k,)",j .
The helical-wave phase velocities cs =w/k, can be
obtained from c,/c=k/k, at the discrete points (reso-
nance frequencies) where phase matching is satisfied : .

(2 .4) (Cs/C)nmj = {[xmn+(1r) 2 (a/L) 2 ]/

[m 2 + n) 2 (a/L)2]}1/2 .

Note that these correspond to helical waves of pitch
angle a with the z-axis, tan a=k1,/k 2 , which due to
the finite length of the culinder assumes the discrete
values :
(2 .5)

	

tan amj = (m/j') (L/a) .

A given helical wave thus corresponds to a fixed ratio
m/j . For an infinite cylinder (L -> oo, j -> oo) e is
continuous .

Figure 2 . 1 shows how the discrete points of
equation (2 . 4), corresponding to the eigenfrequencies
of the cylinder, when connected according to
equation (2 . 5) furnish the dispersion curves of the
helical surface waves .

3. Refraction effect

For a cylinder in a medium helical waves can be
generated by an incident plane acoustic wave . If the
latter arrives at an angle -y with the z-axis so that
k y=k sin y, k==k cos y, the total field for an infinite
cylinder, given by equation (2.2 c) of reference [15],
gets modified to :

00

(3 . 1) p = 1 e1kZZ E (2- 5n o)i"{H (2)
(ky r)

2

	

n=0

+ S„ Hn11 (ky r)} cos n cp,
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Fig . 2 .1 . - Dispersion curves of internat helical surface waves
on a finite fluid cylinder in vacuo, of dimension 1 :1 (L = 2 a).

leading after application of the Watson transforma-
tion to the creeping-wave sum analogous to
equation (2 . 10c) of [15] :

m e , nv,/2

(3 .2) pe,v=71
e,'- z

r=1 sin lv 1

x S(R) H(1 ) (k y r) cos v, (cp-TC).

The phase factor (D 1 = k= z + cp Re v, shows that these
surface waves are helical, with wave fronts
a (p = - (ak Z/Re v1 ) z whose normals make an angle
cp l =tan -1 (Rev1/ak Z ) with the z-axis . This defines the
law of refraction :

(3 .3)

	

tan cp1 =g, tant',

	

g,=Re v l/ky a,

between incident direction r and helical-wave
direction P,. The phase velocity va"=ck/k 1 of the heli-
cal waves is :

(3 .4)

	

vpli=c/{(Rev 1/ka) 2 +cos2 -y} 1 / 2 ;

for the case of external waves on rigid or soft cylinders
where the asymptotic expansion of Franz [16] for
v, (k,, a) can be used, one has:

	 q, 	sine	 Y 2/s
(3 .5)

	

vil -c/
{ 1 + 2 .6 1 / 3

	

ka

	

+ . . . ,

where qi =1 .469 354, q1=3 .372134 . Including
higher terras, figure 3 . 1 shows vi" of helical waves at
y=0° and 45 ° , and the refraction angle cp 1 for y=45°,
for a soft cylinder .

4. Complex eigenfrequencies

The eigenfrequencies knmj for a cylinder in vacuo,
Section 3, are real since no radiation loss can occur.
We present figures showing examples of complex
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Fig. 4.1 . - Complex eigenfrequencies for a rigid spheroid
with serai-major axis b .

(crossed squares), degenerate in m, split into branches
non-degenerate in m for spheroids . Figure 4 .2 shows
the same for the magnetic eigenvibrations of a conduc-
ting cylinder of length L (the electromagnetic analo-
gue of an acoustically rigid cylinder) obtained with
the T-matrix method [11-13]. A phase-matching
model for surface waves has been developed here
[13] in order to show that the m-splitting of the
eigenfrequencies corresponds to helices of different
pitch angles .

Fig. 3 . 1. - Dispersion curves of externat helical surface gaves on
an infinite soit cylinder for y=90° (dashed) and 45° (solid), and
refraction angle p, at y=45° (right scale), plotted vs . k y ay

eigenfrequencies that correspond to the resonances,
due to phase matching, of external circumferential
waves on elongated objects .

Figure 4.1 shows the eigenfrequencies in the
complex kb plane of an acoustically rigid prolate sphe-
roid, for various axis ratios b/a as indicated (a being
the semiminor axis) . These were obtained [13] by
satisfying the boundary condition with spheroidal
wave functions . One notices that the sphere values

Fig . 4 .2 . - Complex magnetic eigenfrequencies
of a conducting cylinder of length L .

5. Cavities

Analogous results were obtained for infinite cylin-
drical cavities, using our general theory [2, 3] .
Figure 5 . 1 shows the eigenfrequencies in the complex
ky a plane for an empty cavity in aluminum, for both
compressional (p) and shear (s) type surface waves
(here, k is the dilatational, propagation constant) .
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Fig. 5 . 1 . - Eigenfrequencies in the complex ky a plane
for an empty cylindrical cavity in aluminum.

6. Conclusion

The complex eigenfrequencies of finite-length cylin-
ders show a splitting according to the azimuthal quan-
tum number m. They can be interpreted as the reso-
nances, due to phase matching, of helical surface
waves of different pitch angles. For infinite cylinders,
a continuum of pitch angles occurs . The helical sur-
face waves can be excited by incident acoustic waves,
and refraction takes place between the incident and
the surface wave directions . Recent experiments [14]
are now investigating these problems . Theoretically,
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there have also been geometrical investigations of
helical waves on cylinders [17] .

Portions of this work were supported by the Office
of Naval Research, the Army Research Office, the
Naval Surface Weapons Center, and the David Taylor
Ship Research and Development Center .
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