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SUMMARY
We consider storage media which consist of a number of write-once bit positions (wits) . A wit initially contains
a "0", that may be irreversibly overwritten with a "1" .
It was shown by Rivest and Shamir [5] that, by coding techniques one can reuse such a write-once memory
(wom) up to a very high rate. We present two new cyclic womcodes, based on PG (2,2) and PG (3,2) respectively,
which attain the RS-bound . These codes can be decoded with a decoding algorithm for Hamming codes. Some
other high-rate womcodes, derived from those above, are discussed .
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RÉSUMÉ
Nous considérons des mémoires constituées de positions permettant l'écriture irréversible d'un bit (wits) . Un wit
contient initialement un zéro, qui peut être définitivement transformé en un. Nous utilisons des techniques de codage
pour réutiliser ces mémoires à écriture unique avec un rendement élevé .
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1 . Introduction

We consider storage media which consist of a number
of write-once bit positions (wits) . A wit initially
contains a "0", that may be irreversibly overwritten
with a "1" . We call such a storage medium a "write-
once memory" or wom .
Examples of woms are punched cards or digital opti-
cal disks .
In their pioneering paper on this subject, Rivest and
Shamir [5] showed that it is possible to use a wom
several times, by using "womcodes" .
They gave many examples of womcodes, and show
that the "capacity" (defined later) of a womcode is
greater than the number of wits. They also derive
asymptotic results for this capacity .
The following coding scheme was their prime "motiva-
ting example" .
Example 1 . 1 : We write two times 2 bits in a memory
of 3 wits, as follows :

This scheme must be interpreted as follows :
The first time we receive a message x, we write r (x) .
Later, we will receive for the second time a message,
say y. If x =y we don't change the memory, if x*y
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we change the memory state to r' (y), by only chan-
ging 0's to 1's. Without coding, we would have to
use 4 wits .
Remark that after the second writing we lost the
information on the first message .

2. Notation

We call a coding scheme that uses n wits to represent
t times one out of v messages (i . e. write once and
change t - 1 times) a < v > t/n womcode. More generai,
with a < v l , v 2i . . . , vt >/n womcode the message in
the i'th generation can lie one of a set V, of vi
messages .
Such a womcode must have the following properties :
1. Each memory content that occurs must determine
uniquely the last received message, and
2. for each memory content x e { 0, 11" occuring in
the s'th generation (s < t) it must be possible to encode
all sequences of messages K+1, . • . , m t ), mi e V i,
such that x, :g x, 1< . . . < xt (componentwise) .
The womcode is determined by giving for all possible
memory states and new messages the new memory
state (update function [5]) .
w (< v t , v 2 , . . . , vt >) denotes the least n for which a
( v l, v 2 , . . . , vt i/n womcode exists, and, of course,
w(<v> t)=w (<v, v, . . ., v>) .
Rivest and Shamir [5] derive a lower bound for
w (< v > 1 ). This can be easily extended to a lower
bound for w (< v 1, v2 , . . . , v t i), see [4], which we
shall refer to as the RS-bound.
The capacity C and the rate R of a < u t , v 2 , . . . , vt >/n
womcode are defined as C :=1og (v 1 .v2	vt),
R: =C/n .
For example, the < 4 >2/3 womcode of example 1 . 1
has C=4 and R=1 .33 . . . (=1 .33 . . . bit per wit) .
The following two examples of womcodes are descri-
bed in [5] .
Example 2 . 1 : A < 5 > 3/5 cyclic womcode
(Rate= 1 .39 . . . ), constructed by D. Klarner .
Message 1 is represented by 10000 in the first genera-
tion, either 01001 or 00110 in the second, and one of
01111, 10110 or 11001 in the third generation .
Message i, 1 <= i <_ 5 is represented by a cyclic shift
over i-1 positions of the words for the first message
(since 5 is prime they are all distinct) .
Example 2 .2 : A < 7 >'/7 cyclic womcode
(rate =1 .60 . . . ), constructed by D. Leavitt, by exten-
ding the method of example 2 . 1 (to appear) .
We will present a new cyclic < 7 >'/7 womcode . The
first, second and fourth generations are equivalent to
these of Leavitt's code, but the thid generation is
different (private communication) . We will use a pro-
jective geometry PG (2, 2) or 2-(7, 3, 1) symmetric
block design (Steiner triple system) or Fano plane .
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Message x First writing
r (x)

Second writing
r' (x)

00 000 111
01 100 011
10 010 101
11 001 110



These are different names for the same object, descri-
bed in Figure 2 . 3 .

Fig. 2 .3 . - The Fano plane.

This picture should be interpreted as follows : The
plane consists of seven points (numbered 1, 2, . . ., 7)
and seven lins, each containing three points (the six
lines together with the circle in Figure 2 . 3) . Remark
that any pair of points is on exactly one fine, and
any two lines intersect in exactly one point.

With the enumeration as in Figure 2 . 3, the incidence
vectors of lines with the points of the plane are the
cyclic shifts of 1101000 .
In what follows, we shall identify the seven points of
the plane with the wits of a seven-wit memory.

As a consequence, every memory content can be identi-
fied with a configuration of points in the plane (i . e .
the points for which the corresponding wit contains
a 1) .

3. A < 7 >'/7 womcode

The < 7 >'/7 womcode which we propose is described
in terms of configurations of points in the Fano plane
in Figure 3 . 1 below.

generation Ouater

	

configurations

1
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3
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o

o
o

Fig . 3 . 1 . - A description of a < 7)°/7 womcode.
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o

o

(a point)

(two points)

(a line and a point)

(a plane with one
or two points missing)
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Figure 3 . 1 should be interpreted as follows : possible
memory states of the womcode are described by their
corresponding configurations [The encircled points in
(3 . 1)] . Since there are seven messages, they are identi-
fied with the seven points in the Fano plane. For
each configuration the message (point) represented is
indicated by an arrow .
Using the properties of the Fano plane given after
(2 . 3) it is easy to check that Figure 3 . 1 describes
indeed a < 7 >'/7 womcode :
1. Each memory state determines uniquely a message
point, and
2. For each configuration in generation i, and for
each message point received, it is possible, by adding
one or two points, to find a configuration in genera-
tion i+1 representing the received message point .
(NB: if the same message is received twice, the
memory state is not changed .)

Example 3 . 2: Suppose we receive the message
sequence 2, 5, 3, 7. Using the womcode of (3 . 1),
we obtain the following sequence of configurations
representing them:

Corresponding to the sequence of memory contents
0100000, 0110000, 1111000, 1111110 .

DECODING

For the decoding, we use the fact that the codewords
of the [7, 4] binary perfect Hamming code are all the
linear combinations modulo 2 of the lins of the Fano
plane (see, for instance [3]) . So the code words are
0', lines, symmetric differences of two lins, and the
whole plane . Configurations of the womcode in (3 . 1)
are never Hamming codeword, so they are at Ham-
ming distance 1 from exactly one Hamming code
word. Moreover, by inspection of (3 . 1) we sec that
this Hamming codeword is obtained by adding
(mod 2) the message point to the configuration . So,
if we denote the memory content as a Hamming
codeword, the error vector yields exactly the message
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(i . e . using syndrome decoding, each message corres-
ponds with one of the seven possible non-zero syndro-
mes) .

4. More womcodes from projective geometries

Example 4 . 1 : Consider the projective geometry
PG (3, 2) . It contains 15 points, 35 lines of 3 points
and 15 Fano planes of 7 points .
The [15, 11] Hamming code can be seen as the collec-
tion of all linear combinations mod 2 of lins in
PG (3, 2) .
Now the approach of sections 3 can be generalised :
it is possible to construct a < 15 >'/15 womcode which
can be "decoded" by the method described in
section 3, i . e . the message represented by each
memory state in the womcode is just ils Hamming
code error, and is obtained by computing the syn-
drome (see [4] for details) .
Example 4 . 2: Fix a line in the Fano plane. The
configurations of the first two generations in (3 . 1),
restricted to those on this line, describe a < 3 > 2/3
womcode. Since a line is a PG (1, 2), this womcode
could be considered as the first code of a class of
womcodes, based on PG (n, 2), all having the pro-
perty that they can be denoted with syndrome deco-
ding for the Hamming code. Of course, the second
code of this class is the code in section 3, the third is
(4 . 1) . These three codes are optimal in the sense that
w(<3>2)>_3, w(<3>3)>_4, w(< 7 >4)>7,
w(<7>5)>_8, w(<15> 7)>_15, w(<15>')>_16, all by
the RS-bound .
The next code in this class is a < 31 >731 womcode .
The

	

RS-bound

	

yields

	

w (< 31 >14) >_ 31,
w (< 31 >15) >_ 32. We have constructed a < 31 > 10/31
womcode, so that some sequences of length 11 cannot
be encoded . However, we think that by further selec-
tion of the configurations it is possible to construct
at least a < 31 > 12/31 womcode .
An important feature of the codes described is that
messages correspond to a coset of a linear error-
correcting code with (n-k) x n parity check matrix
H .
Encoding a new message m in a memory with state
x c { 0, 1 }n is equivalent to finding a y e { 0, 1 }" such
that m =y . HT and y >_ x, componentwise . This is also
described in [2], together with a dynamic program-
ming algorithm for finding a y with minimal weight .
However, other constraints for y than having minimal
weight, can be posed, such as "y must be one of the
configurations of (3 . 1)" .
In [4] some constraints are described to construct
< 2n-k _ l > t/2n-k - l womcodes based on the corres-
ponding Hamming codes.
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For some of these constraints the exact value of t is
determined .
If turns out that, using only the minimal weight
constraint, does not always (and probably only for
n = 3 or n = 7) yield the maximal t.

5. Extensions

For more details of these extensions, see [4] .

Extension 5 . 1 : Consider again the code of (4 .2) . If
we allow a 4-th message, represented by the empty
set and the whole line, in the first resp. second genera-
tion, a < 4 > 2/3 womcode is obtained . This is the
womcode of example 1 . 1 .
Extension 5 .2: Consider the code of section 3 . If, in
the first, third and fourth generation, we allow an
cighth message, represented by the empty set, a line
or the whole plane respectively, we obtain a
< 8, 7, 8, 8 )/7 womcode (rate is 1 .69 . . .) .
Extension 5 . 3: Adding to the configurations in the
third generation all those consisting of three non-
colinear points, it is possible to represent three more
messages, giving an < 8, 7, 11, 8 >17 womcode (rate is
1 .75 . . .) . 11 is best possible here .
Extension 5 . 4 : By extending the memory of the code
of section 3, respectively example 4 . 1 with one wit, it
is possible to construct an < 8, 14, 11, 8 >/8 (rate is
1 .66 . . .) and a < 16 >'/16 (rate is 1 .75 . . .) womcode,
respectively.

Conclusion

We have considered memories (woms) which consist
of a number of Write-Once bit positions (wits) .
Using projective geometries, we have constructed
codes, which make it possible to use these woms
several times .
It turned out that the message, represented by the
memory-content, can be seen as the syndrome of the
binary Hamming code.
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