Digital Hardware Acceleration for Neural Networks: Energy Constraints and Performance

Grenoble Alpes

UGA

Frédéric Pétrot Univ. Grenoble Alpes, CNRS, Grenoble INP*, Ensimag , F-38000 Grenoble, France tima.imag.fr/sls/people/petrot Multidisciplinary Institute In Artificial Intelligence frederic.petrot@univ-grenoble-alpes.fr

*Institute of Engineering Univ. Grenoble Alpes

Walking in the wild

Yesterday!

Peyresq 2022

Walking in the wild

What you escaped!

Sarcenas 2013

Breaking news: Computers actually need energy!

- Power consumption primer
- Orders of magnitude

Hardware Accelerated AI^H^H ML^H^H NN

- DNN as seen by HW guys
- What is HW by the way and why use it?
- Ways to "enhance" NN computations
- Architecture Zoo
- SW frameworks

Electronic Devices and Power Consumption

Current Computer Technology

- Modern electronic: semi-conductor based devices
- Digital computations based on (nano-)electronic devices working in base two Blnary digIT : {0, 1} (a.k.a bit)
- Device = CMOS transistor used as a switch

CMOS transistor ≠ ideal switch

Second order model with parasitics:

- C_{in} : grid capacitance, R_{in} : input resistance $\rightsquigarrow \infty$
- ▶ R_{on} : resistance when closed R_{off} : resistance when open $\rightsquigarrow \infty$
 - causes of non-instantaneous transitions

Charging a capacitance through a resistance:

$$V_{out} = V_{dd} \times (1 - e^{\frac{-t}{RC}})$$

Discharging a capacitance through a resistance: $V_{out} = V_{dd} \times (e^{\frac{-t}{RC}})$

Power consumption: $P \propto CV^2 f$

Complementary Metal Oxyde Semiconductor

Why CMOS?

Very small dimensions

Mass production smallest transistor width in 2021/2022 : 5 nm

- TSMC Apple A14/A15, Huawei Mate 40, HiSilicon Kirin 9000 -: 173 MTr/mm² Apple M1 (16 Mrds Trs): 134 MTrs/mm² actual transistor density
- Samsung Exynos, Snapdragon 8xx, Nvidia Hopper –: 127 MTr/mm²
- Intel is arriving, ...

Si atomic radius is $\approx 0.11~{\rm nm}$!

 $3\ \text{nm}$ production announced for 2022 (TSMC) / 2023 (Samsung, Intel)

Very high yield

- ▶ Boolean logic computation in $\leq 10 \times 10^{-12}$ seconds
- ▶ Power consumption $\leq 1 \times 10^{-15}$ joules / transition*
- \blacktriangleright Allows us to reason with zillions of 0 and 1

⇒ CMOS: hyper-hegemonic digital technology

 $^{^*1}$ joule is the energy provided by 1 watt during 1 second.

Where to place data

Order of magnitude for size and access time

Registers								
	1980		2020	2020 vs 1980				
T _{acc} (ns)	300		0.25	÷1200				
Typ. size (B)	64		256	×4				
Static memory								
	1980		2020	2020 vs 1980				
\$/MB	19,200		5	÷3840				
T _{acc} (ns)	300		1	÷300				
Typ. size (KB)	32		8192	×256				
Dynamic memory								
	1980		2020	2020 vs 1980				
\$/MB	8,800		0.003	÷2,930,000				
T _{acc} (ns)	375		30	÷12.5				
Typ. size (MB)	0.064		32,000	×500,000				
Hard drive		· · · ·						
Metrique	1980		2020	2020 vs 1980				
\$/MB	500		.000018	÷27,800,000				
T _{acc} (ms)	87		12	÷7				
Typ. size (GB)	0.001		8,000	×1,500,000				

Sources : https://jcmit.net/ and various (D/S)RAM vendors web sites

Orders of Magnitude

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Orders of Magnitude

b Hardware development

Orders of Magnitude

Quick Summary

Raw Power Consumption:

- CPUs: 100/150 Watt
- GPUs: 250/300 Watt

Training Example

NVidia MegatronLM

- Used 45 Tera Bytes of data
- On 512 V100 NVIDIA GPUs during 9 days
- ▶ $512 \times 300 \times 9 \times 24 = 33177 \text{ kWh}$

 $7\times$ the energy an average French family uses per year! (4590 kWh)

⇒ We ought to do better!

Carbon Emissions and Large Neural Network Training, David Patterson et al, https://arxiv.org/pdf/2104.10350.pdf

Biology vs Electronics

The Brain: the Ultimate Autonomous System

- 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts (max physical activity: 500 Watts)
- \blacktriangleright 86 $imes 10^9$ neurons, $pprox 10^{12}$ synapses

Biology vs Electronics

The Brain: the Ultimate Autonomous System

- 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts (max physical activity: 500 Watts)
- \blacktriangleright 86 $imes 10^9$ neurons, $pprox 10^{12}$ synapses

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Biology vs Electronics

The Brain: the Ultimate Autonomous System

- 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts (max physical activity: 500 Watts)
- \blacktriangleright 86 $imes 10^9$ neurons, $pprox 10^{12}$ synapses

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Human Brain Project (EU Flagship)

- 16,000 neurons per 1 Watt chip
- ► 5.375 MW/brain (Bugey-1 Nuclear Power Plant: 540 MW, ≈100 brains)
- ▶ ($1.2 \times 10^9 \in$ from Europe: ≈ 1.4 cent of \notin /neuron)

What AI do we really need?

What AI do we really need?

Artificial Neural Nets: Multi-Layer Perceptrons (late 1950's)

Two phases :

Training and Inference

- Elementary computations conceptually very simple
- Parameters: Weigths and Biases
 - ⇒ "Found" during training
 - \Rightarrow "Used" during inference
- Available computing power limits training

Artificial Neural Nets: Convolutional NN (Mid 2010's)

- Concat
- Dropout
- Fully connected Softmax

Another view of GoogLeNet's architecture.

- Same elementary operations, just repeated zillions times
- Additional inter-layer operations, still quite simple
- Training possible thanks to compute farms

Neuron Computation Sketched

Conv2D (naïve) software implementation in C

```
void conv2d(int in_channels, int out_channels,
            int img_size, int kernel_size,
            float input[img size][img size][in channels],
            float kernel[out_channels][kernel_size][kernel_size][in_channels],
            float bias[out channels],
            float output[img size - 2 * (kernel size / 2) + !(kernel size & 1)]
                          [img size -2 * (\text{kernel size } / 2) + !(\text{kernel size } \& 1)]
                          [out channels])
ſ
    int fm_size = img_size - 2 * (kernel_size / 2) + !(kernel_size & 1);
    for (int k = 0: k < fm size: k++)
        for (int 1 = 0; 1 < fm size; 1++)
            for (int o = 0; o < out channels; o^{++}) {
                float mac = 0:
                for (int m = 0; m < kernel size; m++)</pre>
                     for (int n = 0; n < kernel_size; n++)</pre>
                         for (int i = 0; i < in_channels; i++)</pre>
                             mac += kernel[o][m][n][i] * input[k + m][l + n][i];
                output[k][l][o] = activation(mac + bias[o]);
            }
}
```

conv2d:		shrq	\$2, %rsi	movq	208(%rsp), %rax	leaq	(%rdi,%rax,4), %rsi	addq	%rdi, %r15	addss	(%rbx), %xmm1
. LFB0 :		shrq	\$2, %r15	movq	%rax, 64(%rsp)	xorl	%eax, %eax	movss	(%r10,%r15,4), %xmm0	addq	\$4, %rbx
pushq	%r15	movq	%rsi, 32(%rsp)	.L16:		.p2alig	n 4,,10	mulss	(%r11,%rsi,4), %xmm0	cvtss2s	sd %xmm1, %xmm0
movl	%esi, %eax	testl	%eax, %eax	movl	16(%rsp), %eax	.p2alig	n 3	addss	%xmm0, %xmm1	call	relu@PLT
movslq	%edx, %rsi	jle	.L1	testl	%eax, %eax	.L6:		cmpl	%eax, %r13d	pxor	%xmmO, %xmmO
pushq	%r14	movslq	%ebx, %rdx	jle	.L19	movups	(%rsi,%rax), %xmm0	jle	.L10	movq	104(%rsp), %rdi
movl	%edi, %r14d	subl	\$1, %eax	movq	136(%rsp), %rax	movups	(%rcx,%rax), %xmm3	cltq		cvtsi2	ssl %eax, %xmm0
movslq	%ecx, %rdi	movq	216(%rsp), %rbx	movq	80(%rsp), %rbx	addq	\$16, %rax	addq	%rax, %rdx	movq	72(%rsp), %rax
pushq	%r13	movl	%r14d, %r13d	pxor	%xmm1, %xmm1	mulps	%xmm3, %xmm0	addq	%r9, %rax	addq	%rdi, 80(%rsp)
movslq	%r14d, %rcx	imulq	%rdi, %rdx	movq	\$0, 40(%rsp)	addss	%xmmO, %xmm1	addq	%rdi, %rax	movq	%rbx, 64(%rsp)
pushq	%r12	movl	\$0, 56(%rsp)	movl	\$0, 28(%rsp)	movaps	%xmm0, %xmm2	movss	(%r11,%rdx,4), %xmm0	addq	\$4, %rax
imulq	%rcx, %rsi	andl	\$-4, %r13d	leaq	(%rax,%rbx,4), %r10	shufps	\$85, %xmm0, %xmm2	mulss	(%r10,%rax,4), %xmm0	movss	%xmm0, -4(%rax)
leaq	0(,%rcx,4), %r15	movq	%rbx, 96(%rsp)	movl	28(%rsp), %eax	addss	%xmm1, %xmm2	addss	%xmm0, %xmm1	movq	%rax, 72(%rsp)
pushq	%rbp	movq	208(%rsp), %rbx	.p2alig	n 4,,10	movaps	%xmmO, %xmm1	.L10:		cmpq	120(%rsp), %rbx
imulq	%rdi, %rcx	movl	%r13d, %ebp	.p2alig	n 3	unpckhp	s %xmm0, %xmm1	leal	1(%r8), %eax	jne	.L16
pushq	%rbx	leaq	4(%rbx,%rax,4),	%rax .L14:		shufps	\$255, %xmm0, %xmm0	addq	(%rsp), %rcx	addl	\$1, 20(%rsp)
movq	%rdi, %rbx	movq	%rdx, 128(%rsp)	movl	56(%rsp), %ebx	addss	%xmm2, %xmm1	cmpl	%eax, 16(%rsp)	movq	112(%rsp), %rdi
subq	\$152, %rsp	movq	%rax, 120(%rsp)	movq	8(%rsp), %rdi	addss	%xmmO, %xmm1	je	.L8	movl	20(%rsp), %eax
movl	%edi, 16(%rsp)	leal	-1(%r14), %eax	movslq	%eax, %r9	cmpq	%r14, %rax	movl	%eax, %r8d	addq	%rdi, 88(%rsp)
imulq	%rcx, %rdi	movl	%eax, 24(%rsp)	xorl	%r8d, %r8d	jne	.L6	jmp	.L12	cmpl	%eax, 60(%rsp)
movq	%rsi, 48(%rsp)	movl	%r14d, %eax	imulq	32(%rsp), %r9	movl	%r12d, %eax	.p2alig	n 410	jne	.L17
leag	0(,%rcx,4), %rsi	shrl	\$2, %eax	addl	%eax, %ebx	cmpl	%r12d, %r13d	.p2alig	n 3	movl	%r12d, %eax
movslq	%eax, %rcx	subl	\$1, %eax	movslq	%ebx, %rbx	je	.L10	.L8:		addl	\$1, 56(%rsp)
movq	%r8, 8(%rsp)	addq	\$1, %rax	imulq	48(%rsp), %rbx	.L5:		movl	28(%rsp), %ebx	movq	128(%rsp), %rdi
movq	%rdi, 104(%rsp)	salq	\$4. %rax	leag	(%rdi,%rbx,4), %r11	movslq	%r8d, %rdi	movq	32(%rsp), %rcx	movq	%rbp, %r12
leaq	0(,%rcx,4), %rdi	movq	%rax, %r12	movq	40(%rsp), %rdi	imulq	%rbp, %rdx	addq	%rcx, 40(%rsp)	addq	%rdi, 96(%rsp)
movl	%ebx, %ecx	movl	%r14d, %eax	leag	(%r10,%rdi,4), %rcx	movslq	%eax, %rsi	leal	1(%rbx), %eax	movl	%eax, %ebp
shrl	\$31, %ecx	movl	%eax, %r13d	.p2alig	n 4,,10	imulq	%rbp, %rdi	cmpl	%r8d, %ebx	movl	56(%rsp), %eax
movq	%r9, 136(%rsp)	movq	%r12, %r14	.p2alig	n 3	leaq	(%rsi,%r9), %r15	je	.L11	cmpl	%eax, 60(%rsp)
addl	%ebx, %ecx	movq	%r15, %r12	.L12:		addq	%rdx, %rsi	movl	%eax, 28(%rsp)	jne	.L4
notl	%ebx	. L4 :		testl	%r13d, %r13d	addq	%rdi, %r15	jmp	.L14	.L1:	
movq	%r15, (%rsp)	movq	96(%rsp), %rax	jle	.L10	movss	(%r10,%r15,4), %xmm0	.L18:		addq	\$152, %rsp
andl	\$-2, %ecx	movl	\$0, 20(%rsp)	movl	20(%rsp), %eax	mulss	(%r11,%rsi,4), %xmm0	xorl	%eax, %eax	popq	%rbx
movq	%rdi, 112(%rsp)	movq	%rax, 88(%rsp)	cmpl	\$2, 24(%rsp)	leal	1(%rax), %esi	movslq	%edx, %rdx	popq	%rbp
subl	%ecx, %edx	movl	%ebp, %eax	leal	(%r8,%rax), %edx	addss	%xmmO, %xmm1	jmp	.L5	popq	%r12
movl	%ebx, %ecx	movq	%r12, %rbp	jbe	.L18	cmpl	%esi, %r13d	.L19:		popq	%r13
andl	\$1, %ecx	movl	%eax, %r12d	movslq	%edx, %rdx	jle	.L10	pxor	%xmm1, %xmm1	popq	%r14
leal	(%rdx,%rcx), %ebx	.L17:		movq	8(%rsp), %rdi	movslq	%esi, %rsi	.L11:		popq	%r15
movl	%ebx, 60(%rsp)	movq	\$0, 80(%rsp)	movq	%rdx, %rax	addl	\$2, %eax	movq	64(%rsp), %rbx	ret	
testl	%ebx, %ebx	movq	88(%rsp), %rax	imulq	%rbp, %rax	leaq	(%rsi,%r9), %r15	pxor	%xmm0, %xmm0		
jle	.L1	movq	%rax, 72(%rsp)	addq	%rbx, %rax	addq	%rdx, %rsi	movl	\$1, %eax		

Implementation matters!

Total									
	Energy (J)			Time (ms)			Mb		
(c) C	1.00		(c) C	1.00		(c) Pascal	1.00		
(c) Rust	1.03		(c) Rust	1.04		(c) Go	1.05		
(c) C++	1.34		(c) C++	1.56		(c) C	1.17		
(c) Ada	1.70		(c) Ada	1.85		(c) Fortran	1.24		
(v) Java	1.98		(v) Java	1.89		(c) C++	1.34		
(c) Pascal	2.14		(c) Chapel	2.14		(c) Ada	1.47		
(c) Chapel	2.18		(c) Go	2.83		(c) Rust	1.54		
(v) Lisp	2.27		(c) Pascal	3.02		(v) Lisp	1.92		
(c) Ocaml	2.40		(c) Ocaml	3.09		(c) Haskell	2.45		
(c) Fortran	2.52		(v) C#	3.14		(i) PHP	2.57		
(c) Swift	2.79		(v) Lisp	3.40		(c) Swift	2.71		
(c) Haskell	3.10		(c) Haskell	3.55		(i) Python	2.80		
(v) C#	3.14		(c) Swift	4.20		(c) Ocaml	2.82		
(c) Go	3.23		(c) Fortran	4.20		(v) C#	2.85		
(i) Dart	3.83		(v) F#	6.30		(i) Hack	3.34		
(v) F#	4.13		(i) JavaScript	6.52		(v) Racket	3.52		
(i) JavaScript	4.45		(i) Dart	6.67		(i) Ruby	3.97		
(v) Racket	7.91		(v) Racket	11.27		(c) Chapel	4.00		
(i) TypeScript	21.50		(i) Hack	26.99		(v) F#	4.25		
(i) Hack	24.02		(i) PHP	27.64		(i) JavaScript	4.59		
(i) PHP	29.30		(v) Erlang	36.71		(i) TypeScript	4.69		
(v) Erlang	42.23		(i) Jruby	43.44		(v) Java	6.01		
(i) Lua	45.98		(i) TypeScript	46.20		(i) Perl	6.62		
(i) Jruby	46.54		(i) Ruby	59.34		(i) Lua	6.72		
(i) Ruby	69.91		(i) Perl	65.79		(v) Erlang	7.20		
(i) Python	75.88		(i) Python	71.90		(i) Dart	8.64		
(i) Perl	79.58		(i) Lua	82.91		(i) Jruby	19.84		

Table 4: Normalized global results for Energy, Time, and Memory

Pereira, Rui, et al. "Ranking programming languages by energy efficiency." Science of Computer Programming 205 (2021): 102609.

CNN Models: Accuracy, Operations and Parameters

A. Canziani, E. Culurciello, A. Paszke, "An Analysis of Deep Neural Network Models for Practical Applications", 2018 (EfficientNet-B0/B7 added by myself) https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

Hardware Accelerated Neural Network

What's the interest?

Microsoft Azure Machine Learning Documentation

What's the interest?

Parallel Processing in GPUs and FPGAs

A GPU is effective at processing the <u>same set of operations</u> in parallel – single instruction, multiple data (SIMD). A GPU has a well-defined instruction-set, and fixed word sizes – for example single, double, or half-precision integer and floating point values.

An FPGA is effective at processing the <u>same or different operations</u> in parallel – multiple instructions, multiple data (MIMD). An FPGA does not have a predefined instruction-set, or a fixed data width.

Amazon Web Service Documentation

Hardware Accelerated Neural Network

What's the interest?

E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, D. Marr, Intel Labs

What's the interest?

Optimize server side AI

- Energy Minimize TCO for AI workloads
 Greener AI for social
 acceptance
- Throughput
 Enhance job throughput at constant energy budget

Local computation possible!

Energy

No router, cloud server, ...

- ⇒ Huge constraint in Edge Computing
- ⇒ Worse in IoT
- ⇒ Transmitting data costs energy
- Latency

Immediate response, no dead zone, no network reliability issue, ...

 Privacy/security No storage in someone else's servers Neither wire nor wireless sniffing possible

What are the constraints?

- Accuracy needs depend on the application
- Silicon resources:
 - \Rightarrow Computations to perform
 - \Rightarrow Parameters storage and access
- Energy efficiency
 Typical constraints :
 - 10-100 μW for wearables,
 - 10-100 mW for phones,
 - 1-10 W for plugged edge devices
 - 100-1000 W for plugged cloud devices

Ad-hoc hardware means:

- ANN HW/SW partitioning
- Clever SW scheduling
- Clever SW data handling

Burden on SW implementation:

- Compilation Frameworks needed!
- No "one-size fits all" network

Inference involves a lot of computations, ...

 High number of floating point (FP) operations

 $0.5G \le Nb \text{ of FLOPs} \le 40G$

 Floating point operations are energy and area costly

(My 4 core-i7 PC ~120 GFLOPs \Rightarrow 30 GFLOPs/core)

"Hardware Architectures for Deep Neural Networks", ISCA Tutorial, 2017

Inference involves a lot of memory accesses, ...

Operation:	Energy (pJ)	R	elativ	e En	ergy C	Cost
32b SRAM Read (8KB)	5					
32b DRAM Read	640					
		1	10	10 ²	10 ³	104

"Hardware Architectures for DNN", ISCA Tutorial, 2017

- Memory stores millions of (64 or 32-bit) weights
 - \Rightarrow 4M (GoogLeNet), 60M (AlexNet), 130M (VGG)
- Memory access becomes the bottleneck
 ⇒ Each op needs 2 operands and produces a result
- > An "elevated" power consumption is involved

Coping with GFLOPs and GBytes

Alternatives: trade FLOPs for (some) accuracy loss

Simplify the operations

- Avoid sigmoid, tanh, sqrt and stuff
- FP arithmetic is not really HW friendly

Alternatives: trade bytes for (some) accuracy loss

 Use "small" data types, not 32/64-bit floats or ints

Alternatives: re-architect the "system"

 Integrate many memory cuts with processing elements and use them wisely

Coping with GFLOPs and GBytes

Alternatives: trade FLOPs for (some) accuracy loss

Simplify the operations

- Avoid sigmoid, tanh, sqrt and stuff
- FP arithmetic is not really HW friendly

Alternatives: trade bytes for (some) accuracy loss

 Use "small" data types, not 32/64-bit floats or ints

Alternatives: re-architect the "system"

 Integrate many memory cuts with processing elements and use them wisely

Introduction of a new floating point representation (mainly needed for *training*): Google bfloat16 ("b" for brain)

Used for both weights and activations

- Large dynamic range, still small differences close to zero
- Reduction of multiplier power and footprint
- Optimized storage and bandwidth

Quickly adopted and implemented in HW and SW

- Google TPU v2/v3, TensorFlow
- Intel Nervana, Intel Quartus FPGAs
- CPUs: Intel Xeon (AVX-512), ARMv8.6-A, IBM Power10 Supported from gcc 10.1 on

Using smaller floats!

Microsoft BrainWave project:

FPGA Performance vs. Data Type

Exploit weight sparsity to optimize memory usage and weight placement Use low precision/high efficiency computation along with on-chip memory storage of the weights Integrate computation inside the memory itself, directly where the data is stored

Exploit weight sparsity to optimize memory usage and weight placement Use low precision/high efficiency computation along with on-chip memory storage of the weights Integrate computation inside the memory itself, directly where the data is stored Not within the scope of this

presentation

Quantization levels and accuracy...

Kees Vissers, "A Framework for Reduced Precision Neural Networks on FPGAs", MPSOC, 2017

Quantization aware training: a bit of literature

"Less bit per weights and activations"

- "Deep compression", 2016, NVIDIA and Stanford Quantize only weights, to 5-bit, > 5000 cites
- "XNOR-net", 2016, Allen Al and U. Washington Binary CNNs, 1-bit, > 3000 cites
- "Binarized neural networks", 2016, Univ. Montréal Binary weights and activations, 1-bit, ~ 3000 cites
- "DoReFa-net", 2018, Megvii
 Framework for "Quantization Aware Training", n-bit, > 1000 cites

Frameworks

- Tensorflow tflite, qkeras
- Pytorch quantization API
- Larq binary only

• ...

≥ 8-bit ⇒ Post-Training
 Quantization Ok
 < 8-bit ⇒ Quantization
 Aware Training required

Quantization

```
Post-training guantization example:
# https://www.tensorflow.org/lite/performance/post training integer quant
def representative_data_gen():
 for input_value in tf.data.Dataset.from_tensor_slices(train_i).batch(1).take(100):
   vield [input value]
converter = tf.lite.TFLiteConverter.from_keras_model(nn_model)
# Get float model for later (comparison, mainly)
tflite model = converter.convert()
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_data_gen
# Ensure that if any ops can't be quantized, the converter throws an error
converter.target spec.supported ops = [tf.lite.OpsSet.TFLITE BUILTINS INT8]
# Set the input and output tensors to uint8 (APIs added in r2.3)
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model_quant = converter.convert()
```

tf.lite.Interpreter(model_content=tflite_model_quant)

Custom hardware for sparse matrix-vector multiplication

Deep Compression Technique

Reduces storage requirements

- Dedicated sparse matrix/vector representation GPU Dense
 - \Rightarrow Eliminates redundant connections
- Quantizes weights down to 5 bits

Quantization of AlexNet weights

- ▶ 256 shared weights (Conv layers) ⇒ 4 bits
- ▶ $35x \text{ of reduction (240MB} \Rightarrow 6.9MB)$

Weights stored into on-chip SRAM

⇒ 5 pJ/access (vs. 640 pJ/access off-chip DRAM)

600 mW for Alexnet Fu Connected layers

Acceleration using Low-Precision (ternary) weights

Only balanced ternary weight are used $\{-1, 0, +1\}$

- Floating point accumulations are kept
- Multipliers are not needed

Most of the FP operations operate on zero values

Non-Zero Fraction

Demonstrated highest accuracy

⇒ 93% on the ImageNet object classification challenge

 \Rightarrow Divide by 3 the number of FP operations

YodaNN: VLSI Implementation of binary-weights CNN Accelerator

Based on BinaryConnect [Courbariaux, NeurIPS 2015]

- ▶ Binary weights $\in \{-1, +1\}$
- 2's complement and multiplexers instead of multipliers
- Still full fledge adders: 12-bit activations

Large on-chip weights storage thanks to their size

Latch-based standard cell memory

Flexible accelerator

- 7 kernel sizes supported
- \Rightarrow 61.2 TOP/s/W at 0.6V

Google Edge Tensor Processor Unit

	V I	V2	v 3
Clock Frequency (MHz)	800	1066	1066
# of (X, Y)-PEs	(4, 4)	(4, 4)	(4, 1)
PE Memory	2 MB	384 KB	2 MB
# of Cores per PE	4	1	8
Core Memory	32 KB	32 KB	8 KB
# of Compute Lanes	64	64	32
Instruction Memory	16384	16384	16384
Parameter Memory	16384	8192	8192
Activation Memory	1024	1024	1024
I/O Bandwidth (GB/s)	17	32	32
Peak TOPS	26.2	8.73	8.73

Comes for free in Tensorflow lite

Yazdanbakhsh et al., "An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks", Google, 2021

Greenwaves GAP9

- 330 μW/GOp
- Up to 15.6 GOPs and 32.2 GMACs
- 8, 4, 2-bit SIMD computations
- Support from ML frameworks
- (RISC-V based)

Kalray MPPA3 Tensor Coprocessor

- Extend VLIW core ISA with extra issue lanes
 - \Rightarrow Separate 48x 256-bit wide vector register file
 - ⇒ Matrix-oriented arithmetic operations
- ► Full integration into core instruction pipeline
 ⇒ Move instructions supporting matrix-transpose
 - \Rightarrow Proper dependency / cancel management
- ► Leverage MPPA memory hierarchy
 ⇒ SMEM directly accessible from coprocessor
 ⇒ Memory load stream aligment operations
- Arithmetic performances
 - \Rightarrow 128x INT8 \rightarrow INT32 MAC/cycle
 - \Rightarrow 64x INT16 \rightarrow INT64 MAC/cycle
 - \Rightarrow 16x FP16 \rightarrow FP32 FMA/cycle

Integration within learning frameworks?

Mobileye EyeQ5

- Vector Microcode Processors:
 CV dedicated VLIW SIMD engines
- Multithreaded Processing Cluster: in between CPU and GPU
- Programmable Macro Array: probably some sort of CGRA
- Full cache coherency!

10+ Watt, 24 Tops

Very ad-hoc programming approach (AFAIU)

www.mobileye.com/our-technology/evolution-eyeq-chip/

Synopsys ARC NPX6

DesignWare ARC NPX6 w/ 440 TOPS* Performance

- Scalable NPX6 architecture
 - 1 to 24 core NPU up to 96K MACS (440 TOPS*)
 - Multi-NPU support (up to eight for 3500 TOPS*)
- · Trusted software tools scale with the architecture
- Convolution accelerator MAC utilization improvements with emphasis on modern network structures, including Transformers
- Generic Tensor accelerator Flexible Activation & support of Tensor Operator Set Architecture (TOSA)
- Memory Hierarchy high bandwidth L1 and L2 memories
- DMA broadcast lowers external memory bandwidth requirements and improves latency
- * 1.3 GHz,5nm FFC worst case conditions using sparse EDSR model

Synopsys

Pierre Paulin, MPSoC, June 2022

© 2022 Synopsys, Inc. 40

30 TOPs/W in 5 nm

HW accelerated AI for less than \$100

- Google Coral: byte based matrix × matrix TPU, 2 Watt, 4 TOps
- NVIDIA Jetson Nano: float and int GPU (128-cores), 10 Watt, 472 GFlops
- Intel Neural Computing Stick 2: float VPU (128-bit VLIW vector (?) procs), 2 Watt, 4 TOps

Software support out-of-the-box by major "generic" frameworks

- Tensorflow[lite]
- Pytorch
- Or ad-hoc ones
 - OpenVino

...

FINN: Framework for building FPGA[†] accelerators

Mapping binarized neural networks to hardware All values $\in \{-1, +1\}$

- Binary input activation
- Binary synapse weights
- Binary output activation

Weights kept in on-chip memory

- ⇒ Zynq-7000 FPGA technology
- \Rightarrow 80.1% accuracy for CIFAR-10
- \Rightarrow Total system power 25W

Convolution layer

- Dot-product between input vector and row of synaptic weight matrix
- Compares result to a threshold
- Produces single-bit output

Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference", FPGA, 2017

[†]Field-Programmable Gate-Array: fine-grain reconfigurable hardware technology.

Ternary weights and ternary activations

FPGA Architecture for Ternary Neural Networks (TNN)

- Large-scale ternary CNN pipeline, VGG-like
- ▶ Neuron layer → memory (ternary weights) + neurons
- Ternarization layer \rightarrow ternary activations $\in \{-1, 0, +1\}$
- \Rightarrow Error rate 13.29% for CIFAR-10 (vs. 19.9% in FINN)
- ⇒ Virtex-7 FPGA technology (VC709, Laaaaaaarge FPGA)
- ⇒ Peak power 12 W, 1.62 TOP/s/W (vs 0.69 TOP/s/W in FINN)
- \Rightarrow Throughput > 60k fps

A. Prost-Boucle et al., "High-Efficiency Convolutional Ternary Neural Networks with Custom Adder Trees and Weight Compression", ACM TRETS, 2018

Sept 2021 Overview

Fig. 2. Peak performance vs. power scatter plot of publicly announced AI accelerators and processors.

A. Reuther et al., "AI Accelerator Survey and Trends", arXiv, 2021

From Python to boosted HW/SW execution

Motto: "Machine learning compiler frameworks for CPUs, GPUs, and machine learning accelerators aim to enable machine learning engineers to optimize and run computations efficiently on any hardware backend" Exchange format: ONNX Frameworks:

- Apache TVM
- Apple Core ML
- Facebook Glow
- Google XLA
- Microsoft DL Compiler and Optimizer

Operational today, but backends not simple to get into!

Mobile VIT (Apple, March 2022), https://arxiv.org/pdf/2110.02178.pdf

Model	# Params	FLOPs	Top-1 1	Infe		
		110104		iPhone12 - CPU	iPhone12 - Neural Engine	
MobileNetv2 DeIT PiT MobileViT (Ours)	3.5 M 5.7 M 4.9 M 2.3 M	0.3 G 1.3 G 0.7 G 0.7 G	73.3 72.2 73.0 74.8	7.50 ms 28.15 ms 24.03 ms 17.86 ms	0.92 ms 10.99 ms 10.56 ms 7.28 ms	CPU/NNE = 8.1X CPU/NNE = 2.5X
	0.7X Model Size	2.3X FLOPs	+1.5% Accuracy	2.4X Time	7.9X Time	

(Courtesy of Pierre Paulin, Synopsys)

Apple AI NPU not well suited to support Transformers, ... As all others, I'd say!

Classical digital (CMOS) architectures are here to stay

Design of more efficient HW for inference and training

- Ad-hoc circuits necessary for high-performance, low energy solutions
- Quantization
 - \Rightarrow Simpler arithmetic circuits
 - ⇒ Lower memory requirements
 - ⇒ Lower bandwidth requirements

But HW guys cannot do that alone!

- New quantization aware training needed
- Better understanding of learning needs
- HW accelerated low bit-width learning
- Frameworks to facilitate HW accelerator usage

