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ABOUT MYSELF

• Researcher at Inria (Lille Nord-Europe research center)

• Member of the Magnet team (Machine learning in information networks) on ML
in/with graphs and applications to NLP

• My current research topics:
• Privacy-preserving ML
• Federated ML
• Representation learning for speech and natural language processing
• Fairness in ML

• More details on my homepage
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OUTLINE OF THE COURSE

1. Context & Motivation

2. Differential Privacy

3. The Gaussian Mechanism

4. Differentially Private SGD

5. Introduction to Federated Learning

6. Differentially Private Federated Learning
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CONTEXT & MOTIVATION



PRIVACY

Ability of an individual
to seclude themselves or to withhold information about themselves

(“right to be let alone”)
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PRIVACY IN THE BIG DATA ERA

• Massive collection of personal data by companies and public organizations, driven
by the progress of data science and AI

• Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...

• It is sometimes shared unknowingly and without a clear understanding of the risks
• Risks include discrimination, blackmailing, unsolicited micro-targeting, public shaming...
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PRIVACY VERSUS UTILITY

• There is increasing regulation to address privacy-related harms for the collection,
use and release of personal data

• General regulations (e.g., adoption of GDPR by the EU in 2018)
• Sector- and context-specific regulations, e.g. in health, education, research, finance...

• Privacy has a cost on the utility of the analysis, but ideally it should not destroy it

• One of the main goals of privacy research is to find good trade-offs between utility
and privacy so we can better protect individuals and also unlock new applications
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PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals

(data subjects)

...

queries

answers
(ex: aggregate statistics,

machine learning model)

Algorithm

(ex: learning

algorithm)

Data users
(ex: government,

researchers,

companies,

or

adversary)

• Goal: achieve utility while preserving privacy (conflicting objectives!)

• This is separate from security concerns (e.g., unauthorized access to the system)

• Any ideas on how to do this?
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DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...
Ewen Jordan 1993-09-15 13741 M Asthma ...
Lea Yang 1999-11-07 13440 F Type-1 diabetes ...
William Weld 1945-07-31 02110 M Cancer ...
Clarice Mueller 1950-03-13 02061 F Cancer ...

• Anonymization: removing personally identifiable information before publishing data

• First solution: strip attributes that uniquely identify an individual (e.g., name, social
security number...)

• Now we cannot know that William Weld has cancer!

• Or can we?
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DATA “ANONYMIZATION” IS NOT SAFE

(Figure inspired from C. Palamidessi)

DATASET 1
anonymized
medical data

DATASET 2
public voters list

ZIP

Birth date

Gender

Name

   Date last voted

    Date registered

   Party affiliation

Address

Diagnosis

Visit date   

Medication     

Procedure   

Doctor seen

• Problem: susceptible to linkage attacks, i.e. uniquely linking a record in the
anonymized dataset to an identified record in a public dataset

• For instance, an estimated 87% of the US population is uniquely identified by the
combination of their gender, birthdate and zip code

• In the late 90s, L. Sweeney managed to re-identify the medical record of the governor
of Massachusetts using a public voters list 8



DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...

Ewen Jordan

1993-09-15 13741 M Asthma ...

Lea Yang

1999-11-07 13440 F Type-1 diabetes ...

William Weld

1945-07-31 02110 M Cancer ...

Clarice Mueller

1950-03-13 02061 F Cancer ...

• Second solution: k-anonymity [Sweeney, 2002]
1. Define a set of attributes as quasi-identifiers (QIs)
2. Suppress/generalize attributes and/or add dummy records to make every record in the

dataset indistinguishable from at least k− 1 other records with respect to QIs

• Better now?

• No! Can still infer that W. Weld has cancer (everyone in the group has cancer)
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DATA “ANONYMIZATION” IS NOT SAFE
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DATA “ANONYMIZATION” IS NOT SAFE

• Variants of k-anonymity (t-closeness, ℓ-diversity) try to address the previous issue
but require to modify the original data even more, which often destroys utility

• In high-dimensional and sparse datasets, any combination of attributes is a
potential PII that can be exploited using appropriate auxiliary knowledge

• De-anonymization of Netflix dataset protected with k-anonymity using a few public
ratings from IMDB [Narayanan and Shmatikov, 2008]

• De-anonymization of Twitter graph using Flickr [Narayanan and Shmatikov, 2009]
• 4 spatio-temporal points uniquely identify most people [de Montjoye et al., 2013]

• Conclusion: data cannot be fully anonymized AND remain useful
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AGGREGATE STATISTICS ARE NOT SAFE

• How about releasing aggregate statistics about many individuals?

• Problem 1: differencing attacks, i.e. combining aggregate queries to obtain precise
information about specific individuals (note: this can be hard to detect)

• Average salary in a company before and after an employee joins

• Problem 2: membership inference attacks, i.e. inferring presence of known individual
in a dataset from (high-dimensional) aggregate statistics

• Statistics about genomic variants [Homer et al., 2008]

• Problem 3: reconstruction attacks, i.e. inferring (part of) the dataset from the output
of many aggregate queries

• See this short video for an overview of the classic attack of [Dinur and Nissim, 2003]
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ML MODELS ARE NOT SAFE

• ML models are elaborate kinds of aggregate statistics!

• As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

• For instance, one can exploit the confidence in model predictions [Shokri et al., 2017]
[Carlini et al., 2022]
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ML MODELS ARE NOT SAFE

• ML models are also susceptible to reconstruction attacks

• For instance, one can extract sensitive text from large language models
[Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]
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ORDINARY FACTS ARE NOT ALWAYS SAFE

• Revealing ordinary facts to inappropriate parties may also be problematic, especially
if an individual is followed over time

• Example: Alice buys bread every day for 20 years and then stops

• An insurance analyst might conclude that Alice has been diagnosed with type 2 diabetes
• This may be wrong, but in any case Alice could be harmed (e.g., charged with higher
insurance premiums)
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SUMMARY OF THE KEY ISSUES / REQUIREMENTS

1. Auxiliary knowledge (also called background knowledge or side information): we
need to be robust to whatever knowledge the adversary may have, since we cannot
predict what an adversary knows or might know in the future

2. Multiple analyses: we need to be able to track how much information is leaked when
asking several questions about the same data, and avoid catastrophic leaks
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DIFFERENTIAL PRIVACY



ATTEMPTS AT PRIVACY DEFINITION

First attempt at privacy definition
“An analysis of a dataset is private if the result reveals no more about an individual
than what was already known about him/her before the analysis.”

• Bayesian version: posterior belief same as prior belief

• Problem 1: Impossible to reveal exactly nothing if the result is to depend at all on
the data (otherwise we get zero utility)
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ATTEMPTS AT PRIVACY DEFINITION

First attempt at privacy definition
“An analysis of a dataset is private if the result reveals no more about an individual
than what was already known about him/her before the analysis.”

• Problem 2: “Before/after” requirement unachievable under auxiliary knowledge

• Think of “stupid priors” (e.g., a person’s height is between 10 and 20 meters)

• Think about whether Bob’s privacy was violated in the following example:
• Suppose an insurance company knows that Bob is a smoker
• A medical data analysis reveals that smoking and cancer are correlated
• The insurance company decides to raise Bob’s rates

• This happens even if Bob’s data wasn’t included in the analysis!

• Such correlations are precisely the kind of things we want to be able to learn
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ATTEMPTS AT PRIVACY DEFINITION

Second attempt at privacy definition
“An analysis of a dataset is private if what can be learned about an individual in the
dataset is not much more than what would be learned if the same analysis was
conducted without him/her in the dataset.”

• Intuition: cannot infer the presence/absence of an individual in the dataset, or
anything “specific” about an individual (here, ‘specific” refers to information that
cannot be inferred unless the individual’s data is used in the analysis)
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RANDOMIZED ALGORITHM

• Let X denote an abstract data domain

• A dataset D ∈ X n is a multiset of n elements (records, or rows) from X

Definition (Randomized algorithm)
A randomized algorithm A is a mapping
A : X n → O where O is a probability space. In other
words, for any dataset D ∈ X n, A(D) is a random
variable taking values in O.

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

• Example: for a counting algorithm returning (an estimate of) the number of records
in D matching some condition, we have O = N

• The output space O may be the same as the input space X n

18
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DIFFERENTIAL PRIVACY
(Figure inspired from R. Bassily)

Randomized
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A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

x2'

• Datasets D,D′ ∈ X n are neighboring (D ∼ D′) if they differ on at most one record

• DP requires that A(D) and A(D′) have “close” distribution

output range of A

p
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b
a
b
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ty

ratio bounded
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DIFFERENTIAL PRIVACY

Definition (Differential privacy [Dwork et al., 2006])
Let ε > 0 and δ ∈ [0, 1). A randomized algorithm A : X n → O is (ε, δ)-differentially
private (DP) if for all pairs of neighboring datasets D ∼ D′ and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ, (1)

where the probability space is over the coin flips of A.

• Key principle: privacy is a property of the analysis, not of a particular output (in
contrast to e.g., k-anonymization)

• Eq. (1) must hold for all pairs of neighboring datasets and all possible outputs of A

• A non-trivial differentially private algorithm must be randomized

• In 2017, Dwork, McSherry, Nissim & Smith won the Gödel prize for introducing DP
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INTERPRETING DP: THE PRIVACY LOSS

• (ε, 0)-DP ensures that, for every run of the algorithm A(D), the output is almost
equally likely to be observed on every neighboring dataset simultaneously

• (ε, 0)-DP is called pure ε-DP. How can we interpret approximate (ε, δ)-DP?

• Consider the following quantity, which is often referred to as the privacy loss
incurred by observing an output o ∈ O:

LoA(D),A(D′) = ln
( Pr[A(D) = o]
Pr[A(D′) = o]

)
• (ε, δ)-DP ensures that the absolute value of the privacy loss will be bounded by ε
with probability at least 1− δ over o ∼ A(D)

• Note: ϵ can be seen as a function of δ
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INTERPRETING DP: VALUES OF ε AND δ

• For meaningful privacy guarantees, δ should be o(1/n)

• Indeed, setting δ of order 1/n allows to release the records of a small number of
individuals in the dataset preserves privacy (“just a few” principle)

• For ε, there are some rules of thumb:
• ε = 1 (i.e., eε ≈ 2.7) is considered to be a good guarantee
• ε = 0.1 (i.e., eε ≈ 1.1) is considered to be a very strong guarantee

• Guarantees against concrete attacks depend on the use-case and attack scenario,
see [Abowd, 2018] [Jayaraman and Evans, 2019] [Nasr et al., 2021] for empirical studies
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PROPERTIES OF DP: ROBUSTNESS TO AUXILIARY KNOWLEDGE

• DP guarantees are intrinsically robust to arbitrary auxiliary knowledge: it bounds the
relative advantage that an adversary gets from observing the output of an algorithm

• Adversary may know all the dataset except one record
• Adversary may know all external sources of knowledge, present and future

• The algorithm A can be public: only the randomness needs to remain hidden
• A key requirement of modern security (“security by obscurity” has long been rejected)
• Allows to openly discuss the algorithms and their guarantees

23
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PROPERTIES OF DP: RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)
Let A : X n → O be (ε, δ)-DP and let f : O → O′ be an arbitrary (randomized) function
independent of A. Then

f ◦ A : X n → O′

is (ε, δ)-DP.

• “Thinking about” the output of a differentially private algorithm cannot make it less
differentially private→ can let data users do whatever they want with it

• This holds regardless of attacker strategy and computational power
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PROPERTIES OF DP: COMPOSITION

• Composition allows to control the worst-case cumulative privacy loss over multiple
analyses run on the same dataset, including complex multi-step algorithms

Theorem (Simple composition)
Let A1, . . . ,AK be such that Ak satisfies (εk, δk)-DP. For any dataset D, let A be such that
A(D) = (A1(D), . . . ,Ak(D)). Then A is (ε, δ)-DP with ε =

∑K
k=1 εk and δ =

∑K
k=1 δk.

Theorem (Advanced composition)
Let ϵ, δ, δ′ > 0. If Ak satisfies (ε, δ)-DP, then A is (ε′, Kδ + δ′)-DP with

ε′ =
√

2K ln(1/δ′)ε+ Kε(eε − 1)

• The sequence of algorithms can be chosen adaptively

• Numerically tighter composition can be obtained with through a variant of DP based
on the Rényi divergence [Mironov, 2017]
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DIFFERENTIAL PRIVACY IN THE REAL WORLD

• DP has become a gold standard metric of privacy in fundamental science but is also
being increasingly used in real-world deployments

• Thousands of scientific papers in the fields of privacy, security, databases, data
mining, machine learning...

• DP is deployed for computing/releasing statistics (including by tech giants...):
• Adoption by the US Census Bureau starting in 2020 [Abowd, 2018]
• Telemetry in Google Chrome [Erlingsson et al., 2014]
• Keyboard statistics in iOS and macOS [Differential Privacy Team, Apple, 2017]
• Application usage statistics by Microsoft [Ding et al., 2017]

• Open source software for DP in ML: TensorFlow Privacy, Opacus, PySyft...

26

https://github.com/tensorflow/privacy
https://opacus.ai/
https://github.com/OpenMined/PySyft


HOW TO DESIGN DP ALGORITHMS?

Individuals
(data subjects)

...

queries

answers
(ex: aggregate statistics,

machine learning model)

Algorithm

(ex: learning

algorithm)

Data users
(ex: government,

researchers,

companies,

or

adversary)
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THE GAUSSIAN MECHANISM



ANSWERING NUMERIC QUERIES

• Suppose we want to compute a numeric function f : X n → RK of a private dataset D

• How to construct a DP algorithm (or mechanism) for computing f(D)?
• How much randomness (error) do we add?
• How to introduce this randomness in the output?

28



GLOBAL SENSITIVITY

Definition (Global ℓ2 sensitivity)
The global ℓ2 sensitivity of a query (function) f : X n → RK is

∆2(f) = max
D∼D′

∥f(D)− f(D′)∥2

• How much one record can affect the value of the function

• Intuitively, it gives the amount of uncertainty needed to hide any single contribution

• Think about the sensitivity of the following queries:

• How many people have blond hair?
• How many males, how many people with blond hair?
• How many people have blond hair, how many people have dark hair, how many people
have brown hair, how many people have red hair?

• What is the average salary?
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THE GAUSSIAN DISTRIBUTION

Definition (Gaussian distribution)
For µ ∈ R, σ2 > 0, The Gaussian distribution N (µ, σ2) with mean µ and variance σ2 is
the distribution with probability density function:

p(y;µ, σ2) =
1√
2πσ

exp
(
− (y− µ)2

2σ2

)
, y ∈ R.

• If Y ∼ N (µ, σ2), then E[Y] = µ, Var[Y] = σ2

• Tail bound: Pr[|Y− µ| > tσ] ≤ 2e− t2
2
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THE GAUSSIAN MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Gaussian mechanism AGauss(D, f : X n → RK, ε, δ)

1. Compute ∆ = ∆2(f)

2. For k = 1, . . . , K: draw Yk ∼ N (0, σ2) independently for each k, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

• This is output perturbation: perturb each entry of f(D) with independent Gaussian
noise calibrated to the sensitivity ∆ of f and the privacy parameters (ε, δ)

• The dependence of σ2 on 1/δ is logarithmic, which is good since we want δ very small!

• It is not possible to achieve δ = 0

Theorem (DP guarantees for Gaussian mechanism)
Let ε, δ > 0 and f : X n → RK. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.
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THE GAUSSIAN MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof sketch (see [Dwork and Roth, 2014], Appendix A for details).
• Consider any pair of datasets D,D′ such that D ∼ D′, and let K = 1 for simplicity

• We can bound the absolute privacy loss of observing output f(D) + y by:∣∣∣∣ ln Pr[A(D) = f(D) + y]
Pr[A(D′) = f(D) + y]

∣∣∣∣ ≤ ∣∣∣∣ ln e−(1/2σ2)y2

e−(1/2σ2)(y+∆2(f))2

∣∣∣∣ = ∣∣∣∣ 1
2σ2 (2y∆2(f) + ∆2(f)2)

∣∣∣∣
• This is bounded by ε whenever y < σ2ε/∆2(f)−∆2(f)/2

• To guarantee (ε, δ)-DP, it is sufficient to prove that

Pr[|y| ≥ σ2ε/∆2(f)−∆2(f)/2] ≤ δ

• We bound the left hand side using the Gaussian tail bound and verify that the
condition is satisfied for the choice of σ
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THE GAUSSIAN MECHANISM: UTILITY GUARANTEES

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate

• In fact, the MSE achieved by the Gaussian mechanism is worst-case optimal

• We can derive high-probability error bounds

Theorem (High probability bound on ℓ∞ error of the Gaussian mechanism)
Let ε > 0. For a query f : X n → RK and any dataset D ∈ X n, the Gaussian mechanism
AGauss(D, f, ε) has the following utility guarantee:

Pr
[
∥AGauss(D, f, ε)− f(D)∥∞ <

√
2 ln(1.25/δ) ln(K/β)∆2(f)

ε

]
≥ 1− β.

• Proof: use the Gaussian tail bound and a union bound
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THE GAUSSIAN MECHANISM: ILLUSTRATION

• Suppose we wish to calculate which first names, from a list of 10,000 potential
names, are most common among participants of the 2018 French census

• We can think of this as a query f : X n → R10000

• This is a histogram query with sensitivity ∆2(f) =
√
2

• We can answer this query with (1, 10−9)-DP and, using the previous theorem, with
probability 0.99 no estimate will be off by more than an additive error of√

4 ln(1.25 · 109)/ ln(10000/.05) ≈ 34

• This is pretty low for a country of more than 66, 000, 000 people!
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DIFFERENTIALLY PRIVATE SGD



PRIVATELY RELEASING A MACHINE LEARNING MODEL

• A trusted curator wants to privately release a model trained on data D = {(xi, yi)}ni=1

• We focus here on approximately solving an Empirical Risk Minimization (ERM)
problem under an (ϵ, δ)-DP constraint:

min
θ∈Θ

{
F(θ;D) := 1

n

n∑
i=1

L(θ; xi, yi)
}
, with L differentiable in θ

(Note: in some cases, DP can imply generalization [Bassily et al., 2016, Jung et al., 2021])

• We can achieve this by designing a differentially private ERM solver
Private
dataset

Differentially

private

ERM solver

Private model...

DP queries

answers
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NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

• Denote by ΠΘ(θ) = argminθ′∈Θ ∥θ − θ′∥2 the projection operator onto Θ

Algorithm: Non-private (projected) SGD

• Initialize parameters to θ(0) ∈ Θ

• For t = 0, . . . , T− 1:
• Pick it ∈ {1, . . . ,n} uniformly at random
• θ(t+1) ← ΠΘ

(
θ(t) − γt∇L(θ(t); xit , yit)

)
• Return θ(T)

• SGD is a natural candidate solver: simple, flexible, scalable, heavily used in ML

• Any idea on how to design a DP version of SGD?
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• Any idea on how to design a DP version of SGD?
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MAKING THE STOCHASTIC GRADIENT PRIVATE

• Assume that L(·; x, y) is l-Lipschitz with respect to the ℓ2 norm for any (x, y) ∈ X × Y :

|L(θ; x, y)− L(θ′; x, y)| ≤ l∥θ − θ′∥, for all θ, θ′ ∈ Θ

• This implies that for all x, y, θ we have ∥∇L(θ; x, y)∥ ≤ l

• Therefore, at any step t of SGD, the ℓ2 sensitivity of ∇L(θ(t−1); xit , yit) is bounded by 2l
and we can use the Gaussian mechanism

• It feels like we can do better...
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PRIVACY AMPLIFICATION BY SUBSAMPLING

Theorem (Amplification by subsampling [Balle et al., 2018])
Let X be a data domain and S : X n → Xm be a procedure such that S(D) returns a
random subset of m records sampled uniformly without replacement from D. Let A be
an (ε, δ)-DP algorithm. Then A ◦ S satisfies (ε′, mn δ)-DP with ε′ = ln

(
1+ m

n (e
ε − 1)

)
.

• The amplification effect is due to the secrecy of the samples

• For simplicity of exposition, we will use the following approximation: when ε ≤ 1,
ln
(
1+ m

n (e
ε − 1)

)
≤ 2m

n ε (but in practice the tight version above should be used!)

• The proof and results with other sampling schemes can be found in [Balle et al., 2018]
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DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Differentially Private SGD ADP-SGD(D, L, ε, δ)

• Initialize parameters to θ(0) ∈ Θ (must be independent of D)
• For t = 0, . . . , T− 1:

• Pick it ∈ {1, . . . ,n} uniformly at random
• η(t) ← (η

(t)
1 , . . . , η

(t)
p ) ∈ Rp where each η

(t)
j ∼ N (0, σ2) with σ =

16l
√

T ln(2/δ) ln(2.5T/δn)
nε

• θ(t+1) ← ΠΘ

(
θ(t) − γt

(
∇L(θ(t); xit , yit) + η(t)))

• Return θ(T)

• More data (larger n)→ less noise added to each gradient

• More iterations (larger T)→ more noise added to each gradient

Theorem (DP guarantees for DP-SGD)
Let ε ≤ 1, δ > 0. Let the loss function L(·; x, y) be l-Lipschitz w.r.t. the ℓ2 norm for all
x, y ∈ X × Y . Then ADP-SGD(·, L, ε, δ) is (ε, δ)-DP.
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DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Proof.
• Recall that for a query with ℓ2 sensitivity ∆, achieving (ε′, δ′) with the Gaussian
mechanism requires to add noise with standard deviation σ′ =

√
2 ln(1.25/δ′)∆

ε′

• So with ∆ = 2l, σ =
16l
√

T ln(2/δ) ln(2.5T/δn)
nε , each noisy gradient is

(
nε

4
√

2T ln(2/δ)
, δn
2T

)
-DP

• Now, taking into account the randomness in the choice of it using privacy
amplification by subsampling, each noisy gradient is in fact

(
ε

2
√

2T ln(2/δ)
, δ
2T

)
-DP

• DP-SGD can be seen as an adaptive composition of T DP mechanisms

• By advanced composition, we know that T compositions of an (ε1, δ1)-DP algorithm
satisfies (2

√
2T ln(1/δ′)ε1, Tδ1 + δ′)-DP for any δ′ > 0

• Applying this formula with δ′ = δ/2 gives that DP-SGD satisfies (ε, δ)-DP
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DIFFERENTIALLY PRIVATE SGD

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])
Let Θ be a convex domain of diameter bounded by R, and let the loss function L be
convex and l-Lipschitz over Θ. For T = n2 and γt = O(R/

√
t), DP-SGD guarantees:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
lR
√
p ln(1/δ) ln3/2(n/δ)

nε

)
.

• Proof: plug variance of gradients in standard SGD analysis [Shamir and Zhang, 2013],
and set T to balance optimization and privacy errors

• Utility gap w.r.t. the non-private model is Õ(√p/ϵn): it reduces with the number of
training points but increases with the dimension

• This gap is worst-case optimal (i.e., there exists an instance of the problem for which
no DP algorithm can do better)
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DIFFERENTIALLY PRIVATE SGD IN PRACTICE

• For the mini-batch version, the same analysis applies with minor modifications

• One can readily use any data-independent regularization

• If the loss is only sub-differentiable (e.g., hinge loss, ReLU), one can use a
subgradient instead of the gradient

• If the loss is non-Lipschitz (or the constant is hard to bound as in deep neural nets),
one can use gradient clipping before adding the noise [Abadi et al., 2016]
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INTRODUCTION TO FEDERATED
LEARNING



FROM CENTRALIZED TO DECENTRALIZED DATA

• In the real world data is often decentralized across different parties

data center

≠

• Data may be considered too sensitive to be shared (e.g., due to legal restrictions,
intellectual property rights, or because it provides a competitive advantage)

• Inferior performance and/or biased results if each party learns independently

43



FEDERATED LEARNING

Federated Learning (FL) aims to
collaboratively train ML models

while keeping the data decentralized

• FL is a booming topic
• Term first coined in 2016; more than 1,000 papers in first half of 2020 alone1

• Several open-source libraries under development: PySyft, Flower, Fed-BioMed...
• First real-world deployments by companies and researchers

• FL is multidisciplinary: involves ML, optimization, statistics, privacy & security,
networks, systems...

1https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/
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KEY DIFFERENCES WITH DISTRIBUTED LEARNING

Distributed learning

• Data is centrally stored (e.g., in a data center)

• The goal is to train faster→ distribute data uniformly at random across workers

Federated Learning

• Data is naturally distributed→ local datasets are heterogeneous (not iid, imbalance)

• Data may be sensitive→ need to enforce robust privacy constraints

• Participants may be unreliable, unavailable (with possible time/space correlations)

• Participants may be malicious

• ...
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CROSS-DEVICE VS. CROSS-SILO FL

Cross-device FL

• Massive number of parties (up to 1010)

• Small dataset per party (could be size 1)

• Limited availability and reliability

• Some parties may be malicious

Cross-silo FL

• 2-100 parties

• Medium to large dataset per party

• Reliable parties, almost always available

• Parties are typically honest
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SERVER ORCHESTRATED VS. FULLY DECENTRALIZED FL

Server-orchestrated FL

• Server-client communication

• Global coordination, global aggregation

• Server is a single point of failure and
may become a bottleneck

Fully decentralized FL

• Device-to-device communication

• No global coordination, local aggregation

• Naturally scales to a large number of
devices
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CLASSIC FL PROBLEM FORMULATION

• We consider a set of K parties (also called users or clients)

• Each party k holds a dataset Dk

• We want to solve problems of the form minθ∈Rp F(θ;D) where:

F(θ;D) =
K∑

k=1

nk
n Fk(θ;Dk) and Fk(θ;Dk) =

1
nk

∑
d∈Dk

L(θ;d)

• This is the empirical risk minimization problem considered before, but we now want
to solve it in a federated manner
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

Algorithm FedAvg (server-side)
initialize θ

for each round t = 0, 1, . . . do
St ← random set of m = ⌈ρK⌉ clients
for each client k ∈ St in parallel do
θk ← ClientUpdate(k, θ)

θ ←
∑

k∈St
nk
n θk

Algorithm ClientUpdate(k, θ)
for each local step 1, . . . , L do
B ← mini-batch of B examples from Dk
θ ← θ − η

B
∑

d∈B∇f(θ;d)
send θ to server

• L > 1 allows to reduce the number of communication rounds
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parties update their copy
of the model and iterate
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

• For L = 1 and ρ = 1, FedAvg is equivalent to classic parallel SGD: updates are
aggregated and the model synchronized at each step

• FedAvg with L > 1 allows to reduce the number of communication rounds, which is
often the bottleneck in FL (especially in the cross-device setting)

• Convergence to the optimal model can be guaranteed for i.i.d. data [Stich, 2019]
[Woodworth et al., 2020] but issues arise with heterogeneous data (more on this later)
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FULLY DECENTRALIZED VARIANTS

• We can derive algorithms similar to FedAvg for the fully decentralized setting, where
parties do not rely on a server for aggregating updates

• Let G = ({1, . . . , K}, E) be a connected undirected graph where nodes are parties and
an edge {k, l} ∈ E indicates that k and l can exchange messages

• Let W ∈ [0, 1]K×K be a gossip matrix: symmetric, doubly stochastic matrix such that
Wk,l = 0 if and only if {k, l} /∈ E

• Given models Θ = [θ1, . . . , θK] for each party, WΘ corresponds to a weighted
aggregation among neighboring nodes in G:

[WΘ]k =
∑
l∈Nk

Wk,lθl, where Nk = {l : {k, l} ∈ E}
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GOSSIP-BASED DECENTRALIZED SGD [LIAN ET AL., 2017, KOLOSKOVA ET AL., 2020B]

Algorithm Gossip-based decentralized SGD (run by party k)
Parameters: batch size B, learning rate η, sequence of matricesW(t)

initialize θ
(0)
k

for each round t = 0, 1, . . . do
B ← mini-batch of B examples from Dk

θ
(t+ 1

2 )

k ← θ
(t)
k −

1
Bη

∑
d∈B∇f(θ

(t)
k ;d)

θ
(t+1)
k ←

∑
l∈N (t)

k
W(t)

k,lθ
(t+ 1

2 )

l

• The algorithm alternates between local updates and local aggregation

• Doing multiple local steps is equivalent to choosing W(t) = In in some of the rounds

• The convergence rate depends on the topology (the more connected, the faster)
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CLIENT DRIFT IN FEDAVG

(Figure taken from [Karimireddy et al., 2020])

• When local datasets are heterogeneous, FedAvg suffers from client drift

• To avoid this drift, one must use fewer local updates and/or smaller learning rates,
which hurts convergence
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THEORETICAL CONVERGENCE RATES FOR FEDAVG

• Analyzing the convergence rate of FL algorithms on heterogeneous data requires
some assumption about how the local cost functions F1, . . . , Fk are related

• For instance, one can assume that there exists constants G ≥ 0 and B ≥ 1 such that

∀θ :
1
K

K∑
k=1

∥∇Fk(θ;Dk)∥2 ≤ G2 + B2∥∇F(θ;D)∥2

• FedAvg without client sampling reaches ϵ accuracy with O( 1
KLϵ2 +

G
ϵ3/2

+ B2

ϵ ), which is
slower than the O( 1

KLϵ2 +
1
ϵ ) of parallel SGD with large batch [Karimireddy et al., 2020]
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SCAFFOLD: CORRECTING LOCAL UPDATES [KARIMIREDDY ET AL., 2020]

Algorithm Scaffold (server-side)
Parameters: client sampling rate ρ, global
learning rate ηg

initialize θ, c = c1, . . . , cK = 0
for each round t = 0, 1, . . . do
St ← random set of m = ⌈ρK⌉ clients
for each client k ∈ St in parallel do
(∆θk,∆ck)← ClientUpdate (k, θ,c)

θ ← θ +
ηg
m
∑

k∈St
∆θk

c← c+ 1
K
∑

k∈St
∆ck

Algorithm ClientUpdate(k, θ, c)
Parameters: batch size B, # of local steps L,
local learning rate ηl

Initialize θk ← θ

for each local step 1, . . . , L do
B ← mini-batch of B examples from Dk
θk ← θk − ηl(

1
B
∑

d∈B∇f(θ;d)− ck + c)
c+k ← ck − c+ 1

Lηl
(θ − θk)

send (θk − θ, c+k − ck) to server
ck ← c+k

• Correction terms c1, . . . , cK approximate an ideal unbiased update

• Can show convergence rates which beat parallel SGD
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SCAFFOLD: CORRECTING LOCAL UPDATES [KARIMIREDDY ET AL., 2020]

• FedAvg becomes slower than parallel SGD for strongly heterogeneous data (large G)

• Scaffold can often do better in such settings

• Other relevant approach: FedProx [Li et al., 2020b]
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FEDERATED LEARNING OF PERSONALIZED MODELS

• Learning from heterogeneous data is difficult/slow because each party wants the
model to go in a particular direction

• If data distributions are very different, learning a single model which performs well
for all parties may require a very large number of parameters

• Another direction to deal with heterogeneous data is thus to lift the requirement
that the learned model should be the same for all parties (“one size fits all”)

• Instead, we can allow each party k to learn a (potentially simpler) personalized
model θk but design the objective so as to enforce some kind of collaboration
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PERSONALIZED MODELS FROM A “META” MODEL

• [Hanzely et al., 2020] propose to regularize personalized models to their mean:

F(θ1, . . . , θK;D) =
1
K

K∑
k=1

Fk(θk;Dk) +
λ

2K

K∑
k=1

∥∥∥θk − 1
K

K∑
l=1

θl

∥∥∥2

• Inspired by meta-learning, [Fallah et al., 2020] propose to learn a global model which
easily adapts to each party:

F(θ;D) = 1
K

K∑
k=1

Fk(θ − α∇Fk(θ);Dk)

• These formulations are actually related to each other (and to the FedAvg algorithm)

• Other formulations exist, see e.g., the bilevel approach of [Dinh et al., 2020]
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PERSONALIZED MODELS VIA MULTI-TASK LEARNING

• Inspired by multi-task learning, [Smith et al., 2017, Vanhaesebrouck et al., 2017] propose to
regularize personalized models using (learned) relationships between tasks:

F(θ1, . . . , θK,W;D) = 1
K

K∑
k=1

Fk(θk;Dk) +
∑
k<l

Wk,l∥θk − θl∥2

• It is also well suited to the fully decentralized setting, since W can be seen as a graph
of relationships over parties [Vanhaesebrouck et al., 2017]

• [Marfoq et al., 2021]: assume local distributions are drawn from a mixture, learn several
component models and personalized weights with a Federated EM-like algorithm
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SOME OTHER INTERESTING TOPICS IN FL

• Going beyond empirical risk minimization formulations: tree-based methods
[Li et al., 2020a], online learning [Dubey and Pentland, 2020], Bayesian learning...

• Vertical data partitioning, where parties have access to different features about the
same examples [Patrini et al., 2016]

• Compressing updates to reduce communication [Koloskova et al., 2020a]

• Fairness in FL [Mohri et al., 2020, Li et al., 2020c, Laguel et al., 2020]
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DIFFERENTIALLY PRIVATE FEDERATED
LEARNING



PRIVACY ISSUES IN FEDERATED LEARNING

• We have seen that ML models are susceptible to various attacks on data privacy,
such as membership inference and reconstruction attacks

• Federated Learning offers an additional attack surface as the server and other
parties observe model updates (not only the final model)

• This can be exploited by a participant (server or party) [Nasr et al., 2019]
[Geiping et al., 2020], e.g. to reconstruct data from gradients or model updates
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TRUSTED VS. UNTRUSTED CURATOR MODELS IN DP

Trusted curator model (also called
global model or central model):
A is differentially private wrt datasetD
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Untrusted curator model (also called
local model or distributed model):
Each Ri is differentially private wrt
record (or local dataset) xi
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PRIVATELY ANSWERING TO A SURVEY

• Consider the following setup:
• A researcher wants to conduct a survey of n individuals, which consists of a single yes/no
question that the researcher asks each individual

• The researcher is interested in the proportion of “yes” answers
• However the subject matter is very sensitive or embarrassing, such as “did you have sex
with a prostitute this month?” or “have you ever assaulted someone?”

• If the researcher was fully trusted to collect the true individual answers, we could
use the Gaussian mechanism to make the final result differentially private

• However, this is not the case here: we can expect that just asking the individuals to
reply truthfully will induce important bias in the result of the survey

• How can we provide privacy to the participants while getting an unbiased result?
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SIMPLE RANDOMIZED RESPONSE

• We denote the truthful answer of individual i by xi ∈ {0, 1} and the true proportion
of “yes” by Y = 1

n
∑n

i=1 xi

• Consider the following simple randomized approach: each participant answers
truthfully (zi = xi) with probability p and falsely (zi = ¬xi) with probability 1− p

• The expected proportion of “yes” is given by pY+ (1− p)(1− Y), so we can recover an
unbiased estimate Ŷ of Y by computing:

Ŷ =
1
n
∑n

i=1 zi + p− 1
2p− 1

• This approach, which dates back to [Warner, 1965], satisfies local differential privacy!
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LOCAL DIFFERENTIAL PRIVACY

• As always, let X denote an abstract data domain

• A local randomizer R : X → Z is a randomized function which maps an input x ∈ X
to an output z ∈ Z

Definition (Local Differential Privacy [Kasiviswanathan et al., 2008, Duchi et al., 2013])
Let ε > 0 and δ ∈ (0, 1). A local randomizer algorithm R is (ε, δ)-locally differentially
private (LDP) if for all x, x′ ∈ X and any possible z ∈ Z :

Pr[R(x) = z] ≤ eε Pr[R(x′) = z] + δ.

• This is equivalent to (ε, δ)-DP for datasets of size 1!

• LDP is a much stronger model than central DP (no trusted curator)

• Indeed, LDP allows participants to have plausible deniability even if the curator is
compromised: they can deny having value x on the basis of lack of evidence

65
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K-ARY RANDOMIZED RESPONSE: ALGORITHM & PRIVACY GUARANTEES

• Assume a K-ary data domain X = {v1, . . . , vK}

Algorithm: K-ary Randomized Response RRR,K(x, ε) [Kairouz et al., 2014]

1. Sample b ∼ Ber(K/(eε + K− 1))
2. If b = 0 output x, else output y ∼ Unif(X )

• K−RR will output the true value w.p. eε−1
eε+K−1 , or a random value w.p. K

eε+K−1

• This can be seen as a generalization of the simple binary version that we used earlier

Theorem (DP guarantees for K-RR mechanism)
Let ε > 0. The K-ary randomized response mechanism RRR,K(·, ε) satisfies ε-LDP.
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K-ARY RANDOMIZED RESPONSE: ALGORITHM & PRIVACY GUARANTEES

Proof.

• For any x, x′ ∈ X and z ∈ Z , we want to show that Pr[RRR,K(x)=z]
Pr[RRR,K(x′)=z] ≤ eε

• If x ̸= z ∧ x′ ̸= z or x = x′ = z, then clearly Pr[RRR,K(x) = z] = Pr[RRR,K(x′) = z]

• We thus focus on the case x = z and x′ ̸= z. We have:

Pr[RRR,K(x) = z] = eε − 1
eε + K− 1 +

K
K(eε + K− 1) =

eε
eε + K− 1

Pr[RRR,K(x′) = z] = 1
eε + K− 1

• Taking the ratio gives us the desired result
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K-ARY RANDOMIZED RESPONSE: UTILITY GUARANTEES

• Let h = (h1, . . . ,hK) denote the histogram of the private data: hk =
1
n
∑n

i=1 I[xi = vk]

• Letting p = eε−1
eε+K−1 , K-RR allows us to obtain an unbiased estimate ĥ of h by setting

ĥk =
( 1
n
∑n

i=1 I[zi = vk])− 1−p
K

p =
( 1
n
∑n

i=1 I[zi = vk])(eε + K− 1)− 1
eε − 1

Theorem (ℓ2 error of K-ary randomized response)
Let ε > 0. The histogram ĥ obtained using the K-ary randomized response mechanism
satisfies for any k ∈ {1, . . . , K}:

E[(ĥk − hk)
2] =

K− 2+ eε
n(eε − 1)2 .
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REAL AVERAGING AND SUM QUERIES IN LDP

• Let f be a public function from X to a bounded numeric range (say f : X → [0, 1])

• We want to compute an averaging query f̄ = 1
n
∑n

i=1 f(xi)

• How to do this in the LDP setting?

• We can readily use the Gaussian mechanism!

• Indeed, seeing each input as a dataset of size 1, the sensitivity of f(x) is ∆2(f) = 1

• With the Gaussian mechanism, we thus get an estimate of f̄ with variance 2 log(1.25/δ)
nε2
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• We can readily use the Gaussian mechanism!

• Indeed, seeing each input as a dataset of size 1, the sensitivity of f(x) is ∆2(f) = 1
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THE COST OF THE LOCAL MODEL

• As one can expect, there is a large utility gap between the central and the local
model of DP: it is typically a factor of O(1/

√
n) in ℓ1 error (or O(1/n) in ℓ2 error)

• Example 1: histograms
• In the local model, we have seen that E[(ĥk − hk)

2] = O(1/n)
• In the central model, we can compute the exact hk =

1
n
∑n

i=1 I[xi = vk] and add Gaussian
noise calibrated to its ℓ2 sensitivity 1/n, hence we get E[(ĥk − hk)

2] = O(1/n2)

• Example 2: averaging queries
• In the local model, we have seen that we get a variance of O(1/n)
• In the central model, we can compute the exact f̄ and add Gaussian noise calibrated to its
ℓ2 sensitivity ∆1(̄f) = 1/n, hence we get a variance of O(1/n2)

• This gap is known to be unavoidable for some queries like averaging [Chan et al., 2012]

• This restricts the usefulness of LDP to applications where n is very large and
motivates the exploration of intermediate trust models
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A KEY FUNCTIONALITY: DP AGGREGATION

• Most FL algorithms with a server follow the same high-level structure:

for t = 1 to T do
At each party k: compute θk ← LOCALUPDATE(θ, θk), send θk to server
At server: compute θ ← 1

K
∑

k θk, send θ back to the parties

• Observe that:

DP aggregation + Composition property of DP =⇒ DP-FL

• Differentially private aggregation: given a private value θk ∈ [0, 1] for each party k,
we want to accurately estimate θavg = 1

K
∑

k θk under a DP constraint
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EXISTING APPROACHES TO DP AGGREGATION

• Central model: trusted server adds Gaussian noise to the average θavg

• Local model: each party k adds Gaussian noise to its own value θk before sharing it

• For a fixed DP guarantee, the error is O(
√
K) larger in the local case

• Cryptographic primitives such as secure aggregation [Bonawitz et al., 2017] and secure
shuffling [Balle et al., 2019] can be used to close this gap without introducing a trusted
server, but their practical implementation poses important challenges when K is large
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GOPA PROTOCOL FOR DP AGGREGATION

• Assume that pairs of parties are able to exchange encrypted messages (the server
may act as relay): this can be achieved e.g. through a public key infrastructure

Algorithm GOPA protocol [Sabater et al., 2020]

Each party k generates independent Gaussian noise ηk
Each party k selects a random set of m other parties
for all selected pairs of parties k ∼ l do

Parties k and l securely exchange pairwise-canceling Gaussian noise ∆k,l = −∆l,k
Each party k sends θ̂k = θk +

∑
k∼l ∆k,l + ηk to the server

• Estimate of the average: θ̂avg = 1
K
∑

k θ̂k = θavg + 1
K
∑

k ηk
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PRIVACY GUARANTEES FOR GOPA

• Adversary: coalition of the server with a proportion 1− τ of the parties

Theorem (Privacy of GOPA [Sabater et al., 2020], informal)
• Let each party select m = O(log(τK)/τ) other parties
• Set the independent noise variance so as to satisfy (ϵ, δ′)-DP in the central model
• For large enough pairwise noise variance, GOPA is (ϵ, δ)-DP with δ = O(δ′).

• Same utility as central DP with only logarithmic number of messages per party

• Our general result quantifies the effect of an arbitrary topology G on DP guarantees
and gives practical values for the quantities above
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EMPIRICAL ILLUSTRATION

• For reasonable proportions ρ of honest users, the variance of the estimated average
produced by GOPA is similar to the trusted curator setting

• As expected, the resulting FL model also has similar accuracy
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PRIVACY & FULL DECENTRALIZATION

• In a fully decentralized setting, there is no server that observes all messages: each
party/user k has a limited view of the system

• Folklore knowledge: “full decentralization improves privacy”. But can we formally
prove stronger differential privacy guarantees?
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NETWORK DIFFERENTIAL PRIVACY

• Let Ok be the set of messages sent and received by party k

Definition (Network DP [Cyffers and Bellet, 2022])
An algorithm A satisfies (ϵ, δ)-network DP if for all
pairs of distinct parties k, l ∈ {1, . . . ,n} and all pairs
of datasets D,D′ that differ only in the local dataset
of party l, we have:

Pr[Ok(A(D))] ≤ eϵ Pr[Ok(A(D′))] + δ.

• This is a relaxation of local DP: if Ok contains the full transcript of messages, then
network DP boils down to local DP
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WALK-BASED DECENTRALIZED SGD

• Consider the standard objective F(θ;D) = 1
K
∑K

k=1 Fk(θ;Dk) and a complete graph

• Let us consider a fully decentralized algorithm where the model is updated
sequentially by following a random walk

Algorithm Private decentralized SGD on a complete graph
Initialize model θ
for t = 1 to T do

Current party updates θ by a gradient update with Gaussian noise
Current party sends θ to a random party

return θ
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PRIVACY AMPLIFICATION FOR WALK-BASED DECENTRALIZED SGD

Theorem ([Cyffers and Bellet, 2022], informal)
To achieve a fixed (ϵ, δ)-DP guarantee with the previous algorithm, the standard
deviation of the noise is O(

√
K/ ln K) smaller under network DP than under local DP.

• Accounting for the limited view in fully decentralized algorithms amplifies privacy
guarantees by a factor of O(ln K/

√
K), nearly recovering the utility of central DP

• The proof leverages recent results on privacy amplification by iteration
[Feldman et al., 2018] and exploits the randomness of the path taken by the model

• In a recent preprint [Cyffers et al., 2022] we refine network DP to capture the privacy
loss across each pair of nodes and prove amplification guarantees for gossip-based
algorithms on arbitrary graphs
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EMPIRICAL ILLUSTRATION
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• Results are consistent with our theory: network DP-SGD significantly amplifies
privacy guarantees compared to local DP-SGD
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PRIVACY AMPLIFICATION FOR GOSSIP DECENTRALIZED SGD

• In a recent preprint [Cyffers et al., 2022] we refine network DP to capture the privacy
loss across each pair of nodes and prove amplification guarantees for gossip-based
algorithms on arbitrary graphs
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WRAPPING UP



TAKE-AWAYS OF THE COURSE

1. Any personal information can be sensitive, and anonymization is hard

2. Differential privacy provides a robust mathematical definition of privacy

3. Simple DP primitives can be used as basis to design complex algorithms like DP-SGD

4. Federated learning (FL) enables several entities to collaboratively train machine
learning models without sharing their data

5. To ensure privacy in FL with an untrusted server, DP can be deployed locally at the
participants’ level (LDP)

6. The privacy-utility trade-off can be improved through appropriate relaxations of LDP
so as to leverage crypto primitives or reap the benefits of full decentralization
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SOME OPEN PROBLEMS IN PRIVACY & ML

• Going beyond worst-case privacy-utility trade-offs: leverage the structure of some
machine learning problems to design better DP algorithms

• Better privacy accounting: tight, automatic and personalized

• Correctness guarantees under malicious parties: make computation verifiable while
preserving privacy guarantees

• Combining DP with secure multi-party computation: identify tractable secure
primitives under which one can achieve trusted curator utility for many problems

• Concrete DP/FL deployments: match DP bounds to protection against specific
attacks, articulate with the law (GDPR), make FL transparent to end-users
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IF YOU WANT MORE...

• Other DP mechanisms (Laplace, exponential), DP-ERM via output perturbation, lab
sessions in Python... check my longer course:
http://researchers.lille.inria.fr/abellet/teaching/private_machine_learning_course.html

• Advances in Federated Learning:
• Survey paper [Kairouz et al., 2021]
• Online seminar: https://sites.google.com/view/one-world-seminar-series-flow/

84

http://researchers.lille.inria.fr/abellet/teaching/private_machine_learning_course.html
https://sites.google.com/view/one-world-seminar-series-flow/


REFERENCES I

[Abadi et al., 2016] Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).
Deep learning with differential privacy.
In CCS.

[Abowd, 2018] Abowd, J. M. (2018).
The U.S. Census Bureau Adopts Differential Privacy.
In KDD.

[Bagdasaryan et al., 2020] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. (2020).
How To Backdoor Federated Learning.
In AISTATS.

[Balle et al., 2018] Balle, B., Barthe, G., and Gaboardi, M. (2018).
Privacy amplification by subsampling: tight analyses via couplings and divergences.
In NeurIPS.

[Balle et al., 2019] Balle, B., Bell, J., Gascón, A., and Nissim, K. (2019).
The Privacy Blanket of the Shuffle Model.
In CRYPTO.

[Bassily et al., 2016] Bassily, R., Nissim, K., Smith, A., Steinke, T., Stemmer, U., and Ullman, J. (2016).
Algorithmic stability for adaptive data analysis.
In STOC.

85



REFERENCES II

[Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).
Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.
In FOCS.

[Blanchard et al., 2017] Blanchard, P., Mhamdi, E. M. E., Guerraoui, R., and Stainer, J. (2017).
Machine learning with adversaries: Byzantine tolerant gradient descent.
In NIPS.

[Bonawitz et al., 2017] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., and Seth,
K. (2017).
Practical Secure Aggregation for Privacy-Preserving Machine Learning.
In CCS.

[Carlini et al., 2022] Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramer, F. (2022).
In S&P.

[Carlini et al., 2021] Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. (2021).
Extracting training data from large language models.
In USENIX Security.

86



REFERENCES III

[Chan et al., 2012] Chan, T.-H. H., Shi, E., and Song, D. (2012).
Optimal Lower Bound for Differentially Private Multi-party Aggregation.
In ESA.

[Cyffers and Bellet, 2022] Cyffers, E. and Bellet, A. (2022).
Privacy Amplification by Decentralization.
In AISTATS.

[Cyffers et al., 2022] Cyffers, E., Even, M., Bellet, A., and Massoulié, L. (2022).
Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging.
Technical report, arXiv:2206.05091.

[de Montjoye et al., 2013] de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., and Blondel, V. D. (2013).
Unique in the crowd: The privacy bounds of human mobility.
Scientific Reports, 3.

[Differential Privacy Team, Apple, 2017] Differential Privacy Team, Apple (2017).
Learning with privacy at scale.

[Ding et al., 2017] Ding, B., Kulkarni, J., and Yekhanin, S. (2017).
Collecting telemetry data privately.
In NIPS.

87



REFERENCES IV

[Dinh et al., 2020] Dinh, C. T., Tran, N. H., and Nguyen, T. D. (2020).
Personalized Federated Learning with Moreau Envelopes.
In NeurIPS.

[Dinur and Nissim, 2003] Dinur, I. and Nissim, K. (2003).
Revealing information while preserving privacy.
In PODS.

[Dubey and Pentland, 2020] Dubey, A. and Pentland, A. S. (2020).
Differentially-Private Federated Linear Bandits.
In NeurIPS.

[Duchi et al., 2013] Duchi, J. C., Jordan, M. I., and Wainwright, M. J. (2013).
Local Privacy and Statistical Minimax Rates.
In FOCS.

[Dwork et al., 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography (TCC).

[Dwork and Roth, 2014] Dwork, C. and Roth, A. (2014).
The Algorithmic Foundations of Differential Privacy.
Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407.

88



REFERENCES V

[Erlingsson et al., 2014] Erlingsson, U., Pihur, V., and Korolova, A. (2014).
Rappor: Randomized aggregatable privacy-preserving ordinal response.
In CCS.

[Fallah et al., 2020] Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020).
Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach.
In NeurIPS.

[Feldman et al., 2018] Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. (2018).
Privacy Amplification by Iteration.
In FOCS.

[Geiping et al., 2020] Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M. (2020).
Inverting gradients - how easy is it to break privacy in federated learning?
In NeurIPS.

[Hanzely et al., 2020] Hanzely, F., Hanzely, S., Horváth, S., and Richtarik, P. (2020).
Lower Bounds and Optimal Algorithms for Personalized Federated Learning.
In NeurIPS.

89



REFERENCES VI

[Homer et al., 2008] Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., Pearson, J. V., Stephan, D. A., Nelson,
S. F., and Craig, D. W. (2008).
Resolving individuals contributing trace amounts of dna to highly complex mixtures using high-density snp genotyping
microarrays.
PLOS Genetics, 4(8):1–9.

[Jayaraman and Evans, 2019] Jayaraman, B. and Evans, D. (2019).
Evaluating Differentially Private Machine Learning in Practice.
In USENIX Security.

[Jung et al., 2021] Jung, C., Ligett, K., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Shenfeld, M. (2021).
A New Analysis of Differential Privacy’s Generalization Guarantees (Invited Paper).

[Kairouz et al., 2021] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons,
P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný, J.,
Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Qi, H., Ramage, D.,
Raskar, R., Raykova, M., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z.,
Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2021).
Advances and Open Problems in Federated Learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210.

90



REFERENCES VII

[Kairouz et al., 2014] Kairouz, P., Oh, S., and Viswanath, P. (2014).
Extremal mechanisms for local differential privacy.
In NIPS.

[Karimireddy et al., 2020] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T. (2020).
SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning.
In ICML.

[Kasiviswanathan et al., 2008] Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., and Smith, A. D. (2008).
What Can We Learn Privately?
In FOCS.

[Koloskova et al., 2020a] Koloskova, A., Lin, T., Stich, S. U., and Jaggi, M. (2020a).
Decentralized Deep Learning with Arbitrary Communication Compression.
In ICLR.

[Koloskova et al., 2020b] Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. (2020b).
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates.
In ICML.

[Laguel et al., 2020] Laguel, Y., Pillutla, K., Malick, J., and Harchaoui, Z. (2020).
Device Heterogeneity in Federated Learning:A Superquantile Approach.
Technical report, arXiv:2002.11223.

91



REFERENCES VIII

[Li et al., 2020a] Li, Q., Wen, Z., and He, B. (2020a).
Practical Federated Gradient Boosting Decision Trees.
In AAAI.

[Li et al., 2020b] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020b).
Federated Optimization in Heterogeneous Networks.
In MLSys.

[Li et al., 2020c] Li, T., Sanjabi, M., Beirami, A., and Smith, V. (2020c).
Fair Resource Allocation in Federated Learning.
In ICLR.

[Lian et al., 2017] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017).
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic
Gradient Descent.
In NIPS.

[Marfoq et al., 2021] Marfoq, O., Neglia, G., Bellet, A., Kameni, L., and Vidal, R. (2021).
Federated Multi-Task Learning under a Mixture of Distributions.
In NeurIPS.

92



REFERENCES IX

[McMahan et al., 2017] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas, B. (2017).
Communication-efficient learning of deep networks from decentralized data.
In AISTATS.

[Mironov, 2017] Mironov, I. (2017).
Renyi differential privacy.
In CSF.

[Mohri et al., 2020] Mohri, M., Sivek, G., and Suresh, A. T. (2020).
Agnostic Federated Learning.
In ICML.

[Narayanan and Shmatikov, 2008] Narayanan, A. and Shmatikov, V. (2008).
Robust de-anonymization of large sparse datasets.
In IEEE Symposium on Security and Privacy (S&P).

[Narayanan and Shmatikov, 2009] Narayanan, A. and Shmatikov, V. (2009).
De-anonymizing social networks.
In IEEE Symposium on Security and Privacy (S&P).

93



REFERENCES X

[Nasr et al., 2019] Nasr, M., Shokri, R., and Houmansadr, A. (2019).
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and
Federated Learning.
In IEEE Symposium on Security and Privacy.

[Nasr et al., 2021] Nasr, M., Song, S., Thakurta, A. G., Papernot, N., and Carlini, N. (2021).
Adversary Instantiation: Lower bounds for differentially private machine learning.
In IEEE Symposium on Security and Privacy (S&P).

[Paige et al., 2020] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2020).
Reconstructing Genotypes in Private Genomic Databases from Genetic Risk Scores.
In International Conference on Research in Computational Molecular Biology RECOMB.

[Patrini et al., 2016] Patrini, G., Nock, R., Hardy, S., and Caetano, T. S. (2016).
Fast Learning from Distributed Datasets without Entity Matching.
In IJCAI.

[Sabater et al., 2020] Sabater, C., Bellet, A., and Ramon, J. (2020).
Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties.
Technical report, arXiv:2006.07218.

94



REFERENCES XI

[Shamir and Zhang, 2013] Shamir, O. and Zhang, T. (2013).
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes.
In ICML.

[Shokri et al., 2017] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017).
Membership inference attacks against machine learning models.
In IEEE Symposium on Security and Privacy (S&P).

[Smith et al., 2017] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017).
Federated Multi-Task Learning.
In NIPS.

[Stich, 2019] Stich, S. U. (2019).
Local SGD Converges Fast and Communicates Little.
In ICLR.

[Sweeney, 2002] Sweeney, L. (2002).
k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570.

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017).
Decentralized collaborative learning of personalized models over networks.
In AISTATS.

95



REFERENCES XII

[Warner, 1965] Warner, S. L. (1965).
Randomised response: a survey technique for eliminating evasive answer bias.
Journal of the American Statistical Association, 60(309):63–69.

[Woodworth et al., 2020] Woodworth, B., Patel, K. K., Stich, S. U., Dai, Z., Bullins, B., McMahan, H. B., Shamir, O., and Srebro, N.
(2020).
Is Local SGD Better than Minibatch SGD?
In ICML.

96


	Context & Motivation
	Differential Privacy
	The Gaussian Mechanism
	Differentially Private SGD
	Introduction to Federated Learning
	Differentially Private Federated Learning
	Wrapping up

