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Supervised learning objective

Classification Regression
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Objective

e Training dataset : {x;,y: };—1 with observations x; € R? and labels yi € V.

e Train a function f(-) : RY — ) on the dataset.

Data distribution
e P is the true joint feature/label distribution of the data.
e Data x;,y; ~ P is supposed to be drawn |.I.D from P

e pP=1 > ;i 0x;.y; is the training empirical distribution.

T n

Px and Py are respectively the feature (x) and labels (y) marginals of P.
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Supervised learning problems (1)

Regression

b

D

e

{xi,yi}iss = f:R'=R

Binary classifiation

{Xiyyi}?:l = f : Rd — {71, 1}
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Supervised learning problems (2)

Multiclass classification

¥

°0

{xi, 9 }ic1 = [ RY — {1,..., K}, with f(x)= argmax fi(x)
k
Structured prediction
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{xi,yi}tie1 = [f: X =), with f(x)= ar}g,;ényaxf(x,y)
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1D regression data
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e We define the true

Risk R(f5,0), f(x) = ax + b 0 Empirical Risk R(f;, ») with n=2 o 7Empirical Risk R(f,,5) with n=10
7 . .
~

risk or expected loss R for a predictor f wrt distribution P as

R(f) =Re(f) = Exy~r Ly, f(x))], (1)

where the loss L(y, ) measures a discrepancy between the actual and the

predicted label.

e The Empirical risk for predictor f is the risk using the empirical distribution P:

R(P) = Ra(f) = BryoplLlys SO = DLl SG)) (2)
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Empirical risk minimization and generalization

1D regression data Risk R(f5, ), f(x) =ax+ b
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Empirical Risk ﬁ(fa,b) with n=10
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Empirical Risk ﬁ(fa‘bi with n=2
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e Empirical risk minimization :

feHr

min %ZL(yi,f(Xi)), (3)

e Classical generalization bounds can be expressed for a given predictor f € H as

R(f) < R(f) + 0 (Cyﬁ‘)) (4)

where C(H) is a measure of complexity of the hypothesis space H.
e Bound above have motivated the use of regularization or limited complexity

(layer/parameters) on small datasets.
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Divergences between probability distributions

Divergences
Let P° and P’ be probability distributions on X' of density P°(z) and P*(z)

respectively. A divergence D has the following properties:
e D(P*,P') >0, VP°, P’
e D(P*,P') =0 if and only if P* = P*

Classical divergences

e Kullback-Leibler

KL(P*|P!) = /XPS(X) log (I;tgg) dx (5)
e Total Variation
TV(PS,Pt) = /X |P%(x) — Pt(x)|dx (6)

Both divergences do not work well on discrete distributions with non overlapping

support.
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Maximum Mean Discrepancy (MMD)

Principle
e Project x in a Reproducing Kernel Hilbert Space H (RKHS) with ¢.
e The MMD can be expressed as the distance between the means in the RKHS

Hilbert space as
MMD?*(P*,P") = || Exvps [$(x)] = Ex~pt[$(x)]l5 ()

e In the RKHS the kernel can be expressed as k(x,x’) =< ¢(x), ¢(x’) > and the
MMD can be reformulated as:

MMD?(P*,P") = By xrps (%, X') ]+ By st ot [k (3%, X )| =2 Ey opo s ot [ (%, X))

(8)

e The unbiased estimator of MMD between two empirical distributions is

MMD?(P*, P! k(x k(x

(7)773) Z;l 7,7] m—lz 37]
'VL nt
2 - s t

— k(x5 ,x; 9
— 727 (7, x)) (9)
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Optimal transport

U1
Y2

Y3

e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
e How to move mass while minimizing a cost (mass + cost)
e Monge formulation seeks for a mapping between two mass distribution.

Reformulated by Leonid Kantorovich (1912-1986), Economy nobelist in 1975

e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

Applications originally for resource allocation problems
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Optimal transport between discrete distributions

Distributions Matrix C OT matrix y
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Kantorovitch formulation : OT Linear Program
When P° = ::1 aiéx: and Pt = :zl bi(sxp

i T,C). = Tijci;
et |05 = T
where C is a cost matrix with ¢; ; = ¢(x{,x5) e.g. ||x; — x5||” and the constraints are
H(,P:,Pt) - {T € (R+)”s><7lt‘ Tl"t =4, TT]‘"S = b}
e Linear program with ngn; variables and ns + n; constraints. Solving the OT
problem with network simplex is O(n®log(n)) for n = ns = n,.

e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
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Optimal transport between discrete distributions

Distributions Matrix C OT matrix with samples
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Kantorovitch formulation : OT Linear Program
ne

When P* = 37" aidx: and P* = 7" b

min TCF: E T; ici g
Tell(Ps,Pt) {< ’ > i,7 v ZJ}
X; — x§-\|” and the constraints are

where C is a cost matrix with ¢; ; = ¢(x},x5) e.g. |
n(P*, P = {T € )| T1,, = a,T 1, =b}
e Linear program with nsn; variables and ns + n; constraints. Solving the OT
problem with network simplex is O(n®log(n)) for n = ns = n,.

e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
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Wasserstein distance

Source distribution Divergences (scaled)

wi
w3
v
MMD

Target distributions

Wy (P, P") = min / Ix —ylI"T(x,y)dxdy = E [Ix—y[’] (10)
Qs X Q¢

Wasserstein distance

TeP (x,y)~T
In this case we have c(x,y) = ||x — y|”
e AK.A. Earth Mover's Distance when p = 1 (WW{) [Rubner et al., 2000].
e Do not need the distribution to have overlapping support.

e Works for continuous and discrete distributions (histograms, empirical).
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Domain adaptation problem and generalization

Domain adaptation problem and generalization

50 shades of Data Shift
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Source Domain Target Domain (CS) Target Domain (TS) Target Domain (CD)
44 44 4 4
34 34 3 34
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Shift happens...
e Data shift : P # P!
e P? is the training distribution (Source domain)
e P! is the test distribution (Target domain)

e A classifier learned on P® might fail on P' .

... but Domain Adaptation (DA) is here for you

e Aim at learning a function f that works on P! using data samples from P*.
e Unsupervised DA suppose that we have samples x’ from P’ but no labels.
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Train on Source Test on Target (CS) Test on Target (TS) Test on Target (CD)
Ve

Shift happens...
e Data shift : P # P!
e P? is the training distribution (Source domain)
e P! is the test distribution (Target domain)

e A classifier learned on P® might fail on P' .

... but Domain Adaptation (DA) is here for you

e Aim at learning a function f that works on P’ using data samples from P*.
e Unsupervised DA suppose that we have samples x’ from P* but no labels.
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Source Domain Target Domain (CS) Target Domain (TS) Target Domain (CD)
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Shift happens...
e Data shift : P* # Pt
e P is the training distribution (Source domain)
e P! is the test distribution (Target domain)

e A classifier learned on P* might fail on P’ .

. but Domain Adaptation (DA) is here for you

e Aim at learning a function f that works on P using data samples from P*.

e Unsupervised DA suppose that we have samples x’ from P* but no labels.
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Shift happens...
e Data shift : P* # Pt

e P is the training distribution (Source domain)

e P! is the test distribution (Target domain)

e A classifier learned on P* might fail on P’ .

... but Domain Adaptation (DA) is here for you
e Aim at learning a function f that works on P! using data samples from P*.

e Unsupervised DA suppose that we have samples x’ from P’ but no labels.
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Domain Adaptation Problem

DA Dataset example

sT s —

X1 Y1 tT 8
sT s x| 2] ‘

X3 Yo 5 05‘!)%

s s . t T 24
X" = sT |, Y = s , X'=| x}

X Yi 14
. . o ]
. T o
. . : -
sT s x”t —-14 © Source data v

Xn s y'n,s ’ ) Target data

-2 0 2 4
Data and distributions

e Source dataset : {x{,yf}", with x§,yf ~ P°, and P* = L 3" §

. EE
ng =1 "X Y;

e Target dataset : {xj}*, with x} ~ P%, and Ph = D Ot

Objective

e Train a function f(-) : RY — ) on the datasets that performs well on P".
e The performance when training on source depends on how similar P and P* are.
e The data shift can be compensated for some special cases of shifts.
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Families of data shift

How to compensate for shift ?
e Numerous DA approaches propose to model the shift and compensate for it.

e There exist several types of shifts that are more or less complex to handle.

Notations
e We will us P(x,y) as the probability density of distribution P (P° for P°, ...).

e The Bayes theorem gives us
P(x,y) = P(x|y)Py(y) = P(y|x)Px(x) (11)

Types of data shift and their intuition [Moreno-Torres et al., 2012]
e Covariate shift, Py (x) # P%(x), P*(y|x) = P'(y|x)
o Target shift, P}(y) # Py (y), P*(x|y) = P'(x|y)
e Concept drift, P*(y|x) # P'(y|x) or P*(x|y) # P'(x|y)
e Sample-selection bias, P*(x,y) # P'(x,y)P(s|x,y)
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Covariate Shift (CS)

Source Domain Covariate Shift (CS) Train on Source Train on Target

4 \ o8 4

34 0o 34

24 e 2

14 14

04 04
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-2 0 2 4 -2 0 2 4 4
Principle

e Conditionals probabilities : P*(y|x) = P*(y|x)
e Feature marginals are different : P3(x) # Pk (x)
Compensating for the shift
e Covariate shift can be compensated using sample weighting [Shimodaira, 2000].

e The target risk can be expressed as an expectation on the source distribution

Py (x
e ) (12)
X
So if the ratio w(x) = 113%23 is estimated one can learn from an empirical source
X

distribution (careful that supp(P%) C supp(P%) or else division by 0). 16/92



Target Shift (TS)

Source Domain Target Shift (TS) Train on Source Train on Target
v v v
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Principle (a.k.a prior shift or label shift)
e Conditionals probabilities : P*(x|y) = P'(x|y)
e Label marginals are different : P (y) # P} (y)
Compensating for the shift
e Target shift can be compensated using sample weighting [Shimodaira, 2000].

e The target risk can be expressed as ane expectation on the source distribution

Py(y)
Rpt(f) = Bxyps | oo~ L 1
So if the ratio w(y) = %Ez; is known it can be used to reweight samples (P5(y)

cannot be estimated from target data). 17 /02



Concept Drift (CD)

Source Domain Concept Drift (CD) Train on Source Train on Target

4 \ 4
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Principle (a.k.a Conditional shift)

e Conditionals probabilities are different : P*(x|y) # P'(x|y) or P*(y|x) # P'(y|x)
Compensating for the shift

e Hardest shift because requires a model for the transformation between the

conditional probabilities (can model sensor drift).

e In the special case where there exists a mapping m in the feature space
(P*(ylm(x)) = P"(y|x)) then

Rpt(f) = Exy~ps [L(y, f(m(x)))] (14)
e The marginals Py or Px are usually the same but when they are not the problem

is known as generalized target shift.
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Sample-Selection Bias (SSB)

Source Sample-Selection Bias (SB) Target Sample-Selection Bias (SB) Train on Source Train on Target

Principle
e The exists a multiplicative sampling bias : P*(x,y) = S(x,y)P'(x, y)
Compensating for the shift

e Requires a good estimation of S(x,y) to be able to compensate.
e When S(x,y) is known

Rt (f) = By @uy,ﬂx)) (15)

e Same technique use for polls when estimation the votes in political elections.
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Domain adaptation problem and generalization

Domain adaptation problem and generalization

Generalization under data shift
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Theory of generalization in DA

S. Ben-David

Y. Mansour

A short and partial history of DA generalization

Seminal results by [Ben-david et al., 2006] provided first
bounds on 0 — 1 classification losses using VC-dim.

Generalization bounds for regression and classification by
[Mansour et al., 2009].

Bounds for regression using generalized discrepancy by
[Cortes and Mohri, 2011, Cortes et al., 2015].

Impossibility theorems

[Ben-David et al., 2010, Ben-David and Urner, 2012].
Bounds with MMD [Redko, 2015] and Wasserstein
[Redko et al., 2017] discrepancies.

PAC Bayes bounds for DA
[Germain et al., 2013, Germain et al., 2016].

Recent survey in [Redko et al., 2020a] and the book
[Redko et al., 2019b], thesis of Sophiane Dhouib.
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Domain disagreement

Covariate Shift (CS)

Target Shift (TS)

Concept Drift (CD)

44 49 ® o
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Definition [Ben-David et al., 2010, Def. 5]

Let P° and P° be the distributions in the source and target domain respectively, the
domain disagreement can be expressed for a given hypothesis space H as

A(P*,PY) = inf
H

fe

Rps(f) +Rpe(f) (16)

e Measures if one can learn a unique predictor f € H that works on both domains.

e Originally proposed with loss L equal to the 0-1 loss in [Ben-david et al., 2006]".

!Ben-david, S., Blitzer, J., Crammer, K., and Pereira, O. (2006). Analysis of representations for domain
adaptation. In Neural Information Processing Systems (NIPS). MIT Press 21/92



Discrepancy distance between marginals

Covariate Shift (CS) Target Shift (TS) Concept Drift (CD)
4 44
Q ®
3 31%g®
N 2 1 2 1
1 14
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& o - o o & &
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Definition [Mansour et al., 2009, Def. 4]2
The discrepancy distance between two feature marginals P35 and P% is defined as

DI (P%, Pk) = o By [L(f(x), /(%)) = Exopy [L(f(x), f/(x))]] (17)

e Measures the ability of two predictors to have different losses across domains (no
labels needed). For classification to discriminate between source/target samples.

e Proposed in [Ben-David et al., 2010] for classification with L being the 0-1 loss
illustrated above (and called dyaz).

2Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and
algorithms. In Conference on Learning Theory (COLT), pages 19-30 22/92



Generalization bound for Domain Adaptation

DA generalization bound [Ben-david et al., 2006, Thm 1]*
The generalization of a predictor f on target can be bounded with probability 1 — § as

2en

Rt (f) € R (F) + Di1 (P, Phe) + A™ (P, PY) + \/ 2 (C(H) log gy 108 %)
(18)
e (C(H) is the VC (Vapnik-Chervonenkis) dimension that measures the complexity
of the hypothesis space [Vapnik, 2006] and n = ns = n.

e Bound on the classification error wih loss L equal to the 0 — 1 loss.

e Similar result with general loss L in [Mansour et al., 2009] using Rademacher
complexity instead of VC dimension.

e Generalization bounds for regression in [Cortes and Mohri, 2011].

e Similar bounds can replace the term D3 with MMD [Redko, 2015] and
Wasserstein [Redko et al., 2017] discrepancies.

3Ben7david, S., Blitzer, J., Crammer, K., and Pereira, O. (2006). Analysis of representations for domain
adaptation. In Neural Information Processing Systems (NIPS). MIT Press
23/92



DA Generalization bounds and what to do with them?

—— 0
1. ERM 2. Emp. Marg. disc. 3. Dom. disag.

Rt (f) < Rpa(f) + Di%a (Px, Ply) + A (P*, P') + \/ : (O(H)l og (fm) + log 4)

4. Sampling term
1. Empirical risk on the samples of the source domain.
2. Empirical feature marginal discrepancy (how much P3 and Pl are different?).
3. Domain disagreement (can we train a predictor that work for both?)
4

. Sampling term decreases with n but increases with complexity of H (overfiting).

Strategies (minimizing the bound)
e Train the predictor f on source while limiting the complexity (min 1+4).

e Change the empirical feature distributions to minimize the discrepancy (min 2, by
re-weighting of feature learning).

e Hope that there exists and f that works on both domains or else you need to
compensate for the shift (min 3).
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Domain adaptation problem and generalization

Domain adaptation problem and generalization

The family of DA problems
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The family of DA problems

USPS MNIST PIE0OS PIEO7 PIE09 PIE29 Calltech Amazon DSLR Webcam
4 + FAME B zibi;

& B
Y4 EEREE A Lo

Supervised ML VS the real world
e DA comes from a practical problem : the test data does not follow the same

E—§

distribution of the training data.

e Other practical constraints (or other sources of information) can lead to different
problems :

e Some labeled samples in target domains.
e Multiple sources of information.
e Data lying in different spaces (X* # X'!), e.g. change of sensor.

Variants of DA problems
e Unsupervised DA and Semi-supervised DA.

e Multi-Source DA (MSDA) and Multi-target DA (MTDA).

e Heterogeneous DA (HDA)
25/92



Unsupervised and semi-supervised DA

Unsupervised DA

Source Domain

+ Class 1
O Class 2
— Source classifier

Targel)omam

o
°6
o ®
o
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Semi-Supervised DA

Source Domain

+ Class 1
O Class 2
— Source classifier
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o
°6
o ®
o
o

+y .20
++ i 000
4+t oo
+++ o ©
+ 0o
++tr 0000
+ * oo
+++ o ©

Source : {x},y; };=

(x5}

Target :

Requires assumptions on the

shift (CS, TS, CD, SSB).

Source : {x},y;}i2,
Target © {xj}71,, {y;}L,

The few n; < n; labeled

target samples can help guide

the learning on target.
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Multi-source DA and Multi-DA

Multi-source DA

Source 1 Source 2
=] . s s\D
R 'z e Sources : {X},yi iz
g ++:+ E t\n
o | e

5 o 0 mleke R + 0o e Target : {x;}},
S og o v %l ol I + 0600 _ _
8 gl &+t o o e D source domains available.
g Source 3 5 + + o ©
A o ) = + e Can use similarity between

HOUC — Adapted classifier source and target domains.

ulti- ulti-Sou ulti-
Multi-DA (Multi-Source + Multi-Target

Source 1 Source 2 1) Target 2 D.
ERE 2 e Source : {X},yi}usy
g - g N t 1D
= o +.r 0% + %0 . t
8 0 @0 ++I*+ %% 8 — Adapted Jﬁ* wog© ° Target . {Xk k=1
° classifiers . .

8 g3l e D, =1 is Multi-Target DA
=] Source 3 EO Target 1 Target 3 .
5 3 . . and D, =1 is MSDA.
5] 0 %° 9 = o &0 :**tf o @°

HWUC A\ 7 ° e Strong relation to Multi-Task

Learning (MTL is Dy = 0)
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Heterogeneous DA (HDA)

=
<
£ 5
| |
© T < + [eXe}
R > 2+ 000
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o o Q — Adapted classifier

Principle
e Feature samples lie in different spaces X'® # X",
e |n the general case no relation is known a priori between the two spaces.
e Very hard problem so post approach perform semi-supervised HDA.

e Example: change in sensors or resolution and no knowledge about their

correspondances.
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DA VS Other ML techniques

DA VS Transfer Learning [Thrun and Pratt, 2012]

e Main difference : in TL the labels in the target domain can be different from the
source domain (Y* # ") and usually labels are available in target.

e DA is a special case of transfer learning where the prediction task is the same.

e TL also often uses a pre-trained predictor (on source) instead of the raw datas.

DA VS Domain Generalization [Zhou et al., 2021]

e Main difference : DG searches for a unique predictor f that works on all possible

domains and no samples are available from any of the target domains.

e One predictor to rule them all (a lot of research in computer vision).

DA VS semi-supervised learning [Chapelle et al., 2006]
e Main difference : data assumptions are very different (often same distribution).
e Semi-supervised learning methods can be used on DA data (same datasets).

e Tools of semi-supervised (manifold, los density separation) also used in DA.

Always check what is solved in individual papers Tl, DA DG are not always used consistently.
29/92



Classical Domain Adaptation methods



Main DA approaches

Reweighting schemes [Sugiyama et al., 2008]
e Distribution change between domains.

e Reweight samples to compensate this change.

Subspace methods
e Data is invariant in a common latent subspace.
e Minimization of a divergence between the
projected domains [Si et al., 2010].

e Use additional label information
[Long et al., 2014].

Alignment/mapping methods
e Alignment along the geodesic between source

and target subspace [Gopalan et al., 2014].
e Geodesic flow kernel [Gong et al., 2012].

e Mapping alignment based on Optimal
Transport [Courty et al., 2016].
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Classical Domain Adaptation methods

Classical Domain Adaptation methods

Reweighting methods
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Sample reweighting DA methods

Principle of sample reweighting

e The risk on target can be computed with

P'(x,y)
Rpi (f) = Bxyors | P 1y, 19
pi(f) = Braors | e DLy, 1) (19)
e If one can estimate a weighting function w(x,y) = g:((zz)) then a good strategy

is to minimize the reweighted source ERM

feHr Ns =1

min {ﬁw(f) - st(xiyyi)L(yh f(Xz))} (20)

e Depending on the quality of the estimation of w the re-weighting can perfectly
compensate the following data shifts

e Covariate Shift (if supp(P%,) C supp(P%)) [Shimodaira, 2000].
e Target Shift (if supp(P3) C supp(P5)) .
e Sample Selection Bias (if S # 0 on supp(P?))

e Most methods propose ways to estimate w depending on the assumption and the
data availability.
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Feature sample reweighting (1)

Covariate Shift (CS) Train on Source Reweighted Source DA reweighted source
44 4 4
3 3 ° 3
21 2 @, 2 P
& o
14 1 1
04 0 0
-1 -1 -1
-2 . -2 -2
-2 0 2 4 -2 0 2 4 -2 0 2 4
Principle
t
Px(x)

e Under Covariate Shift assumption, the optimal weight is w(x) =

Py (%)
e The target risk can be bounded empirically [Cortes et al., 2010] for § > 0 with
probability 1 —§

R () < R¥(f) + 271 DR%P;W% (1062 +1085) (20

where Dp is the 2-order Rényi divergence.

e Main difficulty is the estimation of the weights w; = w(x;) from empirical

distributions.
32/92



Feature sample reweighting (2)

Estimation of the weights
_ NGt B
N (x|as,29)

e Ratio of kernel density estimation [Sugiyama and Miiller, 2005]

n% Zz knt (X, Xf)

e Gaussian Approximation [Shimodaira, 2000] : w(x)

1 =t O 22
w(x) nls Z] kat (X, Xj) ( )
e Nearest neighbor density estimation [Loog, 2012, Kremer et al., 2015]
e Divergence minimization methods
. 1 s =
win 0 (3 wio. 74 @)

where D is a divergence such as
e MMD for Kernel Mean Matching (KMM) [Huang et al., 2006, Gretton et al., 2009].
e Kullback-Leilbler divergence for KL Importance Estimation Procedure (KLIEP)
[Sugiyama et al., 2007].
e L2 norm between the weights and the ratio (with kernels)[Kanamori et al., 2009].
e Logistic regression classifying source VS target and use the conditional probability
w(x) o< P(domain = target|x) as scaling [Sugiyama et al., 2012].
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Class-based reweighting

Target Shift (TS) Train on Source Reweighted Source DA reweighted source
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Principle and methods
e Under target Shift assumption, the optimal weight is w(y) = %%;'
e The target risk can be bounded empirically similarly to covariate shift
[Cortes et al., 2010].

e Black Box Shift Estimation (BBSE) [Lipton et al., 2018] uses a pre-trained trained
classifier h with confusion matrix Ch(xm on source and estimates the ratios as

W =C,ly,p where p; =P'(h(x)=1)

° 73§,(y) can be estimated by divergence minimization such as Kernel Mean
Matching [Zhang et al., 2013] or Wasserstein distance [Redko et al., 2019a].
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Classical Domain Adaptation methods

Classical Domain Adaptation methods

Subspace and alignment methods
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Domain Invariant subspaces

Concept Drift (CD) Projected data Wx

General principle

e Assumption: there exists a subspace of the data where the domains are similar
(W#P5 ~ W#P%) and where the label information is preserved.

e Estimate a projection W ¢ R4 \where d’ < d (in direct or kernel space).
e Project the source samples with W as xj = Wx?; (W#ﬁf\g = iéw,(f,)
e Train a predictor f on the projected source samples {X{, y; }.

e Predictor on target is f*(x) = f(Wx).

e Works better on data in high dimension where such a subspace can exist.

e Nonlinear invariant transformation with kernels or deep learning (next section).35/92



Transfer Component Analysis (TCA)

Principle [Pan et al., 2010]

e Search for a kernel subspace mapping m that minimizes the MMD divergence
between the domains while preserving the variance.

e TCA consists in finding a (kernel) projection matrix W solving

min Tr(W KLKW) + ATr(W ' W) (24)
st. W KHKW =1 (25)
Ks Ks,t L]_ __1 1
with K= L L= " T IS O S
K" K ol —1 ns + ny
st ILt

K is the kernel matrix between all source and target samples, L is a scaling
matrix used to compute the MMD between domains and H is a centering matrix
used for computing the variance.

e The projection matrix W is obtained with an eigen-decomposition of
(KLK + \I) ' KHK.

e Can be seen as a kernel PCA between domains [Schélkopf et al., 1997].
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Transfer Subspace Learning

Principle [Si et al., 2010]
e Minimize the Bregman divergence between the projected domains and a learning
loss as a function of the projection matrix W € R¥ xd

min D (W#Py, W#Py) + F(W) (26)

W,WTwW=I
where # is the pushforward operator and the learning F(W) loss can be :

e Reconstruction loss (PCA)
e Fisher Linear Discriminant loss (FDA)
e Locality Preserving Projection loss (LPP) [He and Niyogi, 2003]

e Use MMD as divergence in [Baktashmotlagh et al., 2013].
e TSL with sample reweighting [Long et al., 2014]

e Use pseudo labels to promote discrimination (see self labeling) [Long et al., 2013], 9>



Alignment methods

Concept Drift (CD) Adapted source with m 7 on adapted source B(h=1(x))
44 4 ‘,.‘ 4 44
@0 R 8me
34 3 P .‘m 3 34
v, 850 e’
24 2 ﬂ o 2 2
W AR
1q 1 Ny 1 14
04 0 Lad 0 04
-1 -1 -1 -1
-2 -2 . -2 -2
-2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2 4

General principle

e Assumption: there exists a mapping of the source data such that
Ps(m(x),y) = P'(x,y) (concept drift).

e Estimate a projection the mapping . from the data (usually with some
assumptions) and map the source samples x; = m(x;)

e Several strategies:

e Train a predictor on the projected source samples {X5,y?};.

e Train a predictor fs on source and predict with f(x) = fs(ﬁzfl(x)) .

e Train a prediction f invariant to the mapping 7 that is f(x) f(rh(x)) (similar to
subspace method but stronger assumption that such invariant classifier exists).
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Subspace Alignment (SA)

/1 Terget Domain

802

Vg Ve

Target Aligned Source Domain

Principle [Fernando et al., 2013]*
e The exists a mapping m between the source and target that aligns the
covariances of source and target.

e The optimal mapping under their assumption is a correspondances between the
sorted eigenvectors of the covariances.
e SA consists in the following steps :

1. Estimate the d’ < d eigenvectors matrices with largest eigenvalues V* and V* on
source and target.
; _ vtysT X
2. Apply the mapping m(x)A— V'V x on the source samples to get X;.
3. Train a target predictor f on adapted dataset {X7,y’};

“Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T. (2013). Unsupervised visual domain
adaptation using subspace alignment. In Proceedings of the IEEE international conference on computer
vision, pages 2960-2967
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Extensions of Subspace Alignment
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Extensions of Subspace Alignement
e Landmarks (selected in both domains) + kernel as pre-processing for subspace
alignment [Aljundi et al., 2015].

e Joint estimation of subspace and classifier [Fernando et al., 2015].

e Subspace Distribution Alignment (SDA) perform SSA mapping plus a distribution
alignment optimizing first and second order moments [Sun and Saenko, 2015].
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Model data shift as a geodesic on a manifold

Subspaces:

Domains:

Geodesic on the Grassmann Manifold [Gopalan et al., 2011, Gopalan et al., 2013]
e Model evolution of the subspaces from V* to V' along the Grassmann Manifold.
e Update the data incrementally toward target and train classifier.
e Samples can be represented with domain invariant features (along the discretized

geodesic).

Geodesic Flow Kernel (GFK) [Gong et al., 2012]
e Same modeling as above but complete integration instead of a discretization.
e Avoid the selection of the number of intermediate steps.

e Allow to compute features (and a kernel) invariant to the domain (integrated

along the manifold) . 41/92



Classical Domain Adaptation methods

Classical Domain Adaptation methods

Other approaches
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Self-labeling approaches

General principle

Estimate labels for the target domain to learn a better classifier.

Update the labels iteratively when updating the DA model.

Self-labeling DA methods

SVM margin used to select target samples labeled that are used for updating
predictor (DASVM) [Bruzzone and Marconcini, 2010].

Iterative self labeling [Habrard et al., 2013] uses [Balcan et al., 2008].

Label iteratively target samples with co-training [Chen et al., 2011] (inspired from
semi-supervised co-training).

Transfer Feature Learning aim at estimating a discriminant subspace and updates

iteratively the target labels [Long et al., 2013]. 42/92



Minimax and robust optimization

Principle
e Minimax estimators are robust to changes in the target labels or training data.
e Robust Bias-Aware classifier [Liu and Ziebart, 2014] :
min ey max ey iy fee ik Ser L0 F05)

e Robust Covariate Shift Adjustment (RCSA) [Wen et al., 2014]:

minfEH Il’laneAn nlt Zl 1 (y'm ( f))w’b

Distributionaly Robust Optimization [Hu et al., 2018, Kuhn et al., 2019]

min max E‘x,y~7D [L(ya f(X))} (27)
' PeB(Ps)

Bg(ﬁs) is the ball around 755 for a given divergence.
e This ensures a given performance when P! is in the ball (close to P*).

e The ball can be the KL divergence [Hu et al., 2018] or Wasserstein distance
[Kuhn et al., 2019].
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Classical Domain Adaptation methods

Classical Domain Adaptation methods

Optimal Transport Domain Adaptation
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Optimal transport for domain adaptation

Dataset Optimal transport Classification on transported samples

++ Class 1
O Class 2

Samples x;

+0 SamplesT,, (x})

Y0 Samples T, (x;)
amples x! b Samples X! Samples x!

—— Classifier onx; —  Classifier on T (x})

Assumptions
1. There exist an OT mapping T in the feature space between the two domains.

2. The transport preserves the joint distributions:
P*(x,y) = P'(T(x),y).
3-step strategy [Courty et al., 2016]
1. Estimate optimal transport between distributions (use regularization).
2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Can be done the other way but needs a mapping for new samples.
44/ 92



Generalization bound for OTDA with mapping estimation

Generalization bound [Flamary et al., 2021]

Let f° be a prediction rule in the source domain with a Lispschitz constant My and
R, the expected risk on domain p with a Lispschitz continuous loss L of constant M.
Under the OTDA assumption 2 we have the following generalization bound

Re(f* 0 T7Y) < Ru(f*) + MyMiEu gy, [T (T()) = 77 (T(@)]]  (28)

e Train a classifier f on source and estimate a mapping T~ from target to source.
e True for any mapping 7' (not only OT mapping).

e Need out of sample mapping 7' (to map new target samples).
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Mapping with optimal transport

Target and Source dlstrlbutlo?s5 Generated distribution 1s Sample displacement
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Monge mapping estimation
e Mapping does not exist in general between empirical distributions.
e Barycentric mapping [Ferradans et al., 2014].
e Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2018].

Closed form exist for transport between Gaussian distributions.

Question of estimating the Monge Mapping: still an open problem theory
suggests very hard (O(n~'/?) [Hiitter and Rigollet, 2019]) .
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Transporting the discrete samples

Distributions Classt OT Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]

fTO (x;) = argmin Z T;,jc(x,x5). (29)
* J
e The mass of each source sample is spread onto the target samples (line of TY).

The mapping is the barycenter of the target samples weighted by T

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

e Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples

Distributions Classic OT (LP) Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]

Try(x}) = argmin Y To(i, 5)[lx — x|*. (29)
* J
e The mass of each source sample is spread onto the target samples (line of TY).

The mapping is the barycenter of the target samples weighted by Ty

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).
e Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples

Distributions Classic OT (LP) Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]

Tz (x) = m;To(iJ)xz. (29)

e The mass of each source sample is spread onto the target samples (line of TY).

The mapping is the barycenter of the target samples weighted by T

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).
e Trick: learn OT on few samples and apply displacement to the nearest point.
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Barycentric mapping [Ferradans et al., 2014]

Tz (x) = m;To(iJ)xz. (29)

e The mass of each source sample is spread onto the target samples (line of TY).

The mapping is the barycenter of the target samples weighted by T

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).
e Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples

Distributions Classic OT (LP) Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]
=~ s 1 N 7
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e The mass of each source sample is spread onto the target samples (line of TY).

The mapping is the barycenter of the target samples weighted by T

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).
e Trick: learn OT on few samples and apply displacement to the nearest point.
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Joint OT and mapping estimation

2D Dataset Barycentric displacement T displacement Out of sample T
g x x
oy +
a + % "
s e g .
5
| e ENIE
o
T e

Nonlinear mapping
"
i
#
i
%X& §

Simultaneous OT matrix and mapping [Perrot et al., 2016]
. s 7 s\ (12 2
Soin <T7C>F+ZHT(X71) T (x3)[|” + AT

e Estimate jointly the OT matrix and a smooth mapping approximating the
barycentric mapping.

The mapping is a regularization for OT.

Controlled generalization error (statistical bound).
e Linear and kernel mappings 7', limited to small scale datasets.
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Seamless copy in images

target

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.

Example and webcam demo: https://github.com/ncourty/PoissonGradient
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.
e Solve Poisson equation to reconstruct the new image.
Seamless copy with gradient adaptation [Perrot et al., 2016]
e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors.

Example and webcam demo: https://github.com/ncourty/PoissonGradient
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.
e Solve Poisson equation to reconstruct the new image.
Seamless copy with gradient adaptation [Perrot et al., 2016]
e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors.

Example and webcam demo: https://github.com/ncourty/PoissonGradient
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Visual adaptation datasets

USPS MNIST PIEO5 PIEO7 PIE09 PIE29 Calltech Amazon DSLR Webcam
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e Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).
e Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).
e Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments
e Comparison with state of the art on the 3 datasets.

e OT works very well on digits and object recognition.

e Works well on deep features adaptation and extension to semi-supervised DA.
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Special case: OT mapping between Gaussians

Source and target distributions Empirical means and covariances Linear Monge mapping
1095 Source samples x x| 109 Source samples 1091"% " Target samples * X
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81 81 4 Source mean ms 81
> Target mean m;
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OT mapping between Gaussian distributions
e Piy ~ N(m1, 21) and Pt)( ~ N(m2722)

e The optimal map T for c(x,y) = ||x — y||3 is given by
T(x) =ms2 + A(x —my)
with A = 57 /3(5)/%5,5,/%) V28 /2,
e Can be estimated from empirical distributions.

e Linear mapping for any distributions with a density [Flamary et al., 2021].
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Special case: OT mapping between Gaussians

Source and target distributions Empirical means and covariances Linear Monge mapping
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OT mapping between Gaussian distributions
] PSX ~ N(m1, 21) and Pt)( ~ N(mQ,ZQ)

e The optimal map T for c(x,y) = ||x — y||3 is given by
T(x) =m2 + A(x —my)
with A = £, /*(21/°5, /)2 12,
e Can be estimated from empirical distributions.

e Linear mapping for any distributions with a density [Flamary et al., 2021].
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Expected error for Linear Monge mapping estimation

Empirical estimation of linear Monge mapping
e Empirical estimation of Gaussian parameters for 11 and ps.
e n; samples from p1, ne samples from ps.

e Estimate 7" with closed form solution.

Theorem ([Flamary et al., 2021])

Let p1 and po be sub-Gaussian distributions with expectations mi, mo and
positive-definite covariance operators X1, ¥ respectively with eigenvalues in [c, C| for
some fixed absolute constants 0 < ¢ < C' < oo. We also assume that

n; > Cr(X;), j=1,2, for some sufficiently large numerical constant C' > 0.

Then, for any t > 0, we have with probability at least 1 — e~ " — n—ll
. b)) DX
E |T() - Pa)] < O (\/r( By w( 2) |, \/ ro, ot ) o
S~ ni no ni A\ ns ni N\ na
where C' > 0 is a constant independent of ni,n2,r(%1),r(X2) and r(B) = A;Z(}ig)‘
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Monge mapping for Image-to-lmage translation

Summer (Real)
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Principle
e Encode image as a distribution in a DNN embedding.
e Transform between images using estimated Monge mapping.

e Linear Monge Mapping (Wasserstein Style Transfer [Mroueh, 2019]).

Nonlinear Monge Mapping using input Convex Neural Networks
[Korotin et al., 2019].

Allows for transformation between two images but also style interpolation with
Wasserstein barycenters.
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OTDA Generalization bound

Estimator in source domain
Let Hx be a reproducing kernel Hilbert space (RKHS) associated with a symmetric

nonnegatively definite kernel K : R x R — R We consider the following empirical
risk minimization estimator:

Jn, = avgming gy, < ZL (i, F(x3) (30)
where we assume that the eigenvalues of the integral operator T'x of Hx decrease

with A, < k2% for some 3 > 1/2 (see [Mendelson, 2002]).

OTDA generalization bound

If Rs(f2) = Re(fL) and T is the linear monge mapping estimator, under the

assumptions of OTDA, we get with probability at least 1 — e™" — 2,

ni

~ N t
Re(fny 0 T71) = Re(f1) S my 20/0128) +—

[r(X2) [r(X1) /
MM 31).
* f L( ni1 Ang n1/\ng> ( 1)
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Linear Monge mapping on images

Source
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Target

Numerical experiments
e Split MNIST dataset in two non-overlapping empirical distributions.
e Apply linear motion blur to the target distribution.
e Estimate mapping and transport source samples.

e Convolutional Monge Mapping for important speedup (FFT).
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Linear Monge mapping on images
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Target Transp.

Numerical experiments
e Split MNIST dataset in two non-overlapping empirical distributions.
e Apply linear motion blur to the target distribution.
e Estimate mapping and transport source samples.

e Convolutional Monge Mapping for important speedup (FFT).
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mapping on images

2D filter Est. 2D filter (n=10) Est. 2D filter (n=100) Est. 2D filter (n=1000)

Numerical experiments

e Split MNIST dataset in two non-overlapping empirical distributions.

Apply linear motion blur to the target distribution.

e Estimate mapping and transport source samples.

Convolutional Monge Mapping for important speedup (FFT).
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Optimal transport for domain adaptation

Dataset Optimal transport Classification on transported samples

)70

Q. L O SumplesTy, (x))

+0 Samples T, (x{)
/ E

'

nples X

—— Classifier onx; — Classifier on T, (x)

Discussion
e Works very well in practice for large class of transformation [Courty et al., 2016].
e Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2018].
e Nice generalization bound for linear Monge mappings [Flamary et al., 2021].
But
e Model transformation only in the feature space (requires P} = P3,).
e Requires the same class proportion between domains [Tuia et al., 2015].

e Estimate a 7' : R? — R? mapping for training a classifier f : R? — R.
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Deep Domain Adaptation




Deep Domain Adaptation and generalization

Generalization bound for shallow methods

Rot(f) < R () + DI (P, Ple) + A™ (P, PY) + \/ 2 (covon S +1ons)
N—— n

1. ERM 2. Emp. Marg. disc. 3. Dom. disag.

4. Sampling term

e Classical DA methods minimize part 1 and 2 by learning a classifier on source and
limiting the discrepancy (e.g. with re-weighting).

e But they are limited by their original feature space of fixed kernel representations.

What deep learning can do?
e Learn feature representation g that can both discriminate (part 1) and minimize
the domain discrepancy (part 2).

e For concept drift with a feature mapping deep learning can be used to estimate

this mapping between domain.
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A short history of Deep DA

e Visual DA promoting similarity between pairs in the feature
space (metric learning, partly supervised)
[Saenko et al., 2010].

e A Deep Convolutional Activation Feature (DeCAF) one of the
first open source visual features robust to domains and tasks
[Donahue et al., 2014].

e Deep Domain Confusion [Tzeng et al., 2014] Deep
Adaptation Network (DAN) uses MMD to minimize feature
marginal domain discrepancy [Long et al., 2015].

e Domain Adversarial Neural Network (DANN) measure the
discrepancy between domains using a classifier
[Ganin et al., 2016].

e Joint Adaptation network (JAN) minimize the joint MMD
across layers [Long et al., 2017].

e [Hoffman et al., 2018] Cycle-Consistent Domain Adaptation

uses CycleGAN to lean mappings between domains. 58 /02



Deep Domain Adaptation

Deep Domain Adaptation

Domain invariant feature learning : one classifier to rule them all

59/92



Domain invariant feature learning

Principle
mln ZL y7,7 ))) +)\D(9#PX79#PX) (31)
N— —_—
Disc. on feature marginals
Loss on source
e f is the predictor model in the embedding and g the embedding model, final

predictor is f o g.

D is a discrepancy measure between the empirical feature marginal distribution
extracted with g.

The main assumption is that one can learn an embedding that is both
discriminant (for both domains) and invariant to the domains (the feature
distributions are the same).

Reasonable assumption in visual domain adaptation where a given class can be
"disentangled” from the style or acquisition procedures of the domains.

Several existing methods that differ mainly from their choice of D.
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Deep Domain Confusion (DDC)

domain
loss Source ¢ \
/

Minimize classification

Maximize domain
confusion
—_—

e — _———
Uniabeled
Labeled Images Images Target

Principle [Tzeng et al., 2014]°

classification
loss

Source ! Target

I
fc6

convs

e Choose the discrepancy D as MMD : AfMD(g#Pﬁﬁg#”Pﬁ()?
e The objective can be optimized efficiently with stochastic optimization.

e Extended to a joint MMD across layers called Deep Adaptation Networks (DAN)

in [Long et al., 2015] : MM D({g: 11 #P5%, {g 1 #P%)* with g; embedding
function for layer .

5Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474
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Domain Adversarial Neural Network (DANN)
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Principle [Ganin et al., 2016]

r;ngnmax—ZLy“ x1))-A (;ZSLC(O,f“‘(g(xf))HTiZLC(LfC(g(XD)))

e Choose the discrepancy D as minus the classification loss for an adversarial (32)
domain classifier (classical GAN objective).

e The backprop of g wrt the adversarial loss is negative : gradient reversal.

e Adversarial discriminant DA (ADDA) proposed to learn two independent

embeddings ¢ and g* (no shared weights) [Tzeng et al., 2017]. 6102



Wasserstein Distance Guided Representation Learning (WDGRL)

Feature Extractor Discriminator
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Domain Critic (d) t-SNE of WDGRL features

Principle [Shen et al., 2018]
e Choose the discrepancy D as the Wasserstein distance (no vanishing gradients).
e Use the WGAN loss [Arjovsky et al., 2017] that relies on the dual formulation of
the Wy distance :

Wi(Ph,Ph) = max  Burg [90X)) — Bxupg 00 (33)

e Approximating the Lipschitzness of ¢ with constraints or penalization

[Gulrajani et al., 2017]. 62/92



Match and reweight Domain Adaptation (MARS)

Example of empirical mean matching of empirical mean matching

Class 0 Source
Class 1 Source
Class 2 Source
Class 0 Target
Class 1 Target
Class 2 Target

- Class 0 Target
. Class 1 Target
| Class 2 Target

& Source sample mean ’ & Source sample mean

G © Target sample mean @ Target sample mean

Principle [Rakotomamonjy et al., 2022]

Class 0 Source
Class 1 Source
* Class 2 Source

e Proposed to handle both concept drift and target shift.

e Step 1 : estimation of target proportions p’:
° Pjt-,f) < Estimate a mixture of K distribution on target (K-means/GMM)
e C < Compute the ground cost between Py (x|y = i) and the mixture above.
e T* < Solve OT between uniform weights on C.
e p! «+ KT*p compute target class proportion withy OT permutation.
e Step 2 : Perform domain invariant feature learning with Wasserstein distance
[Shen et al., 2018] using the estimated class based reweighting on source (both

on empirical risk and W7). 63/92



Other divergence based methods

ana(eTargelEnwder E’ x")
@ @ I Shared Decoder: D(E.(x) + E,(x

hare%oder %x Elr
@ﬂﬁ

Private Source Encoder E

B HE

Domain Separation Networks [Bousmalis et al., 2016]

Classifier G(E,(x

e Learn both an invariant embedding and domain specific (private) embeddings.
e Optimize classifier on labeled source using shared encoding and reconstruction
losses from the private/shared encodings on both domains (disentanglement).
Deep Correlation Alignment (DeepCORAL) [Sun and Saenko, 2016]
D(g#P%, g#P%) = |I£" = ='||% (34)
where 3 = B, gup [(x —m)(x — m) "], is with m = E, 447, [X] is the empirical

covariance in the feature space.
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Virtual Adversarial Domain Adaptation (VADA)

{Is-,l-fs} . . G Entropy + VAT

Principle [Shu et al., 2018]

e Adversarial loss between the embedding similar to DANN [Ganin et al., 2016].

e Conditional entropy minimization on target [Grandvalet and Bengio, 2004].

—E, . [(9(x)) " log(f(9(x))))]

e Virtual Adversarial training (VAT) on target and source [Miyato et al., 2018]:

Eypt [max KL(f(g(x))|f(9(x +v)))]

X lvi<e

e Decision-boundary iterative refinement training promotes cluster assumptions on
target (DIRT-T).
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Deep Domain Adaptation

Deep Domain Adaptation

Deep mapping approaches
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One-Sided Unsupervised Domain Mapping

- WP SHE ) S D

o B Cl o) @ EB L
v ff} P CDER o J 58
o e e )

Principle [Benaim and Wolf, 2017]

e Conditional GAN can learn mappings between distributions.
e But there exists an infinity of mapping most of them do not preserve labels.

e Use regularization of the mapping so that it can preserve pairwise distance:
By wrm@opll(lx = x| = ms)/os — ([lm(x) — m(x')|| — mq) /o] (35)

e Also promote consistant self distance between half of each images.

66 /92



Optimal Transport for Domain Adapation

ir?rget and Source distributio?s5 Generated distribution 15 Sample displacement

1.0 "&‘:+ 1.0
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44 g X
—0.5 o3 oy Lo.5 CF il Los
4 = T, .E&. i 2
-1.0 x;&«f 2 l1.0{ + Targetsamples 1.0 : -
o + Generated samples —— Source displacement
=15 T 15 T T T 1.5 — E—
-1 -1 0 1 -1 0 1

Large scale OT mapping estimation [Seguy et al., 2018]
e OTDA [Courty et al., 2016] has been shown to work on
deep embedding but did not scale to large scale datasets.

e For a fixed feature representation one can estimate an OT
mapping using entropic OT. 2-step procedure:
1 Stochastic estimation of regularized T in the dual with
neural networks.
2 Stochastic estimation of 7" with a neural network.

e Convergence to the true mapping for small regularization
[Seguy et al., 2018] and to the entropic mapping for large n

[Pooladian and Niles-Weed, 2021]. 67/92



CyCADA : Cycle-Consistent Domain Adaptation

Reconstructed Source Image Source Prediction

fs) &

Source Image Source Image Stylized as Target Target Image

Principle [Hoffman et al., 2018]°

e Learn a mapping m from source to target and u from target to source such that
u(m(x)) = x (both from reconstruction and semantic (class preservation)).

e Followed by an invariant DA between the mapped source and target data.

e Uses GAN losses to promote similarity between mapped source and target in the

embedding.
5Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell, T. (2018).

Cycada: Cycle-consistent adversarial domain adaptation. In International conference on machine learning,

pages 1989-1998. PMLR
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Deep Domain Adaptation

Deep Domain Adaptation

Joint Distribution Optimal Transport (JDOT) and DeepJDOT
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Joint distribution and classifier estimation

Training data

@ f)s
) ® [t
> ] ’
° o
° D
®
@
8 °
[} [0))0]0)000)))) (€0)))0)01(0 00 6]
X

Main idea
e Objectives : allow changes in the label space, learn directly a target predictor f.
e Joint feature/labels distribution P in source, feature distribution P* in target.
e Wasserstein needs the two distributions
e Use a proxy distribution : Pty = L Zf;‘l §x§7f(x§)

nt
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Joint Distribution Optimal Transport for DA (JDOT)

Training data JDOT model with 7%
° e 7
D) e i
< %}
> (] ) >
° ®
[}
)
8 °
) [0)010)050)))) (€0))) 0) 03¢0 0. ) NN0]

X

Learning with JDOT [Courty et al., 2017]

mfin {Wl (7557 75tf) = inf D(Xf7 Yf7 X;’v f(xg))ﬂj} (36)

Tell 4—
)

o Pty=1 Zf;’l dxt p(xt) is the proxy joint feature/label distribution.

ng

D(x5,y73%5, f(x5)) = allxi — x5 + L(y7, f(x])) with a > 0.

We search for the predictor f that better align the joint distributions.
e OT matrix does the label propagation (no mapping).

e JDOT corresponds to minimizing a generalization bound.
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Optimization problem

; - s it s rixt
Soin_ Z Tig (ad(x],5) + LUyl F(x7)) +2A(f) (37)
Optimization procedure

e Q(f) is a regularization for the predictor f

e We propose to use block coordinate descent (BCD)/Gauss Seidel.

e Provably converges to a stationary point of the problem.

T update for a fixed f f update for a fixed T
e Classical OT problem. ;Télg ZTi‘jﬁ(yf»f(x;)) +AQ(f) (38)
1,3

e Solved by network simplex.

e Regularized OT can be used e Weighted loss from all source labels.

(add a term to problem (37)) e T performs label propagation.
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Regression with JDOT

5 Toy regression distributions Toy regression models Joint OT matrices Model estimated with JDOT
10 1.0 1.0 1.0
(- =]
0.5 0.5 0.5 0.5
0.0 & 0.0
o
~— Source model |—0.5 -0.5
° o Source sampes o ~— JDOT matrix link o  aeemodel
© Target samples |~1.0 ==- OT matrix link  [-1.0 — JDOT model
-25 0.0 25 5.0 =25 0.0 2.5 5.0 =25 0.0 25 5.0
Least square regression with quadratic regularization
For a fixed T the optimization problem is equivalent to
. 1. 'NIE 2
min —|lg; = FE)|I7+ A S 39
min > —llg; — £ + Al (39)

o Ui =mny Zj T;,;y; is a weighted average of the source target values.
e Note that this problem is linear instead of quadratic.

e Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT

No adapt.

1 Accuracy along BCD iterations

—

0 /

Linear Kernel

RBF Kernel

e

Multiclass classification with Hinge loss
For a fixed T the optimization problem is equivalent to

f€EH

e P is the class proportion matrix P = NitTTPS.

e P° and Y* are defined from the source data with One-vs-All strategy as

Ve — 1 if y? =k ps _ 1 ifyl =k
bk —1 else ’ bk 0 else
with k € 1,--- , K and K being the number of classes.

min Y Pl fu(x5)) + (1= P L(=1, fu(x5)) + A D |1 fel® (40)
ik 5
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DeepJDOT

j Loss (9):
| 17 | ‘ +
I ®- E — [lata) - glat) |2
‘ T ' i +
— ) f] Le(ys, f(9(x3)))

Tell,f,g n®

min o3 L Fo@D)+ Y T (allgle) — @I + ML (57, Fg(a)))
’ v (41)

DeepJDOT [Damodaran et al., 2018]
e Learn simultaneously the embedding ¢ and the classifier f.

e JDOT performed in the joint embedding/label space.
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DeepJDOT

Loss (9):

s (i, fg(a7)))
+

@j) — g(ah)|?
+

L(yss f(9(x7)))

m

Zﬁ Yi» f ) + min ZTu allg(@) = g(@HII” + AL (47, f(9(25))))

(41)

mln E

DeepJDOT [Damodaran et al., 2018]
e Learn simultaneously the embedding g and the classifier f.
e JDOT performed in the joint embedding/label space.

e Use minibatch to estimate OT and update g, f at each iterations
[Fatras et al., 2020] .

e Scales to large datasets and estimates a representation for both domains. 74/9



DeepJDOT in action

g

DeepJDOT [Damodaran et al., 2018]
e Evaluation of DeepJDOT on visual classification tasks.
e Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]
dataset.

e Ablation study : all terms are important.

e TSNE projections of embeddings (MNIST—MNIST-M).
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DeepJDOT in action

Method Adaptation:source—target
MNIST — USPS|USPS — MNIST|SVHN — MNIST|MNIST — MNIST-M
Source only 94.8 | 59.6 | 60.7 | 60.8
DeepCORAL [6] 89.33 915 59.6 66.5
MMD [14] 88.5 735 64.8 725
DANN [8] 95.7 90.0 70.8 75.4
ADDA [21] 92.4 93.8 76.0° 788
AssocDA [16] - - 95.7 89.5
Self-ensemble* [42] 88.14 92.35 93.33 -
DRCN [40] 91.8 73.6 81.9 -
DSN [41] 91.3 - 82.7 83.2
CoGAN [9] 91.2 89.1 - -
UNIT [18] 95.9 93.5 90.5 -
GenToAdapt [19] 95.3 90.8 924
121 Adapt [20] 92.1 87.2 80.3 -
StochJDOT 93.6 90.5 67.6 66.7
DeepJDOT (ours) 95.7 96.4 96.7 92.4
target only 95.8 08.7 98,7 96.8

DeepJDOT [Damodaran et al., 2018]
e Evaluation of DeepJDOT on visual classification tasks.
e Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]
dataset.

Ablation study : all terms are important.

TSNE projections of embeddings (MNIST—MNIST-M).
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DeepJDOT in action

Art
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Real World Product Clipart

DeepJDOT [Damodaran et al., 2018]
e Evaluation of DeepJDOT on visual classification tasks.
e Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

e Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]
dataset.

e Ablation study : all terms are important.

TSNE projections of embeddings (MNIST—MNIST-M).
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DeepJDOT in action

Source Domain | Target Domain
‘&T i ELE I
! &

DeepJDOT [Damodaran et al., 2018]
e Evaluation of DeepJDOT on visual classification tasks.
e Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

e Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]
dataset.

e Ablation study : all terms are important.
e TSNE projections of embeddings (MNIST—MNIST-M).
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DeepJDOT in action

Source Only

DeepJDOT [Damodaran et al., 2018]
e Evaluation of DeepJDOT on visual classification tasks.
Digit adaptation between MNIST, USPS, SVHN, MNIST-M.
Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]

dataset.

Ablation study : all terms are important.

TSNE projections of embeddings (MNIST—MNIST-M).
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DeepJDOT in action
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DeepJDOT [Damodaran et al., 2018]

DeepJDOT

e Evaluation of DeepJDOT on visual classification tasks.
e Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

e Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]
dataset.

e Ablation study : all terms are important.
e TSNE projections of embeddings (MNIST—MNIST-M).
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Minibatch Optimal Transport

OT matrix

MB (n,m=20,5)

MB (n,m=20,10)

MB (n,m=20,20)

MB (n,m=20,15)
n

(n,m=20,5)

(n,m=20,10)

(n,m=20,15)

(n,m=20,20)

0.025

0020

0.015

0010

0005

0.000

o

s o 15

o s I 15

Principle [Fatras et al., 2020]
]\/.IBOTm (/Pfxq pf\{) = E»,si}NP;X)m,—,ﬁE(Np;{@ m [W(ﬁjh 75;()]

e Optimizing Wasserstein is numerically complex on large distributions.

(42)

e Numerous papers have been optimizing over minibatches [Genevay et al., 2017].

e MBOT is biased (M BOT,,(P5%,Px) > 0) but is actually a U-statistic and has
nice convergence property (convergence in O(n'/?)).

e But the equivalent expected OT plan is dense and can be far from exct OT plan.
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Unbalanced Optimal Transport

L2 UOT with AY =30 L2 UOT with AY =50 KL UOT withAY=1
) fg ‘g ®o ‘.
°Pe o ) V.VO‘ °®
° °
, ©
o, H
® e ®oe

Unbalanced Optimal transport (UOT) [Benamou, 2003]

min (T, C)p. + X" Dy (T1m,a) + ADy(T'1,,b) (43)

e D is a a Bregman divergence penalizing the violation of the marginal constraints.

e Only a portion of the total mass is transported, total mass can be unbalanced
between source and target due to constraint relaxation.

e Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].
e Sinkhorn for regularized UOT [Chizat et al., 2018, Séjourné et al., 2019].

e UOT can be reformulated as a weighted Lasso regression (with data fitting D)

[Chapel et al., 2021].
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JUMBOT: DeepJDOT for unbalanced and noisy data

UMB(7=0.05m=2) o UMB(7=0.1,m=2) N MBOT(t = + ®», m=2) o UOT(£=0.05,7=0.1)

e || os -l |-
| o8 06 n 06

UMB(7=0.05,m=2) UMB(7=0.1,m=2) o MBOT(t = + =, m=2) UOT(£=0.05,7=0.1)

i =

t

%

JUMBOT [Fatras et al., 2021]
e Main idea : DeepJDOT with minibatches and Unbalanced OT.
e Theoretical proof of robustness to outliers (UOT is upper bounded, not OT).

e Experiemnt on Partial DA (some classes are not in target) show robustness to
different class proportions between domains.

e Better ability to handle samping noise on minibatch because good performance on
small minibtach size.
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JUMBOT: DeepJDOT for unbalanced and noisy data
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JUMBOT [Fatras et al., 2021]
e Main idea : DeepJDOT with minibatches and Unbalanced OT.
e Theoretical proof of robustness to outliers (UOT is upper bounded, not OT).
e Experiemnt on Partial DA (some classes are not in target) show robustness to
different class proportions between domains.
e Better ability to handle samping noise on minibatch because good performance on
small minibtach size. 78/92



JUMBOT: DeepJDOT for unbalanced and noisy data

JUMBOT Deep)DOT

—100 +

-150

JUMBOT [Fatras et al., 2021]
e Main idea : DeepJDOT with minibatches and Unbalanced OT.
e Theoretical proof of robustness to outliers (UOT is upper bounded, not OT).

e Experiemnt on Partial DA (some classes are not in target) show robustness to
different class proportions between domains.
e Better ability to handle samping noise on minibatch because good performance on

small minibtach size.
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Domain Adaptation variants

Domain Adaptation variants

Multi-Source DA
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Invariant representation for Multi-Source DA (MSDA)

Multiple
Source Domains

i-th
classifier

t
Share V\{eighis

e

Share Weights
}

‘Weighted
Final Prediction

J-th
classifier

Classifiers Trained
on Source Domains.

Feature Extractor Moment Matching Component

@ i-th source domain Joth source domain 3¢ target domain Dotted lines appear in test phase

Existing approaches
e Domain-Invariant Component Analysis (DICA) using kernel methods
[Muandet et al., 2013].
e Moment Matching for Multi-source DA (M3SDA) [Peng et al., 2019] estimates
invariant representation and then perform weighting of source classifier.

e Wasserstein Barycenter Transport (WBT) [Montesuma and Mboula, 2021]
computes Wasserstein barycenter of source domains and then performs OTDA.
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Joint Class Proportion and OT estimation (JCPOT)

Data Independent OT OT with known proportion (0.6,0.4) OT with prop estimatien (0.599,0.401)
urce 1 Source 1

Source 1
x Mass from Class 1 x Mass from Class 1 x Hass from Class 1

Mass from Class 2

X Source 1(0.6,0.2)

Mass from Class 2

+ Source 2 (0.1,09) Mass from Class 2

. » ® Target (0.6,04) "

Target

Principle [Redko et al., 2019a]
e Under target shift, source domains and target have different class proportions.

e JCPOT : Estimate the target class proportion by minimizing the sum of the
Wasserstein distance of the class reweighted sources to the target.

e This estimation can be reformulated as a special case of Wasserstein barycenter.

e When target proportion are estimated perform OTDA using mapping or label
propagation.
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Weighted JDOT for MSDA
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Principle [Turrisi et al., 2022]

D
i 4% i, P 44
L ;ak " Py (44)

e Perform JDOT with a weighted sum of source domains.
e Optimize the weights a on the simplex to minimize the JDOT loss.

e The weights will do automatically a selection of the source domains that are
relevant to the task (as in close wrt the W7).

e Generalization bound taking into account the number of samples per source

domains and estimation of a.
81/92



Domain Adaptation variants

Domain Adaptation variants

Heterogeneous DA
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Heterogeneous DA (HDA)
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Existing methods
e Subspace projection then mapping estimation and SVM [Duan et al., 2012].
e Manifold alignment between domains [Wang and Mahadevan, 2011].
e Estimation of linear mapping between domains [Zhou et al., 2014].

e Mappoing using Optimal Transport across spaeces [Yan et al., 2018]
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Gromov-Wasserstein divergence

ldx (v,2") — dy (y,y")

Inspired from Gabriel Peyré

GW for discrete distributions [Mémoli, 2011]

1
P
GW, (s, = ( min D — Djy|PTs Tk,l>
p(ﬂ ) Teﬂ(usﬁut)i;k:ﬁ ) J,l‘ J

with s = 37, aidxs and e =37, bjézg and D; i, = [|x — %3, Dj; = [|Ix5 — x|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Invariant to isometry in either spaces (e.g. rotations and translation).
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Heterogeneous Domain Adaptation with GW

A A A source data { ¢ ¢ transported source data
OOQ target data @ ® @ labeled target data in SGW

(a) source data (b) target data (c) T obtained by EGW (e) T obtained by SGW

Semi-supervised Heterogeneous Domain Adaptation [Yan et al., 2018]
e Extension of OTDA [Courty et al., 2016] with GW.
e Use the OT matrix to transfer labels or samples between datasets.
e GW find correspondences across spaces but very noisy.

e Semi-supervised strategy allows very good performances.
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CO-Optimal Transport

Principle [Redko et al., 2020b]

COOT(X, X', w,w',v,v') = min > L(Xiw, X;)T5Thy (45)
T® € I(w,w') ikl
T € (v, V')
o X=[x1,...,x,)T €R"% and X' = [x},...,x/,]T € R"*? contains the

source and target data.

e wc A, and w € A, contain the weights of the samples in source and target
datasets.

e vc Ayand v € Ay contain the weights of the features in source and target
datasets.

e L(-,-) : R? = R" is the similarity measure.

e T is the OT matrix between samples, T" is the OT matrix between
features/variables.

e COOT entropic regularized version adds some entropic terms to the objective
value.
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Illustration of COOT on real data

n matrix for GW n° matrix for COOT

MNIST samples

=

v/

= =
MNIST samples

USPS samples USPS samples

COOT between MNIST-USPS datasets

Sample digits from MNIST 28 x 28 and USPS 16 x 16 ordered per classes.
Uniform weights w, w’ on samples, weights v, v’ on feature is average value.

Comparison between T from Gromov Wasserstein and COOT T*: better class
correspondence.

Visualization of T® with colors across pixels: spatial structure preserved.

Other application: finding correspondances between neurons in different
architecture (adapt between embeddings: HDA). 8692



Illustration of COOT on real data

USPS colored pixels MNIST pixels through ¥ MNIST pixels through entropic nv

COOT between MNIST-USPS datasets

e Sample digits from MNIST 28 x 28 and USPS 16 x 16 ordered per classes.

e Uniform weights w, w’ on samples, weights v, v’ on feature is average value.

e Comparison between T from Gromov Wasserstein and COOT T*?: better class
correspondence.

e Visualization of T with colors across pixels: spatial structure preserved.

e Other application: finding correspondances between neurons in different
architecture (adapt between embeddings: HDA).
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Domain Adaptation in Practice

Domain Adaptation in Practice

How to validate with no labels ?
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Validation for Domain Adaptation

f@’) cosQ =7
o7 [e?

F i}« [ o= ?

MD norma( opproach
is useless here.

Main practical problem

o No target labels are available.
e My usual validation procedure is useless here...
e And yet DA methods have parameters to choose.
What (some) people do?
e Maximize performance on target (very bad, more complex=more better)
e Validate on a few target labels (unrealistic).
e Use proxy on DA performance measure and validate (realistic, but rare).

e On datasets with multiple domains, validate params on one pair, and fix the
params on all other pairs (unrealistic, ok for research, guilty). 87/92



Circular Validation

Principle [Bruzzone and Marconcini, 2010]

1. Perform DA from source to target and learn ft.
2. Predict labels on target with f* and perform DA from target to source.

3. Measure performance as the accuracy after the two DA steps.

Discussion
e Meaningful proxy for DA performance but be careful of some fails (e.g. OT).

e Better when using independent datasets for each DA so date needs to be split :
validation done on smaller datasets.

e Works better on shallow methods (traditional CV).

e For deep learning, hard to use and does not help with early stopping.
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Importance Weighted Cross-Validation (IWCV)

Principle [Sugiyama et al., 2007]
Rpt = Zm > w(x)L(y, fx(x)) (46)

x, YT

where 7j defines a K partition of the source data and fk is estimated on the
complementary set.
e Can be used for any methods (especially shallow).
Py (x)
P (x)"

e Requires the estimation of the ratio w(x) =

e Theoretically grounded for Covariate Shift.

Deep learning extension: Deep Embedded Validation (DEV) [You et al., 2019]

e IWCV where the reweighing is estimated with a source/target classifier in the
embedding using approach from [Bickel et al., 2007].

e Variance reduction by control variate [Lemieux, 2014].

89/92



Domain Adaptation in Practice

Domain Adaptation in Practice

Reality check for DA
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Unsupervised DA : a reality check

Unsupervised Domain Adaptation: A Reality Check

Kevin Musgrave Serge Belongie Ser-Nam Lim
Cornell Tech University of Copenhagen Meta Al

Paper : [Musgrave et al., 2021] ’
e Meta Analysis from papers: Performance gain, Validation procedure.
e Comparison of numerous DA methods with realistic validation (several DA CV
scores compared).
e Comparison between reproduced performance (with proper validation) and from
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Algorithm | Highlight SVD losses
Adversarial BSP [4] | Minimize singular values of features
DANN [7] Gradient reversal Tayer BNM [5] | Max the sum of SV of predictions
DC [12] Uniform distribution loss Image generation
ADDA [13] Frozen source model DRCN [5] Reconstruct target images
CDAN [17] Randomized dot product for combin- GTA [55] Generate source-like images from
ing multiple features both source and target features
VADA [37] Virtual adversarial training Pseudo labeling
Feature distance losses ATDA [32] Two source classifiers that crc‘alc
MMD [15] Maximum mean discrepancy . pseudo labels for the target classifier
- 0 ATDOC [15] Pseudo labels from soft k-NN labels
CORAL [10] Covariance matrix alignment
JMMD [ 19] Joint MMD on multiple features Mixup augmentations
DM-ADA [47] | Soft domain labels derived from im-
Maximum classifier discrepancy age and feature domain mixup
MCD [35] Discrepancy = L1 distance DMRL [46] Mixup using domain and class labels
SWD [13] Discrepancy = sliced wasserstein Other
STAR [20] Stochastic classifier layer RTN[1%] Residual connection between source
Information maximization and target logits
ITL [36] Maximize info of class predictions, AFN [4¢] Increase the L2 norm of features
minimize info of domain predictions. DSBN 7] Separate baichnorm layers for source
MCC [11] Minimize class confusion via class and target domains
correlations and entropy weighting SymNets [51] Yarious operations on the concatena-
SENTRY [25] Min or max entropy, based on pseudo tion of source and target predictions

label + augmentation consistency

Paper : [Musgrave et al., 2021]

GVB 0]

Minimize L1 norm of bridge layers

e Meta Analysis from papers: Performance gain, Validation procedure.

e Comparison of numerous DA methods with realistic validation (several DA CV

N
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Office3 1 OfficeHome Validator it Papers  # Matches || # Repos

Year Source-only DANN  Source-only DANN full oracle 0 R 30
2016 - 22 - - subset oracle 3 2 2
2017 12.5 1.2 - 4.0 SIC accuracy 0 - 1
2018 23.4 8.5 28.1 1.5 src accuracy + loss 2 0 0
2019 25.3 12.4 203 15.4 consistency + oracle 0 - 1
2020 239 14.1 315 17.2 target entropy 0 - 1
2021 26.5 15.7 325 20.3 reverse validation 2 0 0
IWCV [29] 2 0 0

Table 2. The largest average SOTA-baseline performance gap per DEV 2 0 0

year. For example, the 2021 OfficeHome/DANN value of 20.3

is the gap on the Product— Art task, which is the task with the Table 3. Validation methods in papers vs code. Out of 49 papers,

largest average SOTA-DANN gap for that year. Performance gap 35 come with official repos. Of these 35 papers. 11 mention the

is measured as the absolute difference in accuracy. validator that is used, and 2 use the same validator in both code
and paper. 5 of the 6 papers that claim to use reverse validation,
IWCYV, or DEV, actually use oracle, and 1 uses target entropy.

Paper : [Musgrave et al., 2021]
e Meta Analysis from papers: Performance gain, Validation procedure.
e Comparison of numerous DA methods with realistic validation (several DA CV
scores compared).
e Comparison between reproduced performance (with proper validation) and from
paper. 90/92
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Office 31

AD AW DA DW WA WD |Ayg DC 827 873 714 956 71.0 99.4 | 846

GVB 88.1 893 74l 949 745 982 | 865

Source-only 783 774 693 913 732 98.1 | 813 ™ 904 87.1 721 967 722 994 | 863
ADDA 71.0 737 645 89.1 655 932|762  |M-DANN 88.6 91.1 716 964 748 99.8 | 87.1
AFN 88.6 858 69.6 968 69.6 994 | 85.0 ITL 89.4 888 727 965 727 99.1 | 865
AFN-DANN 87.7 934 707 965 728 99.6 | 868  JMMD 86.2 878 708 969 717 99.8 | 855
ATDOC 858 840 733 950 720 99.1 [ 849  MCC 912 915 728 971 755 994 | 87.9
ATDOC-DANN 859 915 745 966 73.8 987 | 868 MCC-DANN 931 938 732 967 761 99.4 | 887
BNM 867 912 733 971 756 989 | 87.1  MCD 86.6 865 682 968 69.1 987 | 843
BNM-DANN 887 914 727 966 755 99.6 | 874 MMD 858 860 711 961 717 996 | 85.1
BSP 81.3 782 700 962 69.7 99.8 | 82.5 MinEnt 852 885 725 968 729 98.7 | 85.8
BSP-DANN 856 904 718 963 730 99.6 | 861 RIN 857 870 720 97.6 721 988|855
CDAN 822 908 720 957 721 992 | 853  STAR 784 774 606 959 636 985|791
CORAL 843 842 699 917 70.6 984 | 832 SWD 80.9 79.0 689 964 683 979 | 81.9
DANN 875 917 718 963 735 994 | 867 f]i:‘];’f‘s zé‘l‘ z‘gg 3?? gZ§ ;gg gg: 22;
DANN-FL8 85.1 911 725 967 740 99.6 | 86.5 S : : - - 4 :

Paper : [Musgrave et al., 2021]
e Meta Analysis from papers: Performance gain, Validation procedure.

e Comparison of numerous DA methods with realistic validation (several DA CV
scores compared).

e Comparison between reproduced performance (with proper validation) and from
paper.
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Model Office31 OfficeHome
Source-only 26.5 325
Reported 1\ NN 15.7 203
Source-only l16.4 12.7
Ours DANN 5.6 7.9
DANN-FLS 8.0 53

Table 8. Average reported performance gap in 2021 papers vs ours.
Each number corresponds with the transfer task with the largest
performance gap.

Paper : [Musgrave et al., 2021]
e Meta Analysis from papers: Performance gain, Validation procedure.

e Comparison of numerous DA methods with realistic validation (several DA CV
scores compared).
e Comparison between reproduced performance (with proper validation) and from
paper.
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