
Challenging deep learning models in real-world
applications
Learning with few or no data and looking for explainability
Introduction

Céline Hudelot
Ecole d’été de Peyresq 2022

Foreword

Prof. Céline Hudelot, Computer Science
Head of the MICS Laboratory

Research on semantic data interpretation
https://scholar.google.fr/citations?user=gFlAh6MAAAAJ&hl=fr

1

https://scholar.google.fr/citations?user=gFlAh6MAAAAJ&hl=fr

Foreword

Other contributors of this course

Dr. Victor Bouvier
Research Scientist, Dataiku

Yassine Ouali
PhD, MICS

2

The Deep Learning breakthrough

Some impressive applications of AI

Self-driving cars in the road of Paris

See :https://www.youtube.com/watch?v=9mBLl6JuvsM

3

https://www.youtube.com/watch?v=9mBLl6JuvsM

Some impressive applications of AI

Realistic data generation

Figure 1: Test it here : https://thispersondoesnotexist.com/

4

https://thispersondoesnotexist.com/

Some impressive applications of AI

Able to play music

Figure 2: Test it here : https://openai.com/blog/musenet/

5

https://openai.com/blog/musenet/

Some impressive applications of AI

Able to create art

Figure 3: The next Rembrandt: https://www.nextrembrandt.com/

This raises problems of intellectual property: who is the author?
(https://cacm.acm.org/magazines/2020/7/245693-ai-authorship/fulltext).

6

https://www.nextrembrandt.com/
https://cacm.acm.org/magazines/2020/7/245693-ai-authorship/fulltext

Some impressive applications of AI

Advancing knowledge: predicting the structure of proteins from their
amino acid sequence

7

Able to predict the structure of proteins from their amino acid
sequence

Figure 4: AlphaFold

8

Some impressive applications of Deep Learning

Able to solve PDE!

9

The Deep Learning breakthrough

Which AI ?

Two major antagonistic approaches1

Two different assumptions

• Human reasoning and knowledge are complex: knowledge implicitly in data.
• Statistic or data-centric AI - Connectionist approaches - Learning from

data.
• Exploitation of the past experience represented by annotated data, building

calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Two major antagonistic approaches1

Two different assumptions
• Human reasoning and knowledge are complex: knowledge implicitly in data.

• Statistic or data-centric AI - Connectionist approaches - Learning from
data.

• Exploitation of the past experience represented by annotated data, building
calibrated predictive models from it.

• Human reasoning can be captured, even if partially incomplete: explicit
representation of knowledge (using symbols rather that statistics to represent the
world).

• Symbolic AI - Based on the modeling of logical reasoning, on formalisms
for knowledge representation and reasoning.

1D. Cardon et al - La Revanche des neurones - https://hal.archives-ouvertes.fr/hal-02005537/document

10

https://hal.archives-ouvertes.fr/hal-02005537/document

Data-driven Artificial Intelligence

Exploits the past experience represented by labeled data to build calibrated predictive
models from labeled data.

At the origin of the recent AI explosion, thanks to:

• increased availability of data, ’big data’.

• improvement of processing methods and algorithms (in particular deep neural
networks)

• increasing of the Computing capacity.

Principle
We want to predict Y from X , as for instance:

• X : radiology image, Y : presence of a tumor?

• X : sensor and monitoring data Y : rule life prediction of the system ?

Determination of the fonction ψ (model) such that Y = ψ(X), and ψ is estimated
from labeled data:
N situations in which one knows at the same time X and Y : (Xi ,Yi)1≤i≤N

11

Data-driven Artificial Intelligence

Exploits the past experience represented by labeled data to build calibrated predictive
models from labeled data.
At the origin of the recent AI explosion, thanks to:

• increased availability of data, ’big data’.

• improvement of processing methods and algorithms (in particular deep neural
networks)

• increasing of the Computing capacity.

Principle
We want to predict Y from X , as for instance:

• X : radiology image, Y : presence of a tumor?

• X : sensor and monitoring data Y : rule life prediction of the system ?

Determination of the fonction ψ (model) such that Y = ψ(X), and ψ is estimated
from labeled data:
N situations in which one knows at the same time X and Y : (Xi ,Yi)1≤i≤N

11

Data-driven Artificial Intelligence

Exploits the past experience represented by labeled data to build calibrated predictive
models from labeled data.
At the origin of the recent AI explosion, thanks to:

• increased availability of data, ’big data’.

• improvement of processing methods and algorithms (in particular deep neural
networks)

• increasing of the Computing capacity.

Principle
We want to predict Y from X , as for instance:

• X : radiology image, Y : presence of a tumor?

• X : sensor and monitoring data Y : rule life prediction of the system ?

Determination of the fonction ψ (model) such that Y = ψ(X), and ψ is estimated
from labeled data:
N situations in which one knows at the same time X and Y : (Xi ,Yi)1≤i≤N

11

Data-driven Artificial Intelligence

Deep neural networks
Y = ψ(X), with ψ(X) = hM ◦ gM ◦ . . . ◦ h1 ◦ g1(X) where hi some non-linear
transformations and gi some affine transformations.

Representation learning

The Deep layers capture complex features in the image to extract the most relevant
information for the prediction task [Lee et al., 2009].

12

Data-driven Artificial Intelligence

Deep neural networks
Y = ψ(X), with ψ(X) = hM ◦ gM ◦ . . . ◦ h1 ◦ g1(X) where hi some non-linear
transformations and gi some affine transformations.

Representation learning

The Deep layers capture complex features in the image to extract the most relevant
information for the prediction task [Lee et al., 2009]. 12

Motivations of Deep Learning

Motivations of Deep Learning

Limits of ’traditional’ Machine Learning

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.

• The boss finds that his support team spends a lot of time dealing
spam mails rather than dealing with real user requests.

• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.

• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,

2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,

3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,

5. Train the model . θ̂ := arg minθ 1
n
∑

(x ,y)∈train `(fθ(x), y)
6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Define an objective (a metric) to maximize . or a loss to minimize `,
3. Specify a model . (fθ)θ∈Θ

4. Split the data into a train and a test set,
5. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)

6. Evaluate the model according to a metric.

13

Road map for building a ML model

Business case

• You are working in some company where a support team helps users.
• The boss finds that his support team spends a lot of time dealing

spam mails rather than dealing with real user requests.
• You are asked to build a model that detect spam mails.

What do you do?

1. Define the task and collect data,
2. Data cleaning and feature engineering . 90% of your time! Why..?
3. Define an objective (a metric) to maximize . or a loss to minimize `,
4. Specify a model . (fθ)θ∈Θ

5. Split the data into a train and a test set,
6. Train the model . θ̂ := arg minθ 1

n
∑

(x ,y)∈train `(fθ(x), y)
7. Evaluate the model according to a metric.

13

Motivations of Deep Learning

Features engineering: How to
’represent’ your data?

Features engineering

Features engineering
Features engineering is the process that consists in transforming the
features such that learning the task from the latter is easier (or leads to
better generalization) compared to the former.

. Examples of features engineering

Unit circle: y := (||x ||2 > 1) where x ∼ N (0, 1)

. How do you adress this problem? (Notebook session:
colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing)

14

colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing

Features engineering

Features engineering
Features engineering is the process that consists in transforming the
features such that learning the task from the latter is easier (or leads to
better generalization) compared to the former.
. Examples of features engineering

Unit circle: y := (||x ||2 > 1) where x ∼ N (0, 1)

. How do you adress this problem? (Notebook session:
colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing)

14

colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing

Features engineering

Features engineering
Features engineering is the process that consists in transforming the
features such that learning the task from the latter is easier (or leads to
better generalization) compared to the former.
. Examples of features engineering

Unit circle: y := (||x ||2 > 1) where x ∼ N (0, 1)

. How do you adress this problem? (Notebook session:
colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing)

14

colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing

Features engineering

Features engineering
Features engineering is the process that consists in transforming the
features such that learning the task from the latter is easier (or leads to
better generalization) compared to the former.
. Examples of features engineering

Unit circle: y := (||x ||2 > 1) where x ∼ N (0, 1)

. How do you adress this problem? (Notebook session:
colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing)

14

colab.research.google.com/drive/1NugMhZ9VEE3Mwt50avgFV1hPWXl7N5Wo?usp=sharing

Representation

• Features engineering (representation) is mandatory in two cases:

1. Our model has not enough capacity for separating the data .
Logistic Regression for the unit circle.

2. Our model has too much capacity and overfit the data . Decision
Tree for the unit circle.

• If provided with a suitable representation . ϕ(x) := (x2
1 , x2

2)
• model benefits from a strong regularity . circle shape of the decision

boundary for the unit circle.
• model can generalize with few samples . ∼ 30 are enough!

15

Representation

• Features engineering (representation) is mandatory in two cases:
1. Our model has not enough capacity for separating the data .

Logistic Regression for the unit circle.

2. Our model has too much capacity and overfit the data . Decision
Tree for the unit circle.

• If provided with a suitable representation . ϕ(x) := (x2
1 , x2

2)
• model benefits from a strong regularity . circle shape of the decision

boundary for the unit circle.
• model can generalize with few samples . ∼ 30 are enough!

15

Representation

• Features engineering (representation) is mandatory in two cases:
1. Our model has not enough capacity for separating the data .

Logistic Regression for the unit circle.
2. Our model has too much capacity and overfit the data . Decision

Tree for the unit circle.

• If provided with a suitable representation . ϕ(x) := (x2
1 , x2

2)
• model benefits from a strong regularity . circle shape of the decision

boundary for the unit circle.
• model can generalize with few samples . ∼ 30 are enough!

15

Representation

• Features engineering (representation) is mandatory in two cases:
1. Our model has not enough capacity for separating the data .

Logistic Regression for the unit circle.
2. Our model has too much capacity and overfit the data . Decision

Tree for the unit circle.
• If provided with a suitable representation . ϕ(x) := (x2

1 , x2
2)

• model benefits from a strong regularity . circle shape of the decision
boundary for the unit circle.

• model can generalize with few samples . ∼ 30 are enough!

15

Representation

• Features engineering (representation) is mandatory in two cases:
1. Our model has not enough capacity for separating the data .

Logistic Regression for the unit circle.
2. Our model has too much capacity and overfit the data . Decision

Tree for the unit circle.
• If provided with a suitable representation . ϕ(x) := (x2

1 , x2
2)

• model benefits from a strong regularity . circle shape of the decision
boundary for the unit circle.

• model can generalize with few samples . ∼ 30 are enough!

15

Representation

• Features engineering (representation) is mandatory in two cases:
1. Our model has not enough capacity for separating the data .

Logistic Regression for the unit circle.
2. Our model has too much capacity and overfit the data . Decision

Tree for the unit circle.
• If provided with a suitable representation . ϕ(x) := (x2

1 , x2
2)

• model benefits from a strong regularity . circle shape of the decision
boundary for the unit circle.

• model can generalize with few samples . ∼ 30 are enough!

15

Representation

Model benefits from a strong regularity...
A representation encodes our inductive bias .
the hypothesis space is biased to solutions we found ’plausible’.

Is it easy to define a good representation?

• Does the data scientist know a priori the shape of the solution?
• Does it exists a representation that can be reasonably hand-crafted?

Maybe, you have already work with data representation . Kernel
trick in SVM!

16

Representation

Model benefits from a strong regularity...
A representation encodes our inductive bias .
the hypothesis space is biased to solutions we found ’plausible’.

Is it easy to define a good representation?

• Does the data scientist know a priori the shape of the solution?
• Does it exists a representation that can be reasonably hand-crafted?

Maybe, you have already work with data representation . Kernel
trick in SVM!

16

Representation

Model benefits from a strong regularity...
A representation encodes our inductive bias .
the hypothesis space is biased to solutions we found ’plausible’.

Is it easy to define a good representation?

• Does the data scientist know a priori the shape of the solution?
• Does it exists a representation that can be reasonably hand-crafted?

Maybe, you have already work with data representation

. Kernel
trick in SVM!

16

Representation

Model benefits from a strong regularity...
A representation encodes our inductive bias .
the hypothesis space is biased to solutions we found ’plausible’.

Is it easy to define a good representation?

• Does the data scientist know a priori the shape of the solution?
• Does it exists a representation that can be reasonably hand-crafted?

Maybe, you have already work with data representation . Kernel
trick in SVM!

16

Learning representations

Input image
256 x 256

17

Learning representations

Representation
(Feature extractor)

High dimensional vector
dim = 2048

Input image
256 x 256

'

17

Learning representations

Representation
(Feature extractor)

Classifier CAT

High dimensional vector
dim = 2048

Input image
256 x 256

'

17

Learning representations

Representation
(Feature extractor)

High dimensional vector
dim = 2048

Input image
256 x 256

' Classifier CAT

Not trainable

Trainable

17

Learning representations

Representation
(Feature extractor)

High dimensional vector
dim = 2048

Input image
256 x 256

' Classifier CAT

Convolutional filters, SIFT, Visual bag-of words…

Source wikipedia

Not trainable

Trainable

17

Learning representations

Representation
(Feature extractor)

High dimensional vector
dim = 2048

Input image
256 x 256

Classifier CAT'

Not trainable

Trainable
Learning Representations

= Deep Learning

- Representation is a function from the input space to the features space

- Defined by a large numbers of parameters

- Deep Learning is finding strong inductive bias for learning a good

representation (convolutional neural network, recurrent neural network,
transformers…)

17

Learning representations

18

The Deep Learning timeline

The Deep Learning timeline

beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_

part1.html

19

beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.
• Inductive bias (assumptions made about the shape of the learner)

reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.
3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.

• ’Deep’ refers to the process of composing (stacking) simple
functions in order to build an over-parametrized representation.

• Inductive bias (assumptions made about the shape of the learner)
reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.
3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.

• Inductive bias (assumptions made about the shape of the learner)
reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.
3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.
• Inductive bias (assumptions made about the shape of the learner)

reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.
3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.
• Inductive bias (assumptions made about the shape of the learner)

reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)

2. Multi-layers perceptron.
3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.
• Inductive bias (assumptions made about the shape of the learner)

reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.

3. Training a neural network.

20

What we have learnt so far

• Deep Learning is a new Machine Learning approach where the
representation (features extractor) is learned.

• Representation is (most of the time) an over-parametrized mapping.
• ’Deep’ refers to the process of composing (stacking) simple

functions in order to build an over-parametrized representation.
• Inductive bias (assumptions made about the shape of the learner)

reduces the number of parameters.

To go deeper in deep learning

1. Linear network (Rosenblatt’s perceptron)
2. Multi-layers perceptron.
3. Training a neural network.

20

Linear network

Linear Neural Network

Two examples

• Regression: Linear regression . y = x>θ +N (0, σ2)
• Classification: Logistic regression . p(y |x) = σ(x>θ +N (0, σ2))

where σ(x) := 1/(1 + exp(−x)).

Figure 5: (Left): Illustration of a linear neural network from Rosentblatt.
(Right) Biological inspiration of artifical neurons from Warren McCulloch and
Walter Pitts. From d2l.ai/d2l-en.pdf.

21

d2l.ai/d2l-en.pdf

Linear Neural Network

Two examples

• Regression: Linear regression . y = x>θ +N (0, σ2)
• Classification: Logistic regression . p(y |x) = σ(x>θ +N (0, σ2))

where σ(x) := 1/(1 + exp(−x)).

Figure 5: (Left): Illustration of a linear neural network from Rosentblatt.
(Right) Biological inspiration of artifical neurons from Warren McCulloch and
Walter Pitts. From d2l.ai/d2l-en.pdf.

21

d2l.ai/d2l-en.pdf

Linear Neural Network

Linear Neural Network

• Regression: Linear regression . fθ(x) := x>w + b
• Classification: Logistic regression . fθ(x) := σ(x>w + b).

with θ = (w , b).

. Learning is finding the optimal θ.

Defining a loss using Maximum Likelihood Estimation

• Regression: `(y , fθ(x)) := (y − fθ(x))2

• Classification: `(y , fθ(x)) := −y log(fθ(x))− (1− y) log(1− fθ(x))

L(θ) := 1
n
∑
(x ,y)

`(y , fθ(x))

. Learning is θ̂ := arg minθ L(θ)

We need more flexible learning process (optimization procedure)

22

Linear Neural Network

Linear Neural Network

• Regression: Linear regression . fθ(x) := x>w + b
• Classification: Logistic regression . fθ(x) := σ(x>w + b).

with θ = (w , b). . Learning is finding the optimal θ.

Defining a loss using Maximum Likelihood Estimation

• Regression: `(y , fθ(x)) := (y − fθ(x))2

• Classification: `(y , fθ(x)) := −y log(fθ(x))− (1− y) log(1− fθ(x))

L(θ) := 1
n
∑
(x ,y)

`(y , fθ(x))

. Learning is θ̂ := arg minθ L(θ)

We need more flexible learning process (optimization procedure)

22

Linear Neural Network

Linear Neural Network

• Regression: Linear regression . fθ(x) := x>w + b
• Classification: Logistic regression . fθ(x) := σ(x>w + b).

with θ = (w , b). . Learning is finding the optimal θ.

Defining a loss using Maximum Likelihood Estimation

• Regression: `(y , fθ(x)) := (y − fθ(x))2

• Classification: `(y , fθ(x)) := −y log(fθ(x))− (1− y) log(1− fθ(x))

L(θ) := 1
n
∑
(x ,y)

`(y , fθ(x))

. Learning is θ̂ := arg minθ L(θ)

We need more flexible learning process (optimization procedure)

22

Linear Neural Network

Linear Neural Network

• Regression: Linear regression . fθ(x) := x>w + b
• Classification: Logistic regression . fθ(x) := σ(x>w + b).

with θ = (w , b). . Learning is finding the optimal θ.

Defining a loss using Maximum Likelihood Estimation

• Regression: `(y , fθ(x)) := (y − fθ(x))2

• Classification: `(y , fθ(x)) := −y log(fθ(x))− (1− y) log(1− fθ(x))

L(θ) := 1
n
∑
(x ,y)

`(y , fθ(x))

. Learning is θ̂ := arg minθ L(θ)

We need more flexible learning process (optimization procedure)

22

Linear network

Gradient Descent

Gradient Descent

Gradient Descent (GD)
Let J a function from Rd → R, Gradient Descent consists in localizing a
local minimum of f as follows:

• Initialize x0 ∈ Rd .
• For a given number of iterations:

xt+1 ← xt − α(∇xJ)(xt)

Figure 6: (Left) GD can minimize arbitrary complicated functions, here
J(x) = x2/(1 + log(x)). (Right)Gradient descent with different initialization
may lead to different minima, here J(x) = x2 sin(πx)/(1 + log(x)) 23

From Gradient Descent to Learning

Momentum
xt+1 ← xt − α(t)(∇xJ)(xt)

• The choice of momentum α(t) is often a trade-off between speed
and accuracy when finding a minimum.

• ruder.io/optimizing-gradient-descent

Learning by Gradient Descent
θt+1 ← θt − ηα(t)(∇θL)(θt)

• η is the learning rate.
• Each iteration needs a full-scan of the dataset . Stochastic

Gradient Descent.

24

ruder.io/optimizing-gradient-descent

From Gradient Descent to Learning

Momentum
xt+1 ← xt − α(t)(∇xJ)(xt)

• The choice of momentum α(t) is often a trade-off between speed
and accuracy when finding a minimum.

• ruder.io/optimizing-gradient-descent

Learning by Gradient Descent
θt+1 ← θt − ηα(t)(∇θL)(θt)

• η is the learning rate.
• Each iteration needs a full-scan of the dataset

. Stochastic
Gradient Descent.

24

ruder.io/optimizing-gradient-descent

From Gradient Descent to Learning

Momentum
xt+1 ← xt − α(t)(∇xJ)(xt)

• The choice of momentum α(t) is often a trade-off between speed
and accuracy when finding a minimum.

• ruder.io/optimizing-gradient-descent

Learning by Gradient Descent
θt+1 ← θt − ηα(t)(∇θL)(θt)

• η is the learning rate.
• Each iteration needs a full-scan of the dataset . Stochastic

Gradient Descent.

24

ruder.io/optimizing-gradient-descent

Linear network

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent
Stochastic Gradient Descent is Gradient Descent where each iteration is
performed on a random subset of the dataset (typically of size between
16 and 256 samples).

• Input: Θ parameters, η learning rate, b batch size, D dataset.
• Initialize θ0 ∈ Θ.
• For a given number of iterations:

• Sample B ∼ D such that |B| = b.
• Compute the batch loss LB(θ) := 1

b
∑

(x,y)∈B `(y , fθ(x)).
• Update parameters according to:

θt+1 ← θt − ηα(t)(∇θLB)(θt)

25

Stochastic Gradient Descent

Stochastic Gradient Descent
Stochastic Gradient Descent is Gradient Descent where each iteration is
performed on a random subset of the dataset (typically of size between
16 and 256 samples).

• Input: Θ parameters, η learning rate, b batch size, D dataset.
• Initialize θ0 ∈ Θ.
• For a given number of iterations:

• Sample B ∼ D such that |B| = b.

• Compute the batch loss LB(θ) := 1
b
∑

(x,y)∈B `(y , fθ(x)).
• Update parameters according to:

θt+1 ← θt − ηα(t)(∇θLB)(θt)

25

Stochastic Gradient Descent

Stochastic Gradient Descent
Stochastic Gradient Descent is Gradient Descent where each iteration is
performed on a random subset of the dataset (typically of size between
16 and 256 samples).

• Input: Θ parameters, η learning rate, b batch size, D dataset.
• Initialize θ0 ∈ Θ.
• For a given number of iterations:

• Sample B ∼ D such that |B| = b.
• Compute the batch loss LB(θ) := 1

b
∑

(x,y)∈B `(y , fθ(x)).

• Update parameters according to:

θt+1 ← θt − ηα(t)(∇θLB)(θt)

25

Stochastic Gradient Descent

Stochastic Gradient Descent
Stochastic Gradient Descent is Gradient Descent where each iteration is
performed on a random subset of the dataset (typically of size between
16 and 256 samples).

• Input: Θ parameters, η learning rate, b batch size, D dataset.
• Initialize θ0 ∈ Θ.
• For a given number of iterations:

• Sample B ∼ D such that |B| = b.
• Compute the batch loss LB(θ) := 1

b
∑

(x,y)∈B `(y , fθ(x)).
• Update parameters according to:

θt+1 ← θt − ηα(t)(∇θLB)(θt)

25

Stochastic Gradient Descent

Dataset

26

Stochastic Gradient Descent

Random
permutation

Dataset Shuffled dataset

26

Stochastic Gradient Descent

Random
permutation

Batch 1

Batch 2

Batch 3

Dataset Shuffled dataset

26

Stochastic Gradient Descent

Random
permutation

Batch 1

Batch 2

Batch 3

Dataset Shuffled dataset

Training

26

Stochastic Gradient Descent

Random
permutation

Batch 1

Batch 2

Batch 3

Dataset Shuffled dataset

Training

End of the first epoch

26

Stochastic Gradient Descent

Random
permutation

Batch 1

Batch 2

Batch 3

Dataset Shuffled dataset

Random
permutation

Batch 1

Batch 2

Batch 3

Training
Training

End of the first epoch

End of the second epoch
26

Linear network

Limitations

Limitations of the Linear Neural Network

Quick summary

• Linear neural network: fθ(x) := a(x>w + b)

• w are weights, and b is the bias of the layer, a is an activation
function.

• SGD allows to learn θ := (w , b) for arbitrary loss.

Limitations: the overkill XOR function

• (0, 0) 7→ 0, (1, 1) 7→ 0, (1, 0) 7→ 1 and (0, 1) 7→ 1.
• A linear neural network can not learn the XOR function.

. Because we need a representation layer!

27

Limitations of the Linear Neural Network

Quick summary

• Linear neural network: fθ(x) := a(x>w + b)
• w are weights, and b is the bias of the layer, a is an activation

function.

• SGD allows to learn θ := (w , b) for arbitrary loss.

Limitations: the overkill XOR function

• (0, 0) 7→ 0, (1, 1) 7→ 0, (1, 0) 7→ 1 and (0, 1) 7→ 1.
• A linear neural network can not learn the XOR function.

. Because we need a representation layer!

27

Limitations of the Linear Neural Network

Quick summary

• Linear neural network: fθ(x) := a(x>w + b)
• w are weights, and b is the bias of the layer, a is an activation

function.
• SGD allows to learn θ := (w , b) for arbitrary loss.

Limitations: the overkill XOR function

• (0, 0) 7→ 0, (1, 1) 7→ 0, (1, 0) 7→ 1 and (0, 1) 7→ 1.
• A linear neural network can not learn the XOR function.

. Because we need a representation layer!

27

Limitations of the Linear Neural Network

Quick summary

• Linear neural network: fθ(x) := a(x>w + b)
• w are weights, and b is the bias of the layer, a is an activation

function.
• SGD allows to learn θ := (w , b) for arbitrary loss.

Limitations: the overkill XOR function

• (0, 0) 7→ 0, (1, 1) 7→ 0, (1, 0) 7→ 1 and (0, 1) 7→ 1.
• A linear neural network can not learn the XOR function.

. Because we need a representation layer!

27

Limitations of the Linear Neural Network

Quick summary

• Linear neural network: fθ(x) := a(x>w + b)
• w are weights, and b is the bias of the layer, a is an activation

function.
• SGD allows to learn θ := (w , b) for arbitrary loss.

Limitations: the overkill XOR function

• (0, 0) 7→ 0, (1, 1) 7→ 0, (1, 0) 7→ 1 and (0, 1) 7→ 1.
• A linear neural network can not learn the XOR function.

. Because we need a representation layer! 27

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

One-hidden layer Neural Network

One-hidden layer Neural Network

Figure 7: A MLP with one-hidden layer with five units. From
d2l.ai/d2l-en.pdf.

Forward pass: x −→ h −→ o

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))
• θ := (w (1), b(1),w (2), b(2)) defines o = fθ(x)

. h is the (hidden) representation of x !

28

d2l.ai/d2l-en.pdf

One-hidden layer Neural Network

Figure 7: A MLP with one-hidden layer with five units. From
d2l.ai/d2l-en.pdf.

Forward pass: x −→ h −→ o

• 1st layer: h = a(1) (x>w (1) + b(1))

• 2nd layer: o = a(2) (h>w (2) + b(2))
• θ := (w (1), b(1),w (2), b(2)) defines o = fθ(x)

. h is the (hidden) representation of x !

28

d2l.ai/d2l-en.pdf

One-hidden layer Neural Network

Figure 7: A MLP with one-hidden layer with five units. From
d2l.ai/d2l-en.pdf.

Forward pass: x −→ h −→ o

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))

• θ := (w (1), b(1),w (2), b(2)) defines o = fθ(x)

. h is the (hidden) representation of x !

28

d2l.ai/d2l-en.pdf

One-hidden layer Neural Network

Figure 7: A MLP with one-hidden layer with five units. From
d2l.ai/d2l-en.pdf.

Forward pass: x −→ h −→ o

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))
• θ := (w (1), b(1),w (2), b(2)) defines o = fθ(x)

. h is the (hidden) representation of x !

28

d2l.ai/d2l-en.pdf

One-hidden layer Neural Network

Figure 7: A MLP with one-hidden layer with five units. From
d2l.ai/d2l-en.pdf.

Forward pass: x −→ h −→ o

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))
• θ := (w (1), b(1),w (2), b(2)) defines o = fθ(x)

. h is the (hidden) representation of x !

28

d2l.ai/d2l-en.pdf

Universal approximation theorem

Forward pass

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))

The role of non-linearity
If a(1) is the identity function ⇒ the linear network. Typical a(1):

• Sigmoid: σ(x) := 1
1+exp(−x)

• Tangeante-hyperbolic: Tanh(x) := e−x−ex
e−x+ex

• Rectified Linear Unit: ReLU(x) := max(0, x)

Universal approximation theorem
For any continuous function on a compact, it exists a One-hidden layer
network with continuous, bounded, non-constant activation, which
achieves uniformly an arbitrary small error on the compact. . Increases
the number of units (dimension) of h!

29

Universal approximation theorem

Forward pass

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))

The role of non-linearity
If a(1) is the identity function ⇒ the linear network. Typical a(1):

• Sigmoid: σ(x) := 1
1+exp(−x)

• Tangeante-hyperbolic: Tanh(x) := e−x−ex
e−x+ex

• Rectified Linear Unit: ReLU(x) := max(0, x)

Universal approximation theorem
For any continuous function on a compact, it exists a One-hidden layer
network with continuous, bounded, non-constant activation, which
achieves uniformly an arbitrary small error on the compact. . Increases
the number of units (dimension) of h!

29

Universal approximation theorem

Forward pass

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))

The role of non-linearity
If a(1) is the identity function ⇒ the linear network. Typical a(1):

• Sigmoid: σ(x) := 1
1+exp(−x)

• Tangeante-hyperbolic: Tanh(x) := e−x−ex
e−x+ex

• Rectified Linear Unit: ReLU(x) := max(0, x)

Universal approximation theorem
For any continuous function on a compact, it exists a One-hidden layer
network with continuous, bounded, non-constant activation, which
achieves uniformly an arbitrary small error on the compact.

. Increases
the number of units (dimension) of h!

29

Universal approximation theorem

Forward pass

• 1st layer: h = a(1) (x>w (1) + b(1))
• 2nd layer: o = a(2) (h>w (2) + b(2))

The role of non-linearity
If a(1) is the identity function ⇒ the linear network. Typical a(1):

• Sigmoid: σ(x) := 1
1+exp(−x)

• Tangeante-hyperbolic: Tanh(x) := e−x−ex
e−x+ex

• Rectified Linear Unit: ReLU(x) := max(0, x)

Universal approximation theorem
For any continuous function on a compact, it exists a One-hidden layer
network with continuous, bounded, non-constant activation, which
achieves uniformly an arbitrary small error on the compact. . Increases
the number of units (dimension) of h!

29

Multi-Layer Perceptron (MLP)

Training a MLP by Back-propagation

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.

• Roughly, for computing the gradient of a layer, we use gradient of
upper layers . That’s why we "Back-propagate errors".

• Usually we distinguish two passes:
• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers

. That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".

• Usually we distinguish two passes:
• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)

• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Back-propagation

Backpropagation demystified

• Backprop is a memory efficient algorithm for computing gradients of
MLP’s parameters.

• It is based on the chain rule for computing derivatives.
• Roughly, for computing the gradient of a layer, we use gradient of

upper layers . That’s why we "Back-propagate errors".
• Usually we distinguish two passes:

• forward pass: From inputs to outputs (network as a function)
• backward pass: Gradient from outputs to inputs (chain rule)

Chain rule
Let the computational graph x −→ y −→ z

∂z
∂x = prod

(
∂z
∂y ,

∂y
∂x

)
where prod is the multiplication if variables are real, matrix product if
vectors, ...

30

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Backprop in a One-hidden layer MLP

(Bias free) Forward pass
• 1st layer: h = a(1) (x>w (1))
• 2nd layer: o = a(2) (h>w (2))
• Loss: `(o)

• Gradient wrt w (2): ∂`
∂w (2)

∂`

∂w (2) = ∂`

∂o
∂o
∂w (2) = ∂`

∂o︸︷︷︸
Go

h> a(2)′(h>w (2) + b)︸ ︷︷ ︸
G2

= Go(h>G2)

• Gradient wrt w (1): ∂`
∂w (1)

∂`

∂w (1) = ∂`

∂o
∂o
∂h

∂h
∂w (1) = Go

(
a(2)′(h>w (2) + b)>w (2)

) ∂h
∂w (1)

∂`

∂w (1) = Go(G>2 w (2))(x>G1)

. Just one additional gradient to compute G1 := ∂h
∂w (1)

31

Training a neural network

Training a neural network

Overview

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...
3. Define your loss
4. Regularize your network
5. Define your optimizer . What kind of momentum you want to use
6. Perform SGD until you have reached a stopping criterion (Callback)

32

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...

3. Define your loss
4. Regularize your network
5. Define your optimizer . What kind of momentum you want to use
6. Perform SGD until you have reached a stopping criterion (Callback)

32

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...
3. Define your loss

4. Regularize your network
5. Define your optimizer . What kind of momentum you want to use
6. Perform SGD until you have reached a stopping criterion (Callback)

32

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...
3. Define your loss
4. Regularize your network

5. Define your optimizer . What kind of momentum you want to use
6. Perform SGD until you have reached a stopping criterion (Callback)

32

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...
3. Define your loss
4. Regularize your network
5. Define your optimizer . What kind of momentum you want to use

6. Perform SGD until you have reached a stopping criterion (Callback)

32

Overview of usual steps for training a neural network

1. Define your neural network . (fθ)θΘ

2. Define your dataset . Normalization, Augmentation, ...
3. Define your loss
4. Regularize your network
5. Define your optimizer . What kind of momentum you want to use
6. Perform SGD until you have reached a stopping criterion (Callback)

32

Training a neural network

Defining a loss

Basics of Information theory

Let p and q two distributions.

• Entropy: H(p) := Ex∼p[− log p(x)]

• Cross-Entropy: H(p, q) := Ex∼p[− log q(x)]

. Given p, the cross-entropy is minimal when q = p

33

Basics of Information theory

Let p and q two distributions.

• Entropy: H(p) := Ex∼p[− log p(x)]

• Cross-Entropy: H(p, q) := Ex∼p[− log q(x)]

. Given p, the cross-entropy is minimal when q = p

33

Basics of Information theory

Let p and q two distributions.

• Entropy: H(p) := Ex∼p[− log p(x)]

• Cross-Entropy: H(p, q) := Ex∼p[− log q(x)]

. Given p, the cross-entropy is minimal when q = p

33

Binary Cross-Entropy

Binary cross-entropy

• Particular case when the universe is binary (positive and negative)

p := p(X = 1), q := q(X = 1)

• Given p and q, the (binary-)cross-entropy is:

H(p, q) = −p log q − (1− p) log(1− q)

• fθ is a neural net such that:
• fθ(x) ∈ [0, 1] . uses σ(·) for outputs.
• fθ(x) is design to fit p(Y = 1|X = x) by minimizing:

`(y , fθ(x)) := −y log fθ(x)− (1− y) log(1− fθ(x))

34

Binary Cross-Entropy

Binary cross-entropy

• Particular case when the universe is binary (positive and negative)

p := p(X = 1), q := q(X = 1)

• Given p and q, the (binary-)cross-entropy is:

H(p, q) = −p log q − (1− p) log(1− q)

• fθ is a neural net such that:
• fθ(x) ∈ [0, 1] . uses σ(·) for outputs.
• fθ(x) is design to fit p(Y = 1|X = x) by minimizing:

`(y , fθ(x)) := −y log fθ(x)− (1− y) log(1− fθ(x))

34

Binary Cross-Entropy

Binary cross-entropy

• Particular case when the universe is binary (positive and negative)

p := p(X = 1), q := q(X = 1)

• Given p and q, the (binary-)cross-entropy is:

H(p, q) = −p log q − (1− p) log(1− q)

• fθ is a neural net such that:
• fθ(x) ∈ [0, 1] . uses σ(·) for outputs.

• fθ(x) is design to fit p(Y = 1|X = x) by minimizing:

`(y , fθ(x)) := −y log fθ(x)− (1− y) log(1− fθ(x))

34

Binary Cross-Entropy

Binary cross-entropy

• Particular case when the universe is binary (positive and negative)

p := p(X = 1), q := q(X = 1)

• Given p and q, the (binary-)cross-entropy is:

H(p, q) = −p log q − (1− p) log(1− q)

• fθ is a neural net such that:
• fθ(x) ∈ [0, 1] . uses σ(·) for outputs.
• fθ(x) is design to fit p(Y = 1|X = x) by minimizing:

`(y , fθ(x)) := −y log fθ(x)− (1− y) log(1− fθ(x))

34

(Categorical) Cross-Entropy

Categorical cross-entropy

• Let (x , y) a training data point.
• y is a categorical variable . cat, dog, cow, plane, ...

• Let C the number of categories and c = {0, ..., 0, 1, 0..., 0}︸ ︷︷ ︸
C dimensions

is a

one-hot vectorization of y .
• fθ(x)→ [0, 1]C maps x to C−dimensional space.
• fθ(x)c is design to fit p(c|X = x) i.e. x belongs to the c−th class

by minimizing:
`(y , fθ(x)) := − log fθ(x)c(y)

35

(Categorical) Cross-Entropy

Categorical cross-entropy

• Let (x , y) a training data point.
• y is a categorical variable . cat, dog, cow, plane, ...
• Let C the number of categories and c = {0, ..., 0, 1, 0..., 0}︸ ︷︷ ︸

C dimensions

is a

one-hot vectorization of y .

• fθ(x)→ [0, 1]C maps x to C−dimensional space.
• fθ(x)c is design to fit p(c|X = x) i.e. x belongs to the c−th class

by minimizing:
`(y , fθ(x)) := − log fθ(x)c(y)

35

(Categorical) Cross-Entropy

Categorical cross-entropy

• Let (x , y) a training data point.
• y is a categorical variable . cat, dog, cow, plane, ...
• Let C the number of categories and c = {0, ..., 0, 1, 0..., 0}︸ ︷︷ ︸

C dimensions

is a

one-hot vectorization of y .
• fθ(x)→ [0, 1]C maps x to C−dimensional space.

• fθ(x)c is design to fit p(c|X = x) i.e. x belongs to the c−th class
by minimizing:

`(y , fθ(x)) := − log fθ(x)c(y)

35

(Categorical) Cross-Entropy

Categorical cross-entropy

• Let (x , y) a training data point.
• y is a categorical variable . cat, dog, cow, plane, ...
• Let C the number of categories and c = {0, ..., 0, 1, 0..., 0}︸ ︷︷ ︸

C dimensions

is a

one-hot vectorization of y .
• fθ(x)→ [0, 1]C maps x to C−dimensional space.
• fθ(x)c is design to fit p(c|X = x) i.e. x belongs to the c−th class

by minimizing:
`(y , fθ(x)) := − log fθ(x)c(y)

35

Softmax-layer

`(y , fθ(x)) := − log fθ(x)c(y)

Softmax-layer

• Maps an arbitrary dimensional vector z ∈ RC into a probability
distribution over the dimensions,

• with higher probabilities to higher values of z ,
• ultimately, the higher coordinate has a probability close to 1 and

others are pushed to 0,
• it is differentiable approximation of the arg max:

Softmax(z) := 1∑C
c ezc

(ez1 , ..., ezc)

36

Softmax-layer

`(y , fθ(x)) := − log fθ(x)c(y)

Softmax-layer

• Maps an arbitrary dimensional vector z ∈ RC into a probability
distribution over the dimensions,

• with higher probabilities to higher values of z ,

• ultimately, the higher coordinate has a probability close to 1 and
others are pushed to 0,

• it is differentiable approximation of the arg max:

Softmax(z) := 1∑C
c ezc

(ez1 , ..., ezc)

36

Softmax-layer

`(y , fθ(x)) := − log fθ(x)c(y)

Softmax-layer

• Maps an arbitrary dimensional vector z ∈ RC into a probability
distribution over the dimensions,

• with higher probabilities to higher values of z ,
• ultimately, the higher coordinate has a probability close to 1 and

others are pushed to 0,

• it is differentiable approximation of the arg max:

Softmax(z) := 1∑C
c ezc

(ez1 , ..., ezc)

36

Softmax-layer

`(y , fθ(x)) := − log fθ(x)c(y)

Softmax-layer

• Maps an arbitrary dimensional vector z ∈ RC into a probability
distribution over the dimensions,

• with higher probabilities to higher values of z ,
• ultimately, the higher coordinate has a probability close to 1 and

others are pushed to 0,
• it is differentiable approximation of the arg max:

Softmax(z) := 1∑C
c ezc

(ez1 , ..., ezc)

36

Softmax-layer

`(y , fθ(x)) := − log fθ(x)c(y)

Softmax-layer

• Maps an arbitrary dimensional vector z ∈ RC into a probability
distribution over the dimensions,

• with higher probabilities to higher values of z ,
• ultimately, the higher coordinate has a probability close to 1 and

others are pushed to 0,
• it is differentiable approximation of the arg max:

Softmax(z) := 1∑C
c ezc

(ez1 , ..., ezc)

36

Training a neural network

Regularizing neural networks

L2 = Ridge= Weight decay = Tikhonov

The L2 penalty is the most common regularization of models:

Lreg(θ) = L(θ) + λ||θ||2

Linear Regression

• X ∈ Rn×p: (samples, features), Y ∈ Rn×1: (samples,
value),

• No-regularization: ||Y − X>θ||2

θ̂ = (X>X)−1(X>Y)

• L2-regularization: ||Y − X>θ||2 + λ||θ||2

θ̂ = (X>X + λI)−1(X>Y)

37

L2 = Ridge= Weight decay = Tikhonov

The L2 penalty is the most common regularization of models:

Lreg(θ) = L(θ) + λ||θ||2

Linear Regression

• X ∈ Rn×p: (samples, features), Y ∈ Rn×1: (samples,
value),

• No-regularization: ||Y − X>θ||2

θ̂ = (X>X)−1(X>Y)

• L2-regularization: ||Y − X>θ||2 + λ||θ||2

θ̂ = (X>X + λI)−1(X>Y)

37

L2 = Ridge= Weight decay = Tikhonov

The L2 penalty is the most common regularization of models:

Lreg(θ) = L(θ) + λ||θ||2

Linear Regression

• X ∈ Rn×p: (samples, features), Y ∈ Rn×1: (samples,
value),

• No-regularization: ||Y − X>θ||2

θ̂ = (X>X)−1(X>Y)

• L2-regularization: ||Y − X>θ||2 + λ||θ||2

θ̂ = (X>X + λI)−1(X>Y)

37

L2 = Ridge= Weight decay = Tikhonov

The L2 penalty is the most common regularization of models:

Lreg(θ) = L(θ) + λ||θ||2

Linear Regression

• X ∈ Rn×p: (samples, features), Y ∈ Rn×1: (samples,
value),

• No-regularization: ||Y − X>θ||2

θ̂ = (X>X)−1(X>Y)

• L2-regularization: ||Y − X>θ||2 + λ||θ||2

θ̂ = (X>X + λI)−1(X>Y)

37

Training a neural network

Dropout regularization

Dropout: Ensembling of neural networks

Dropout consists in randomly deleting some units during training.

Figure 8: MLP before and after dropout. From d2l.ai/d2l-en.pdf.

Dropoutp(h)i =
{

0 with probability p
hi

1−p with probability 1− p

• Ensures an unbiased layer i.e., h = Ep[Dropoutp(h)]
• At test-time, p = 0.

38

d2l.ai/d2l-en.pdf

Dropout: Ensembling of neural networks

Dropout consists in randomly deleting some units during training.

Figure 8: MLP before and after dropout. From d2l.ai/d2l-en.pdf.

Dropoutp(h)i =
{

0 with probability p
hi

1−p with probability 1− p

• Ensures an unbiased layer i.e., h = Ep[Dropoutp(h)]

• At test-time, p = 0.

38

d2l.ai/d2l-en.pdf

Dropout: Ensembling of neural networks

Dropout consists in randomly deleting some units during training.

Figure 8: MLP before and after dropout. From d2l.ai/d2l-en.pdf.

Dropoutp(h)i =
{

0 with probability p
hi

1−p with probability 1− p

• Ensures an unbiased layer i.e., h = Ep[Dropoutp(h)]
• At test-time, p = 0.

38

d2l.ai/d2l-en.pdf

Deep neural model zoo

https://www.asimovinstitute.org/neural-network-zoo/

39

https://www.asimovinstitute.org/neural-network-zoo/

Training a neural network

The Needs

Deep Learning : Needed ressources

Huge annotated data

But annotation not prevent from bias in data 2,

2Unbiased Look at Dataset Bias :
http://people.csail.mit.edu/torralba/research/bias/

40

http://people.csail.mit.edu/torralba/research/bias/

Deep Learning : Needed ressources

Huge annotated data

But annotation not prevent from bias in data 2,
2Unbiased Look at Dataset Bias :

http://people.csail.mit.edu/torralba/research/bias/

40

http://people.csail.mit.edu/torralba/research/bias/

Deep Learning : Needed ressources

Computing and storage ressources

To a green AI 3.

3https://www.technologyreview.com/f/614056/
ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.
unpaid.engagement&utm_source=twitter&utm_medium=tr_social

41

https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social
https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social
https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social

Deep Learning : Needed ressources

Computing and storage ressources

To a green AI 3.
3https://www.technologyreview.com/f/614056/

ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.
unpaid.engagement&utm_source=twitter&utm_medium=tr_social

41

https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social
https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social
https://www.technologyreview.com/f/614056/ai-research-has-an-environment-climate-toll/?utm_campaign=site_visitor.unpaid.engagement&utm_source=twitter&utm_medium=tr_social

Deep Learning : Needed ressources

Computer science and IT.

42

Deep Learning : where are we ?

Deep Learning : where are we ?

Highly performant deep Learning :
More performant than humans?

Let’s look at a model that claims it!

Dermatologist-level classification of skin cancer with deep neural
networks [Esteva et al, 17]

43

Let’s look at a model that claims it!

The task
Skin cancer detection : a fine-grained visual recognition task (2,032 different diseases,
fine-grained variability) but evaluation is done on two binary classification tasks
(keratinocyte carcinomas versus benign seborrheic keratoses; and malignant
melanomas versus benign nevi).

44

Let’s look at a model that claims it!

The model
Inception v3 CNN architecture, pre-trained on ImageNet and fine-tuned on the target
dataset4

4https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

45

https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

Dermatologist-level classification of skin cancer with deep neu-
ral networks [Esteva et al, 17]

The data
• 129,450 clinical images, including 3,374 dermoscopy images, annotated by

dermatologists.

• Images are organized in a tree-structured taxonomy of 2,032 diseases, derived by
dermatologists using a bottom-up procedure: individual diseases, initialized as
leaf nodes, were merged based on clinical and visual similarity, until the entire
structure was connected.

• Training dataset ; 127,463 training and validation images and testing dataset :
1,942 biopsy-labelled test images with no-overlap (same lesion, multiple
viewpoints)

46

Dermatologist-level classification of skin cancer with deep neu-
ral networks [Esteva et al, 17]

Drom Disease to training classes
Disease partitioning algorithm : partitions individual diseases into training
classes whose individual diseases are clinically and visually similar and
with contraints on the size of the class (maxClassSize = 1,000) : disease
partition of 757 classes.

47

Dermatologist-level classification of skin cancer with deep neu-
ral networks [Esteva et al, 17]

From training classes to inference classes.

48

Dermatologist-level classification of skin cancer with deep neu-
ral networks [Esteva et al, 17]

Experimental protocol

• Test against 21 board-certified dermatologists on biopsy-proven
clinical images.

• Two critical binary classification use cases:
• malignant carcinomas versus benign seborrheic keratoses:

identification of the most common cancers
• malignant melanomas versus benign nevi : identification of the

deadliest skin cancer

49

Dermatologist-level classification of skin cancer with deep neu-
ral networks [Esteva et al, 17]

50

Results

• The richness of the approach is in the building or the database and
the ontology-based annotation.

• The classification task is simple.

51

Performant but what about the confiance on the decision ?

Skin images

• The ISIC database is a database of annotated dermoscopic images.
• Use in different challenges.
• Deep neural networks (AUC=71%) have better results than

dermatologists (AUC=67%)

(Bissoto el al, 2019) (De)Constructing Bias on Skin Lesion Datasets
(https://openaccess.thecvf.com/content_CVPRW_2019/papers/ISIC/Bissoto_
DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.pdf)

52

https://openaccess.thecvf.com/content_CVPRW_2019/papers/ISIC/Bissoto_DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/ISIC/Bissoto_DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.pdf

Performant but what about the confiance on the decision ?

Black boxes pose the problem of bias in the data.

53

Performant but what about the confiance on the decision ?

Black boxes pose the problem of bias in the data.

54

Deep Learning : where are we ?

Trustworthy?

Not trustworthy !

Figure 9: Goodfellow el al, Explaining and Harnessing adversarial examples. See
https://arxiv.org/pdf/1412.6572.pdf

Performant AI systems are often black box models, i.e. models, whose internals are
either unknown to the observer or they are known but uninterpretable by humans5.
And they can be fooled.
5Guidotti et al - A Survey of Methods for Explaining Black Box Models

https://dl.acm.org/doi/pdf/10.1145/3236009

55

https://arxiv.org/pdf/1412.6572.pdf
https://dl.acm.org/doi/pdf/10.1145/3236009

Not trustworthy !

Slide credit : K. Saenko

56

Not trustworthy !

Many accidents in AI systems !

https:
//cset.georgetown.edu/publication/ai-accidents-an-emerging-threat/
https://incidentdatabase.ai/?lang=en

57

https://cset.georgetown.edu/publication/ai-accidents-an-emerging-threat/
https://cset.georgetown.edu/publication/ai-accidents-an-emerging-threat/
https://incidentdatabase.ai/?lang=en

Not trustworthy !

Concrete problems for AI safety !
• Avoiding negative side effects : Can we transform an RL agent’s reward

function to avoid undesired effects on the environment? E.g, build a robot that
move an object while avoiding knocking or breaking anything over, without
programming a penalty for each possible bad behavior?

• Safe exploration : Can reinforcement learning (RL) agents learn about their
environment without executing catastrophic actions? E.g, RL agent learn to
navigate an environment without ever falling off a ledge?

• Robustness to distributional shift : Can machine learning systems be robust to
changes in the data distribution, or at least fail gracefully? E.g, build image
classifiers that indicate appropriate uncertainty when shown new kinds of images,
instead using inapplicable learned model?

• Avoiding “reward hacking” and “wireheading” : Can we prevent agents from
“gaming” their reward functions, such as by distorting their observations? E.g,
train an RL agent to minimize the number of dirty surfaces, without looking for
dirty surfaces or creating new dirty surfaces to clean up?

• Scalable oversight. : Can RL agents efficiently achieve goals for which feedback
is very expensive? E.g, build agents that try to clean a room in the way the user
would be happiest with, even though feedback is very rare and cheap
approximations during training?

(Amodei et al, 2016) Concrete Problems in AI Safety
(https://arxiv.org/abs/1606.06565)

58

https://arxiv.org/abs/1606.06565

Ethics and dilemna

Autonomous cars and moral decisions 6

An autonomous car is an intelligent agent capable of perceiving and
acting on its environment while moving with little or no human
intervention. For the vehicle to move safely and understand its
environment, a huge amount of data must be captured by a multitude of
different sensors in the car at any given time. This data is then processed
by the vehicle’s autonomous driving system.

Figure 10: Source :Shutterstock.com/Senha

6https://www.youtube.com/watch?v=HzYG56HLxbI&feature=youtu.be
59

https://www.youtube.com/watch?v=HzYG56HLxbI&feature=youtu.be

Autonomous cars and moral decisions

• From a ethics dilemna : what should a car do or not do in a specific scenario?

• to a social dilemna: how to make the company accept and apply the
compromises that suit it?

• AI is not just a technical, economical or legislative problem, it is also a problem
of society’s cooperation. https://www.moralmachine.net/

60

https://www.moralmachine.net/

Autonomous cars and moral decisions

• From a ethics dilemna : what should a car do or not do in a specific scenario?

• to a social dilemna: how to make the company accept and apply the
compromises that suit it?

• AI is not just a technical, economical or legislative problem, it is also a problem
of society’s cooperation. https://www.moralmachine.net/

60

https://www.moralmachine.net/

Autonomous cars and moral decisions

• From a ethics dilemna : what should a car do or not do in a specific scenario?

• to a social dilemna: how to make the company accept and apply the
compromises that suit it?

• AI is not just a technical, economical or legislative problem, it is also a problem
of society’s cooperation. https://www.moralmachine.net/

60

https://www.moralmachine.net/

Autonomous cars and moral decisions

• From a ethics dilemna : what should a car do or not do in a specific scenario?

• to a social dilemna: how to make the company accept and apply the
compromises that suit it?

• AI is not just a technical, economical or legislative problem, it is also a problem
of society’s cooperation. https://www.moralmachine.net/

60

https://www.moralmachine.net/

Quelles décisions morales les voitures sans conducteur
devraient-elles prendre ?

Take the time to look at the TED conference of Iyad Rahwan

https://www.ted.com/talks/iyad_rahwan_what_moral_
decisions_should_driverless_cars_make/transcript

61

https://www.ted.com/talks/iyad_rahwan_what_moral_decisions_should_driverless_cars_make/transcript
https://www.ted.com/talks/iyad_rahwan_what_moral_decisions_should_driverless_cars_make/transcript

Requirements for AI adoption

Figure 11: Source : https://xaitutorial2019.github.io/

62

https://xaitutorial2019.github.io/

Conclusion

Conclusion

• Deep learning is a key element of the recent success of AI.
• Performance of deep learning models is highly correlated to the

availability of huge high-quality annotated datasets.
• But, this availability assumption is not realistic: deep learning in

low data regime

• Deep learning and more generally AI is face to methodological issues
to tackle :

• Robustness (to shifts)
• Safety
• Privacy
• Ethics
• Explainability

63

	The Deep Learning breakthrough
	Which AI ?

	Motivations of Deep Learning
	Limits of 'traditional' Machine Learning
	Features engineering: How to 'represent' your data?

	The Deep Learning timeline
	Linear network
	Gradient Descent
	Stochastic Gradient Descent
	Limitations

	Multi-Layer Perceptron (MLP)
	One-hidden layer Neural Network
	Training a MLP by Back-propagation

	Training a neural network
	Overview
	Defining a loss
	Regularizing neural networks
	Dropout regularization
	The Needs

	Deep Learning : where are we ?
	Highly performant deep Learning : More performant than humans?
	Trustworthy?

	Conclusion

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

