

Bilevel optimisation for hyperparameter estimation in imaging inverse problems

Luca Calatroni, CR CNRS, Laboratoire I3S CNRS, UCA, Inria SAM, France

(Virtual) Peyresq school June 2021

Structure of the course

Lecture I:

- Need for hyperparameter estimation in imaging
- Review of a posteriori/a priori approaches
- Bilevel modelling: general viewpoint, specific instances
- Theoretical guarantees and algorithmic insights \rightarrow technical

Lecture II:

- Learning the noise model
- Learning the regularisation models
- Extensions: learning spatially-dependent regularisation weights, non-convex modelling
- Learning problem operators, relations with other (deep) learning approaches

Introduction

Problem: for $A \in \mathbb{R}^{m \times n}$ and $f \in \mathbb{R}^m$, seek $x \in \mathbb{R}^n$ such that:

$$f = \mathcal{T}(Ax)$$

...<u>Pierre's course</u>: due to ill-posedness, regularization is needed! Following a Bayesian/MAP approach consider:

 $P(f|Ax, \theta_l)$ (likelihood/fidelity), $P(x; \theta_p)$ (prior/regularisation) with θ_l and θ_p hyperparameters of the distributions. **Problem**: for $A \in \mathbb{R}^{m \times n}$ and $f \in \mathbb{R}^m$, seek $x \in \mathbb{R}^n$ such that:

$$f = Ax + b$$

... Pierre's course: due to ill-posedness, regularization is needed!

Following a Bayesian/MAP approach consider:

 $P(f|Ax, \theta_l)$ (likelihood/fidelity), $P(x; \theta_p)$ (prior/regularisation) with θ_l and θ_p hyperparameters of the distributions.

Example: quadratic case

Assume noise is additive, white, Gaussian (AWGN) + Gaussian prior:

$$b \sim \mathcal{N}(0, \sigma_b^2 Id)$$
 $x \sim \mathcal{N}(0, \sigma_x^2 Id),$ $\sigma_b, \sigma_x > 0$

MAP estimation reduces to the following problem:

find
$$x^* = \arg\min_{x} \frac{1}{2\sigma_b^2} ||f - Ax||_2^2 + \frac{1}{2\sigma_x^2} ||x||^2$$

Hyperparameter setting in variational inverse problems: general framework

Problem: for $A \in \mathbb{R}^{m \times n}$ and $f \in \mathbb{R}^m$, seek $x \in \mathbb{R}^n$ such that:

$$f = Ax + b$$

... Pierre's course: due to ill-posedness, regularization is needed!

Following a Bayesian/MAP approach consider:

 $P(f|Ax, \theta_l)$ (likelihood/fidelity), $P(x; \theta_p)$ (prior/regularisation) with θ_l and θ_p hyperparameters of the distributions.

Example: quadratic case

Assume noise is additive, white, Gaussian (AWGN) + Gaussian prior:

$$b \sim \mathcal{N}(0, \sigma_b^2 Id)$$
 $x \sim \mathcal{N}(0, \sigma_x^2 Id),$ $\sigma_b, \sigma_x > 0$

MAP estimation reduces to the following problem:

find
$$x^* = \arg\min_x \frac{\sigma_x^2}{2\sigma_b^2} \|f - Ax\|_2^2 + \frac{1}{2} \|x\|^2$$

Probabilistic interpretation: balance between regularisation/fidelity = ratio between underlying probabilistic hyperparameters.

Hyperparameter setting in variational inverse problems: general framework

Problem: for $A \in \mathbb{R}^{m \times n}$ and $f \in \mathbb{R}^m$, seek $x \in \mathbb{R}^n$ such that:

$$f = Ax + b$$

... Pierre's course: due to ill-posedness, regularization is needed!

Following a Bayesian/MAP approach consider:

 $P(f|Ax, \theta_l)$ (likelihood/fidelity), $P(x; \theta_p)$ (prior/regularisation) with θ_l and θ_p hyperparameters of the distributions.

Example: quadratic case

Assume noise is additive, white, Gaussian (AWGN) + Gaussian prior:

$$b \sim \mathcal{N}(0, \sigma_b^2 Id)$$
 $x \sim \mathcal{N}(0, \sigma_x^2 Id), \sigma_b, \sigma_x > 0$

MAP estimation reduces to the following problem:

find
$$x^* = \arg\min_{x} \frac{\mu}{2} \|f - Ax\|_2^2 + \frac{1}{2} \|x\|^2$$

Probabilistic interpretation: balance between regularisation/fidelity = ratio between underlying probabilistic hyperparameters.

Hyperparameter setting in variational inverse problems: general framework

Problem: for $A \in \mathbb{R}^{m \times n}$ and $f \in \mathbb{R}^m$, seek $x \in \mathbb{R}^n$ such that:

$$f = Ax + b$$

... Pierre's course: due to ill-posedness, regularization is needed!

Following a Bayesian/MAP approach consider:

 $P(f|Ax, \theta_l)$ (likelihood/fidelity), $P(x; \theta_p)$ (prior/regularisation) with θ_l and θ_p hyperparameters of the distributions.

Example: quadratic case

Assume noise is additive, white, Gaussian (AWGN) + Gaussian prior:

$$b \sim \mathcal{N}(0, \sigma_b^2 Id)$$
 $x \sim \mathcal{N}(0, \sigma_x^2 Id), \sigma_b, \sigma_x > 0$

MAP estimation reduces to the following problem:

find
$$x^* = \arg\min_{x} \frac{1}{2} ||f - Ax||_2^2 + \frac{\alpha}{2} ||x||^2$$

with $\alpha = 1/\mu$.

Probabilistic interpretation: balance between regularisation/fidelity = ratio between underlying probabilistic hyperparameters.

Hyperparameter setting: example I (TV restoration)

AWGN + Total Variation regularisation (Rudin, Osher, Fatemi,'92):

TV regularisation

AWGN noise + Laplace distribution on discrete image gradient magnitudes

$$b \sim \mathcal{N}(0, \sigma_b^2 I d)$$
 $|(Dx)_i|_2 \sim \mathcal{L}(0, \tau), i = 1, \dots, n$ $\sigma_b, \tau > 0$

MAP estimation:

$$\arg\min_{x} \frac{1}{2} \|f - Ax\|_{2}^{2} + \alpha \|Dx\|_{2,1}$$

where $\alpha = \alpha(\sigma_b^2, \tau)$ and $||Dx||_{2,1} = \sum_{i=1}^n \sqrt{(D_h x)_i^2 + (D_v x)_i^2}$, ("1-norm" of Dx)

Hyperparameter setting: example I (TV restoration)

AWGN + Total Variation regularisation (Rudin, Osher, Fatemi,'92):

TV regularisation

AWGN noise + Laplace distribution on discrete image gradient magnitudes

$$b \sim \mathcal{N}(0, \sigma_b^2 I d)$$
 $|(Dx)_i|_2 \sim \mathcal{L}(0, \tau), i = 1, \dots, n$ $\sigma_b, \tau > 0$

MAP estimation:

$$\arg\min_{x} \frac{1}{2} \|f - Ax\|_{2}^{2} + \alpha \|Dx\|_{2,1}$$

where $\alpha = \alpha(\sigma_b^2, \tau)$ and $||Dx||_{2,1} = \sum_{i=1}^n \sqrt{(D_h x)_i^2 + (D_v x)_i^2}$, ("1-norm" of Dx)

Importance of parameter selection in TV restoration

Hyperparameter setting: example II (noise modelling)

Non-Gaussian noise scenarios. Popular noise models:

- AWLN/impulsive noise: $b \sim \mathcal{L}(0, \tau) \rightarrow \frac{1}{\tau} \|f Ax\|_1$
- Poisson noise (non-additive) ¹: $f = \mathcal{P}(Ax)$ with

$$f_j \sim \mathcal{P}((Ax)_j), j = 1, \dots, n \rightarrow KL(f, Ax) = \mu \sum_{j=1}^n \left((Ax)_j - f_j \log(Ax)_j \right)$$

¹Review for astronomical/biological imaging: Bertero, Boccacci, Ruggiero, '18

Hyperparameter setting: example II (noise modelling)

Non-Gaussian noise scenarios. Popular noise models:

- AWLN/impulsive noise: $b \sim \mathcal{L}(0, \tau) \rightarrow \frac{1}{\tau} \| f Ax \|_1$
- Poisson noise (non-additive) ¹: $f = \mathcal{P}(Ax)$ with

$$f_j \sim \mathcal{P}((Ax)_j), j = 1, \dots, n \rightarrow KL(f, Ax) = \mu \sum_{j=1}^n \left((Ax)_j - f_j \log(Ax)_j \right)$$

Mixed noise models

• linear combination of data fidelities (De Los Reyes, Schoenlieb, '13...):

$$\underset{x}{\arg\min} \sum_{i=1}^{d} \frac{\mu_i}{\Phi_i} \Phi_i(Ax; f) + R(x), \qquad \mu_j \ge 0$$

 non-linear combinations (exact log-likelihood Chouzenoux, Jezierska, Pesquet, Talbot, '15,... infimal-convolution Calatroni, De Los Reyes, Schoenlieb, '17...): arg min G(Φ₁(Ax; f),...,Φ_d(Ax; f); μ₁,...,μ_d) + R(x), μ_i ≥ 0

¹Review for astronomical/biological imaging: Bertero, Boccacci, Ruggiero, '18

Hyperparameter setting: example II (noise modelling)

Non-Gaussian noise scenarios. Popular noise models:

- AWLN/impulsive noise: $b \sim \mathcal{L}(0, \tau) \rightarrow \frac{1}{\tau} \| f Ax \|_1$
- Poisson noise (non-additive) ¹: $f = \mathcal{P}(Ax)$ with

$$f_j \sim \mathcal{P}((Ax)_j), j = 1, \dots, n \rightarrow KL(f, Ax) = \mu \sum_{j=1}^n \left((Ax)_j - f_j \log(Ax)_j \right)$$

Mixed noise models

• linear combination of data fidelities (De Los Reyes, Schoenlieb, '13...):

$$\underset{x}{\arg\min} \sum_{i=1}^{d} \frac{\mu_i}{\Phi_i} \Phi_i(Ax; f) + R(x), \qquad \mu_j \ge 0$$

 non-linear combinations (exact log-likelihood Chouzenoux, Jezierska, Pesquet, Talbot, '15,... infimal-convolution Calatroni, De Los Reyes, Schoenlieb, '17...): arg min G(Φ₁(Ax; f),...,Φ_d(Ax; f); μ₁,...,μ_d) + R(x), μ_i ≥ 0

Here, hyperparameters control fidelities VS. regularisation, but also balance each other

¹Review for astronomical/biological imaging: Bertero, Boccacci, Ruggiero, '18

Hyperparameter setting: example II (higher-order & analysis-type reg.)

Higher-order regularisation: combine gradient with higher-order information (ICTV Chambolle, Lions, '97, TGV Bredies, Kunisch, Pock, '10):

$$TGV_{(\boldsymbol{\alpha},\boldsymbol{\beta})}^{2}(x) := \min_{w} \alpha \int_{\Omega} |\nabla x - w| + \beta \int_{\Omega} |Ew|$$

where, roughly, $Ew = \frac{1}{2}(\nabla w + \nabla w^T)$. Here, $\theta = (\alpha, \beta) > 0$ control the amount of TV-type regularisation against higher-order smoothing

$$\arg\min_{x} TGV^{2}_{(\boldsymbol{\alpha},\boldsymbol{\beta})}(x) + \Phi(Ax; f).$$

Too low, optimal and too high β (\sim TV)

Hyperparameter setting: example II (higher-order & analysis-type reg.)

Higher-order regularisation: combine gradient with higher-order information (ICTV Chambolle, Lions, '97, TGV Bredies, Kunisch, Pock, '10):

$$TGV_{(\boldsymbol{\alpha},\boldsymbol{\beta})}^{2}(x) := \min_{w} \alpha \int_{\Omega} |\nabla x - w| + \beta \int_{\Omega} |Ew|$$

where, roughly, $Ew = \frac{1}{2}(\nabla w + \nabla w^T)$. Here, $\theta = (\alpha, \beta) > 0$ control the amount of TV-type regularisation against higher-order smoothing

$$\underset{x}{\arg\min} TGV^{2}_{(\boldsymbol{\alpha},\boldsymbol{\beta})}(x) + \Phi(Ax; f).$$

Too low, too high α (\sim TV²)

Higher-order regularisation: combine gradient with higher-order information (ICTV Chambolle, Lions, '97, TGV Bredies,Kunisch, Pock, '10):

$$TGV_{(\boldsymbol{\alpha},\boldsymbol{\beta})}^{2}(x) := \min_{w} \alpha \int_{\Omega} |\nabla x - w| + \beta \int_{\Omega} |Ew|$$

where, roughly, $Ew = \frac{1}{2}(\nabla w + \nabla w^T)$. Here, $\theta = (\alpha, \beta) > 0$ control the amount of TV-type regularisation against higher-order smoothing

$$\underset{x}{\arg\min} TGV^{2}_{(\boldsymbol{\alpha},\boldsymbol{\beta})}(x) + \Phi(Ax; f).$$

Analysis approach (Elad, Milanfar, Rubinstein, '07): express image prior in terms of linear combination of linear (convolutional) operators $K_k \in \mathbb{R}^{s \times n}, k = 1, ..., q$ (Kunisch, Pock, '13)

$$\arg\min_{x} \frac{1}{2} \sum_{k=1}^{q} \theta_{k} \|K_{k}x\|_{2}^{2} + \Phi(Ax; f)$$
$$\|K_{k}x\|_{2}^{2} = \sum_{i=1}^{n} |(K_{k}x)_{i}|^{2}$$

(see later...)

Hyperparameter setting: example II (space-variant regularisation)²

At each pixel, local image scale $\alpha_i > 0$, directionality $\gamma_i \in [-\pi/2, \pi/2)$ and anisotropy $a_i \in (0, 1]$ is encoded as hyperparameter.

Noisy, TV, DTV results

At each pixel, local image scale $\alpha_i > 0$, directionality $\gamma_i \in [-\pi/2, \pi/2)$ and anisotropy $a_i \in (0, 1]$ is encoded as hyperparameter.

* Weighted TV (Hintermueller et al., '17-...)

$$\operatorname{WTV}_{(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n)}(x) := \sum_{i=1}^n \boldsymbol{\alpha}_i |(Dx)_i|$$

²review: Pragliola, Calatroni, Lanza, Sgallari, '21

At each pixel, local image scale $\alpha_i > 0$, directionality $\gamma_i \in [-\pi/2, \pi/2)$ and anisotropy $a_i \in (0, 1]$ is encoded as hyperparameter.

* Weighted TV (Hintermueller et al., '17-...)

$$\operatorname{WTV}_{(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n)}(x) := \sum_{i=1}^n \boldsymbol{\alpha}_i |(Dx)_i|$$

* Directional weighted TV (Bayram, Kamasak, '12, Kongskov, Dong, Knudsen, '19)

$$\mathrm{DTV}_{\boldsymbol{\alpha},\boldsymbol{\gamma},\boldsymbol{a}}(u) := \sum_{i=1}^n \alpha_i |\mathsf{diag}(1,\boldsymbol{a}_i) R_{-\boldsymbol{\gamma}_i}(D\boldsymbol{x})_i|$$

²review: Pragliola, Calatroni, Lanza, Sgallari, '21

At each pixel, local image scale $\alpha_i > 0$, directionality $\gamma_i \in [-\pi/2, \pi/2)$ and anisotropy $a_i \in (0, 1]$ is encoded as hyperparameter.

* Weighted TV (Hintermueller et al., '17-...)

$$\operatorname{WTV}_{(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n)}(x) := \sum_{i=1}^n \boldsymbol{\alpha}_i |(Dx)_i|$$

* Directional weighted TV (Bayram, Kamasak, '12, Kongskov, Dong, Knudsen, '19)

$$\mathrm{DTV}_{\boldsymbol{\alpha},\boldsymbol{\gamma},\boldsymbol{a}}(u) := \sum_{i=1}^n \alpha_i |\mathrm{diag}(1,\boldsymbol{a}_i)R_{-\boldsymbol{\gamma}_i}(D\boldsymbol{x})_i|$$

... possibly many parameters to estimate!

²review: Pragliola, Calatroni, Lanza, Sgallari, '21

Classical approaches

A posteriori, a priori, error-free parameter choice

• A posteriori (Morozov, '66, Miller '70): available estimate on the data discrepancy and/or value of the regulariser at the ideal solution :

$$\Phi(A\tilde{f};f) \leq \epsilon$$
 and/or $R(\tilde{f}) \leq S, \quad \epsilon, S > 0$

<u>Morozov's discrepancy principle</u>: choose θ s.t. $\Phi(Ax(\theta); f) \leq \epsilon(\sigma^2)$, where σ^2 relates to noise intensity, e.g., Gaussian noise variance.

A posteriori, a priori, error-free parameter choice

• A posteriori (Morozov, '66, Miller '70): available estimate on the data discrepancy and/or value of the regulariser at the ideal solution :

$$\Phi(A\tilde{f}; f) \leq \epsilon$$
 and/or $R(\tilde{f}) \leq S$, $\epsilon, S > 0$

<u>Morozov's discrepancy principle</u>: choose θ s.t. $\Phi(Ax(\theta); f) \leq \epsilon(\sigma^2)$, where σ^2 relates to noise intensity, e.g., Gaussian noise variance.

 A priori (Engl, Neubauer,'00): estimate on noise level + prior smoothness assumption on solution. No need to compute x(θ)! Typically find optimal θ by 'measuring' optimality (convergence rates...)

A posteriori, a priori, error-free parameter choice

• A posteriori (Morozov, '66, Miller '70): available estimate on the data discrepancy and/or value of the regulariser at the ideal solution :

$$\Phi(A\tilde{f}; f) \leq \epsilon$$
 and/or $R(\tilde{f}) \leq S$, $\epsilon, S > 0$

<u>Morozov's discrepancy principle</u>: choose θ s.t. $\Phi(Ax(\theta); f) \leq \epsilon(\sigma^2)$, where σ^2 relates to noise intensity, e.g., Gaussian noise variance.

- A priori (Engl, Neubauer,'00): estimate on noise level + prior smoothness assumption on solution. No need to compute x(θ)! Typically find optimal θ by 'measuring' optimality (convergence rates...)
- Error-free: "early" (heuristic) attempts of learning-from-data strategies.
 Generalised cross-validation (Golub et al. '79): let x(θ)^[k] ∈ ℝⁿ be obtained from measurements f^[k] = (f₁, f₂,..., f_{k-1}, f_{k+1},..., f_m).

Choose θ s.t. it minimizes ('leave one out')

$$heta\mapsto \sum_{k=1}^m |(Ax(heta)^{[k]})_k - f_k|^2 \quad ext{s.t.} \ (Ax(heta)^{[k]})_k pprox f_k$$

Other approaches: L-curve (Hansen, '92)...

- A posteriori/Morozov's discrepancy principle: choose θ s.t.
 Φ(Ax(θ); f) ≤ ε(σ²), where ε(σ²) depends on noise level (unknown in many applications!)
- A priori (Engl, Neubauer,'00): estimate on noise level + prior smoothness assumption on solution: very limiting in practice!
- Error-free: generalised cross-validation (Golub et al. '79) requires computation of large matrix traces: intractable for large-scale problems.

What is still done in practice

Brute force approach: scalar problem, $\theta > 0$

What is still done in practice

Brute force approach: scalar problem, $\theta > 0$

1. Choose $\theta \in \Theta := \{\theta_1, \theta_2, \dots, \theta_K\} \rightarrow (\text{discretised parameter range})$

2. Solve:

$$x(\theta) \in \underset{v}{\operatorname{arg\,min}} \mathcal{F}(x; f, \theta)$$

- 3. Do the same for all $\theta_j, j = 1, \dots, K$
- 4. Optimise θ w.r.t. to ground truth \tilde{f} and in terms of **task-dependent quality measures** (RMSE, PSNR, SSIM...):

 $\underset{\theta \in \Theta}{\operatorname{arg\,min}} RMSE(x(\theta); \tilde{f}), \quad \underset{\theta \in \Theta}{\operatorname{arg\,min}} -PSNR(x(\theta); \tilde{f}), \quad \underset{\theta \in \Theta}{\operatorname{arg\,min}} -SSIM(x(\theta); \tilde{f}) \dots$

Exemple of parameter optimisation

What is still done in practice

Brute force approach: scalar problem, $\theta > 0$

1. Choose $\theta \in \Theta := \{\theta_1, \theta_2, \dots, \theta_K\} \rightarrow (\text{discretised parameter range})$

2. Solve:

$$x(\theta) \in \underset{v}{\operatorname{arg\,min}} \mathcal{F}(x; f, \theta)$$

- 3. Do the same for all $\theta_j, j = 1, \dots, K$
- Optimise θ w.r.t. to ground truth f̃ and in terms of task-dependent quality measures (RMSE, PSNR, SSIM...):

 $\underset{\theta \in \Theta}{\operatorname{arg\,min}} RMSE(x(\theta); \tilde{f}), \quad \underset{\theta \in \Theta}{\operatorname{arg\,min}} -PSNR(x(\theta); \tilde{f}), \quad \underset{\theta \in \Theta}{\operatorname{arg\,min}} -SSIM(x(\theta); \tilde{f}) \dots$

Exemple of parameter optimisation

Motivation for bilevel approaches: can we formalise this idea?

• Optimal model design (Haber, Tenorio, '03, no proofs, many examples):

$$R(x;\theta) = \sum_{i=1}^{n} |\theta_i(Dx)_i|^2, \quad R(x;\theta) = \sum_{i=1}^{n} \theta_i |(Dx)_i|$$

 \rightarrow supervised learning technique effective for learning (parametrised) regularisation models.

• Optimal parameter estimation in the context of Markov Random Field modelling (Samuel, Tappen, '09): lower-level problem defined in terms of log-posterior...

Interest in bilevel optimization

Number of works on bilevel optimization over time

Bilevel modelling

Problem formulation

Given one exemplar training pair $(\tilde{f}, f) \in \mathbb{R}^n \times \mathbb{R}^m$ with:

- \tilde{f} : "ground truth" data, degradation-free example used for training;
- f: corresponding blurred, undersampled, noisy version (in the setting considered)

$$f = \mathcal{T}(A\tilde{f})$$

Problem formulation

Given one exemplar training pair $(\tilde{f}, f) \in \mathbb{R}^n \times \mathbb{R}^m$ with:

- \tilde{f} : "ground truth" data, degradation-free example used for training;
- f: corresponding blurred, undersampled, noisy version (in the setting considered)

$$f = \mathcal{T}(A\tilde{f})$$

Ĩ

f

For $q \ge 1$ parameters

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \ \mathcal{E}(x(\theta); \tilde{f}) \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathbb{R}^{n}} \ \mathcal{F}(x, \theta; f) \end{cases}$$

- Upper level functional: $\mathcal{E}(\cdot; \tilde{f}) : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ (task-dependent)
- Lower level functional: $\mathcal{F}(\cdot, \cdot; f) : \mathbb{R}^n \times \mathbb{R}^q_{\geq 0} \to \mathbb{R}_{\geq 0}$ (reconstruction model)

Reference book: J. Bard, Practical Bilevel Optimization, '98

Idea

TV denoising (Rudin, Osher, Fatemi, '92):

- A = Id, $\mathcal{T}(\cdot) = \cdot + n$ with $n \sim \mathcal{N}(0, \sigma^2 Id)$, q = 1
- Note: noise level σ^2 does not need to be known!
- SNR-like upper level functional $\mathcal{E}(x(\theta); \tilde{f}) = \frac{1}{2} ||x(\theta) \tilde{f}||_2^2$ for assessing reconstruction ($\sim -SNR$)

$$\begin{cases} \min_{\theta \ge 0} \left\{ \mathcal{E}(x(\theta); \tilde{f}) := \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \right\} \\ \text{s.t.} \quad x(\theta) = \arg\min_{x \in \mathbb{R}^n} \left\{ \mathcal{F}(x, \theta; f) := \theta \| Dx \|_{2,1} + \frac{1}{2} \| x - f \|_2^2 \right\} \end{cases}$$

D is finite difference gradient $(Dx)_{i,j} = (u_{i+1,j} - u_{i,j}, u_{i,j+1} - u_{i,j}).$

First-order derivative filter

Regularisation is chosen as sum of sparsity-promoting terms defined in terms of filters (Elad, Milanfar, Rubinstein, '07), for fixed $p \in \{1, 2\}$ (convexity)

$$R(x) = \frac{1}{p} \sum_{k=1}^{q} \theta_{k} ||K_{k}x||_{p}^{p} = \frac{1}{p} \sum_{k=1}^{q} \theta_{k} \sum_{i=1}^{n} |(K_{k}x)_{i}|^{p}$$

- Filter operators $K_k \in \mathbb{R}^{s \times n}$ (generalisation of TV)
- $\theta \in \mathbb{R}^q_{\geq 0}$

•
$$A = Id$$
, $\mathcal{T}(\cdot) = \cdot + n$ with $n \sim \mathcal{N}(0, \sigma^2 Id)$.

- Note: noise level σ^2 does not need to be known!
- SNR-like $\mathcal{E}(x(\theta); \tilde{f}) = \frac{1}{2} ||x(\theta) \tilde{f}||_2^2$, assessing reconstruction

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{q}} \quad \frac{1}{2} \| x(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \quad \left\{ \mathcal{F}(x,\theta;f) := \frac{1}{p} \sum_{k=1}^{q} \theta_{k} \| \mathcal{K}_{k} x \|_{p}^{p} + \frac{1}{2} \| x - f \|_{2}^{2} \right\} \end{cases}$$
Understanding (non-)convexity of the bilevel problem: scalar example

Set: $x, f, \tilde{f} \in \mathbb{R}, q = 1, K_1 = 1, p = 2$. Explicit solution for lower-level problem! $x(\theta) = \arg \min \frac{1}{2}\theta |x|^2 + \frac{1}{2}|x - f|^2 \Rightarrow (\theta + 1)x(\theta) = f$

Plug into upper level functional:

$$\min_{\theta \ge 0} \left\{ \mathcal{E}(x(\theta)) = \frac{1}{2} |x(\theta) - \tilde{f}|^2 \right\} = \min_{\theta \ge 0} \left\{ \frac{1}{2} \left| \frac{f}{1+\theta} - \tilde{f} \right|^2 = \mathcal{E}(\theta) \right\}$$

Shape of upper cost functional

Quasi-convexity

For all $a \ge 0$, the set $S_a = \{\theta \ge 0 : \mathcal{E}(\theta) \le a\}$ is convex $\Leftrightarrow \mathcal{E}(\theta)$ is **quasi-convex**.

Quasi-convexity

- Convexity \rightarrow quasi-convexity
- The viceversa is not true:

Quasiconvex but non convex function

• Better property than concavity: it improves the chance of computing the optimal parameters of the model.

Understanding convexity of the bilevel problem: scalar non-smooth example

Set: $x, f, \tilde{f} \in \mathbb{R}, q = 1, K_1 = 1, p = 1$.

Few calculations show: $x(\theta) = \max(0, |f| - \theta) \operatorname{sign}(f)$. Upper-level functional becomes:

$$\min_{\theta \geq 0} \frac{1}{2} \Big| \max(0, |f| - \theta) \operatorname{sign}(f) - \tilde{f} \Big|^2$$

Shape of upper cost functional for 1D quadratic problems

Set:
$$x, f, \tilde{f} \in \mathbb{R}^n$$
, $q = 1$, $(K_1 x)_i = x_{i+1} - x_i$, $p = 1$.

Computations here are not trivial (exact TV solution in 1D Strong, '96), but one can compute reduced upper level-functional...

The functional here is not quasi-convex (Arridge, Maas, Oktem, Schoenlieb, '19)

We will focus on denoising problem (see later for the reasons why)

Theoretical guarantees

Existence of solution: quadratic case, p = 2

For $heta = (heta_1, \dots, heta_q) \in \mathbb{R}^q_{\geq 0}$, the lower-level problem

$$x(\theta) = \underset{x \in \mathbb{R}^{n}}{\arg\min} \ \frac{1}{2} \sum_{k=1}^{q} \theta_{k} \| K_{k} x \|_{2}^{2} + \frac{1}{2} \| x - f \|_{2}^{2}$$
(*)

Existence of solution: quadratic case, p = 2

For $heta = (heta_1, \dots, heta_q) \in \mathbb{R}^q_{>0}$, the lower-level problem

$$x(\theta) = \underset{x \in \mathbb{R}^{n}}{\arg\min} \ \frac{1}{2} \sum_{k=1}^{q} \theta_{k} \|K_{k}x\|_{2}^{2} + \frac{1}{2} \|x - f\|_{2}^{2}$$
(*)

Set $\mathcal{K}_k := \mathcal{K}_k^T \mathcal{K}_k$, the optimality condition reads:

$$x(\theta) + \sum_{k=1}^{q} \theta_k \mathcal{K}_k x(\theta) = f \quad \Leftrightarrow \quad x(\theta) = \left(Id + \sum_{k=1}^{q} \theta_k \mathcal{K}_k \right)^{-1} f$$

Existence of solution: quadratic case, p = 2

For $\theta = (\theta_1, \ldots, \theta_q) \in \mathbb{R}^q_{\geq 0}$, the lower-level problem

$$x(\theta) = \underset{x \in \mathbb{R}^{n}}{\arg\min} \ \frac{1}{2} \sum_{k=1}^{q} \theta_{k} \|K_{k}x\|_{2}^{2} + \frac{1}{2} \|x - f\|_{2}^{2}$$
(*)

Set $\mathcal{K}_k := \mathcal{K}_k^T \mathcal{K}_k$, the optimality condition reads:

$$x(\theta) + \sum_{k=1}^{q} \theta_k \mathcal{K}_k x(\theta) = f \quad \Leftrightarrow \quad x(\theta) = \left(Id + \sum_{k=1}^{q} \theta_k \mathcal{K}_k \right)^{-1} f$$

Hence, the reduced upper-level functional is:

$$\min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \frac{1}{2} \| \mathbf{x}(\theta) - \tilde{f} \|_{2}^{2} = \frac{1}{2} \left\| \underbrace{\left(ld + \sum_{k=1}^{q} \theta_{k} \mathcal{K}_{k} \right)^{-1}}_{=:\mathcal{R}} f - \tilde{f} \right\|_{2}^{2} =: \mathcal{E}(\theta; \tilde{f}) \quad (\text{reduced cost})$$

Existence + local optimality (Kunisch, Pock, '13)

If $\inf \left\{ \|\tilde{x} - \tilde{f}\| : \tilde{x} \in \ker(K_k) \text{ for some } k \right\} > \|f - \tilde{f}\|_2$, then (*) has solution. Let $\{\mathcal{K}_k \mathcal{R}f\}_{k=1}^q$ be **linearly independent** and let $\theta^* \in \mathbb{R}^q_{\geq 0}$. Then, if

$$\left\| \left(Id + \sum_{k=1}^{q} \theta_k^* \mathcal{K}_k \right)^{-1} f - \tilde{f} \right\|$$

is small enough, then, $\nabla^2 \mathcal{E}(\theta^*) > 0$, hence θ^* is a locally unique minimum.

 ℓ_1 type priors have great impact in signal processing/compressed sensing.

$$\begin{cases} \min_{\theta \in \mathbb{R}^q_{\geq 0}} \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \quad x(\theta) = \arg\min_{x \in \mathbb{R}^n} \sum_{k=1}^q \theta_k \| K_k x \|_1 + \frac{1}{2} \| x - f \|_2^2 \end{cases}$$

 ℓ_1 type priors have great impact in signal processing/compressed sensing.

$$\begin{cases} \min_{\theta \in \mathbb{R}^q_{\geq 0}} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \ x(\theta) = \arg\min_{x \in \mathbb{R}^n} \ \sum_{k=1}^q \theta_k \| \mathcal{K}_k x \|_1 + \frac{1}{2} \| x - f \|_2^2 \end{cases}$$

Optimality conditions can still be found:

$$x(\theta) \quad \text{s.t.} \quad \begin{cases} \sum_{k=1}^{q} \theta_k K_k^T \lambda_k + x(\theta) = f, \\ (\lambda_k)_i \in \begin{cases} \operatorname{sgn}(K_k x(\theta))_i & \text{if} \quad (K_k x(\theta))_i \neq 0 \\ [-1, 1] & \text{if} \quad (K_k x(\theta))_i = 0. \end{cases} \end{cases}$$

Existence (Kunisch, Pock, '13) If $\inf \left\{ \|\tilde{x} - \tilde{f}\| : \tilde{x} \in \ker(K_k) \text{ for some } k \right\} > \|f - \tilde{f}\|_2$, then the lower-level problem has a solution $\theta^* \in \mathbb{R}^q_{\geq 0}$. ℓ_1 type priors have great impact in signal processing/compressed sensing.

$$\begin{cases} \min_{\theta \in \mathbb{R}^q_{\geq 0}} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \ x(\theta) = \arg\min_{x \in \mathbb{R}^n} \ \sum_{k=1}^q \theta_k \| \mathcal{K}_k x \|_1 + \frac{1}{2} \| x - f \|_2^2 \end{cases}$$

Optimality conditions can still be found:

$$x(\theta) \quad \text{s.t.} \quad \begin{cases} \sum_{k=1}^{q} \theta_k K_k^T \lambda_k + x(\theta) = f, \\ (\lambda_k)_i \in \begin{cases} \operatorname{sgn}(K_k x(\theta))_i & \text{if} \quad (K_k x(\theta))_i \neq 0 \\ [-1, 1] & \text{if} \quad (K_k x(\theta))_i = 0. \end{cases} \end{cases}$$

Existence (Kunisch, Pock, '13) If $\inf \left\{ \|\tilde{x} - \tilde{f}\| : \tilde{x} \in \ker(K_k) \text{ for some } k \right\} > \|f - \tilde{f}\|_2$, then the lower-level problem has a solution $\theta^* \in \mathbb{R}^q_{\geq 0}$.

Plugging in upper-level?!

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \mathcal{E}(x(\theta)) \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathbb{R}^{n}} \mathcal{F}(x, \theta) \end{cases}$$

Look for optimality of the bilevel problem by chain-rule:

$$\frac{\partial}{\partial \theta} \mathcal{E}(x(\theta)) = \frac{\partial \mathcal{E}}{\partial x}(x(\theta)) \frac{\partial X}{\partial \theta}(\theta)$$

where

$$X: \theta \mapsto x(\theta)$$
 is the solution map

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \mathcal{E}(x(\theta)) \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathbb{R}^{n}} \mathcal{F}(x, \theta) \end{cases}$$

Look for optimality of the bilevel problem by chain-rule:

$$rac{\partial}{\partial heta} \mathcal{E}(\mathbf{x}(heta)) = rac{\partial \mathcal{E}}{\partial \mathbf{x}}(\mathbf{x}(heta)) rac{\partial \mathbf{X}}{\partial heta}(heta)$$

where

 $X: \theta \mapsto x(\theta)$ is the solution map

• **Optimality**: if
$$\hat{x} = x(\hat{\theta})$$
 exists, then

$$F(\hat{x},\hat{ heta}) := rac{\partial \mathcal{F}}{\partial x}(\hat{x},\hat{ heta}) = 0$$

$$\begin{cases} \min_{\theta \in \mathbb{R}^q_{\geq 0}} \ \mathcal{E}(x(\theta)) \\ \text{s.t.} \ x(\theta) \in \arg\min_{x \in \mathbb{R}^n} \ \mathcal{F}(x, \theta) \end{cases}$$

Look for optimality of the bilevel problem by chain-rule:

$$\frac{\partial}{\partial \theta} \mathcal{E}(x(\theta)) = \frac{\partial \mathcal{E}}{\partial x}(x(\theta)) \frac{\partial X}{\partial \theta}(\theta)$$

where

 $X: \theta \mapsto x(\theta)$ is the solution map

• **Optimality**: if $\hat{x} = x(\hat{\theta})$ exists, then

$$F(\hat{x},\hat{ heta}) := rac{\partial \mathcal{F}}{\partial x}(\hat{x},\hat{ heta}) = 0$$

• Implicit function theorem: if F is C^1 and $\frac{\partial F}{\partial x}(\hat{x}, \hat{\theta})$ is invertible, then there exists $X: \theta \mapsto x(\theta)$ in a neighbourhood of $(\hat{x}, \hat{\theta})$, X is C^1 there and

$$\frac{\partial X}{\partial \theta}(\theta) = \left(-\frac{\partial F}{\partial x}(X(\theta),\theta)\right)^{-1}\frac{\partial F}{\partial \theta}(X(\theta),\theta) = -\left(H_{\mathcal{F}}(X(\theta),\theta)\right)^{-1}\frac{\partial^{2}\mathcal{F}}{\partial \theta \partial x}(X(\theta),\theta)$$

where $H_{\mathcal{F}}(X(\theta)) = \partial \mathcal{F} / \partial x^2$ is the Hessian of \mathcal{F} .

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \ \mathcal{E}(x(\theta)) \\ \text{s.t.} \ x(\theta) \in \arg\min_{x \in \mathbb{R}^{n}} \ \mathcal{F}(x, \theta) \end{cases}$$

Look for optimality of the bilevel problem by chain-rule:

$$\frac{\partial}{\partial \theta} \mathcal{E}(x(\theta)) = \frac{\partial \mathcal{E}}{\partial x}(x(\theta)) \frac{\partial X}{\partial \theta}(\theta)$$

where

 $X: \theta \mapsto x(\theta)$ is the solution map

• **Optimality**: if $\hat{x} = x(\hat{\theta})$ exists, then

$$F(\hat{x},\hat{ heta}) := rac{\partial \mathcal{F}}{\partial x}(\hat{x},\hat{ heta}) = 0$$

• Implicit function theorem: if F is C^1 and $\frac{\partial F}{\partial x}(\hat{x}, \hat{\theta})$ is invertible, then there exists $X: \theta \mapsto x(\theta)$ in a neighbourhood of $(\hat{x}, \hat{\theta})$, X is C^1 there and

$$\frac{\partial X}{\partial \theta}(\theta) = \left(-\frac{\partial F}{\partial x}(X(\theta),\theta)\right)^{-1} \frac{\partial F}{\partial \theta}(X(\theta),\theta) = -\left(H_{\mathcal{F}}(X(\theta),\theta)\right)^{-1} \frac{\partial^2 \mathcal{F}}{\partial \theta \partial x}(X(\theta),\theta)$$

where $H_{\mathcal{F}}(X(\theta)) = \partial \mathcal{F} / \partial x^2$ is the Hessian of \mathcal{F} .

Smoothness of $\mathcal{F}(\cdot, \theta)$ (~ C^2) typically not encountered in applications...

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

where $\varepsilon \ll 1$ and $\eta_{\varepsilon}(\cdot)$ is C^2 , $\eta_{\epsilon}'' \ge 0$.

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

where $\varepsilon \ll 1$ and $\eta_{\varepsilon}(\cdot)$ is C^2 , $\eta_{\epsilon}'' \ge 0$.

Proposition

There exists a unique solution $x_{\varepsilon}(\theta)$ of the lower-level problem and the solution map $X_{\varepsilon}: \theta \mapsto x_{\varepsilon}(\theta)$ is differentiable for all $\varepsilon > 0$.

... Solutions of bilevel problem?

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{q}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} = \mathcal{E}(x_{\varepsilon}(\theta)) \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{q}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} = \mathcal{E}(x_{\varepsilon}(\theta)) \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

Eliminate dependence on $\frac{\partial X_{\varepsilon}}{\partial \theta}$ by introducing **adjoint state** $p \in \mathbb{R}^{n}$ which solves: $p + \sum_{k=1}^{q} \theta_{k} K_{k}^{T} N_{\varepsilon}^{\prime\prime}(K_{k} \times) K_{k} p = -(x_{\varepsilon}(\theta_{\varepsilon}) - \tilde{f}) \qquad (**)$

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{q}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} = \mathcal{E}(x_{\varepsilon}(\theta)) \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

Eliminate dependence on $\frac{\partial X_{\varepsilon}}{\partial \theta}$ by introducing adjoint state $p \in \mathbb{R}^n$ which solves: $p + \sum_{k=1}^q \theta_k K_k^T N_{\varepsilon}''(K_k x) K_k p = -(x_{\varepsilon}(\theta_{\varepsilon}) - \tilde{f}) \qquad (**)$

Smoothed optimality system (necessary condition)

For $N'_{\varepsilon}(z) = (\eta'_{\varepsilon}(z_j))_j^T \in \mathbb{R}^s$ and $N''_{\varepsilon}(z) = \operatorname{diag}((\eta''_{\varepsilon}(z_j))_j) \in \mathbb{R}^{s \times s}$

 $\begin{cases} x_{\varepsilon} + \sum_{k=1}^{q} \theta_{\varepsilon,k} K_{k}^{T} N_{\varepsilon}'(K_{k} x_{\varepsilon}) = f & \text{(optimality I.I.)} \\ p_{\varepsilon} + \sum_{k=1}^{q} \theta_{\varepsilon,k} K_{k}^{T} N_{\varepsilon}''(K_{k} x_{\varepsilon}) K_{k} p_{\varepsilon} = -(x_{\varepsilon} - \tilde{f}) & \text{(adjoint eq. \rightarrow linear)} \\ \langle N_{\varepsilon}'(K_{k} x_{\varepsilon}), K_{k} p_{\varepsilon} \rangle (\theta_{k} - \theta_{\varepsilon,k}) \ge 0, \quad \forall \theta_{k} \ge 0, \quad k = 1, \dots, q & \text{(optimality bilevel)} \end{cases}$

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{q}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} = \mathcal{E}(x_{\varepsilon}(\theta)) \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \| x - f \|_{2}^{2} \end{cases}$$

Eliminate dependence on $\frac{\partial X_{\varepsilon}}{\partial \theta}$ by introducing adjoint state $p \in \mathbb{R}^n$ which solves: $p + \sum_{k=1}^q \theta_k K_k^T N_{\varepsilon}''(K_k x) K_k p = -(x_{\varepsilon}(\theta_{\varepsilon}) - \tilde{f}) \qquad (**)$

Smoothed optimality system (necessary condition)

 $\text{For } \underline{N_{\varepsilon}'(z)} = (\eta_{\varepsilon}'(z_j))_j^T \in \mathbb{R}^s \text{ and } \underline{N_{\varepsilon}''(z)} = \text{diag}\left((\eta_{\varepsilon}''(z_j))_j\right) \in \mathbb{R}^{s \times s}$

 $\begin{cases} x_{\varepsilon} + \sum_{k=1}^{q} \theta_{\varepsilon,k} K_{k}^{T} N_{\varepsilon}'(K_{k} x_{\varepsilon}) = f & \text{(optimality I.I.)} \\ p_{\varepsilon} + \sum_{k=1}^{q} \theta_{\varepsilon,k} K_{k}^{T} N_{\varepsilon}''(K_{k} x_{\varepsilon}) K_{k} p_{\varepsilon} = -(x_{\varepsilon} - \tilde{f}) & \text{(adjoint eq. \rightarrow linear)} \\ \langle N_{\varepsilon}'(K_{k} x_{\varepsilon}), K_{k} p_{\varepsilon} \rangle (\theta_{k} - \theta_{\varepsilon,k}) \ge 0, \quad \forall \theta_{k} \ge 0, \quad k = 1, \dots, q & \text{(optimality bilevel)} \end{cases}$

Limit and convergence results for $\varepsilon \to 0$: very technical (Kunisch, Pock, '13).

Algorithmic approaches (nods)

Choose $\varepsilon \ll 1$ to well-approximate the non-smooth behaviour.

Idea: use fast optimisation approaches (\sim Newton's method) to solve the bilevel problem **by solving** the optimality system.

Choose $\varepsilon \ll 1$ to well-approximate the non-smooth behaviour.

Idea: use fast optimisation approaches (\sim Newton's method) to solve the bilevel problem **by solving** the optimality system.

Complementarity condition for getting 2 equations (depending on μ) from inequality

 $\mu - \max(0, \mu - \theta) = 0, \qquad \left(\left(\langle N_{\varepsilon}'(K_1 x), K_1 p \rangle, \dots, \langle N_{\varepsilon}'(K_q x), K_q p \rangle \right) \right)^T - \mu = 0,$

Choose $\varepsilon \ll 1$ to well-approximate the non-smooth behaviour.

Idea: use fast optimisation approaches (\sim Newton's method) to solve the bilevel problem **by solving** the optimality system.

Complementarity condition for getting 2 equations (depending on μ) from inequality

Finally, end up with a problem expressed in the form of linear system:

find $x_{\varepsilon} \in \mathbb{R}^{n}, \theta_{\varepsilon} \in \mathbb{R}^{q}_{\geq 0}, p_{\varepsilon} \in \mathbb{R}^{n}, \mu_{\varepsilon} \in \mathbb{R}^{q} : G(x_{\varepsilon}, \theta_{\varepsilon}, p_{\varepsilon}, \mu_{\varepsilon}) = 0.$

Algorithm: Newton-type bilevel learning

inputs:
$$(x^{0}, \theta^{0}, p^{0}, \mu^{0})$$

1. Solve: $J(x^{n}, \theta^{n}, p^{n}, \mu^{n}) \begin{bmatrix} \delta x \\ \delta \theta \\ \delta p \\ \delta \mu \end{bmatrix} = -G(x^{n}, \theta^{n}, p^{n}, \mu^{n})$

2. Update
$$(x^{n+1}, \theta^{n+1}, p^{n+1}, \mu^{n+1}) = (x^n, \theta^n, p^n, \mu^n) + (\delta x, \delta \theta, \delta p, \delta \mu)$$
 (+ linesearch)
3. Iterate

Choose $\varepsilon \ll 1$ to well-approximate the non-smooth behaviour.

Idea: use fast optimisation approaches (\sim Newton's method) to solve the bilevel problem **by solving** the optimality system.

Complementarity condition for getting 2 equations (depending on μ) from inequality

Finally, end up with a problem expressed in the form of linear system:

find $x_{\varepsilon} \in \mathbb{R}^{n}, \theta_{\varepsilon} \in \mathbb{R}^{q}_{\geq 0}, p_{\varepsilon} \in \mathbb{R}^{n}, \mu_{\varepsilon} \in \mathbb{R}^{q} : G(x_{\varepsilon}, \theta_{\varepsilon}, p_{\varepsilon}, \mu_{\varepsilon}) = 0.$

Algorithm: Newton-type bilevel learning

inputs:
$$(x^{0}, \theta^{0}, p^{0}, \mu^{0})$$

1. Solve: $J(x^{n}, \theta^{n}, p^{n}, \mu^{n}) \begin{bmatrix} \delta x \\ \delta \theta \\ \delta p \\ \delta \mu \end{bmatrix} = -G(x^{n}, \theta^{n}, p^{n}, \mu^{n})$

2. Update
$$(x^{n+1}, \theta^{n+1}, p^{n+1}, \mu^{n+1}) = (x^n, \theta^n, p^n, \mu^n) + (\delta x, \delta \theta, \delta p, \delta \mu)$$
 (+ linesearch)
3. Iterate

- -----

Proposition

Upon suitable regularity conditions & initialisation (θ_0, x_0) around a stationary point $G(x_{\varepsilon}, \theta_{\varepsilon}, p_{\varepsilon}, \mu_{\varepsilon}) = 0$, then the algorithm converges locally superlinearly .

Taking a step back: optimisation VS. discretisation

We started from a finite-dimensional formulation of the problem, then we designed suitable algorithms. Could we do the reverse (to make Pierre happy)?

Taking a step back: optimisation VS. discretisation

We started from a finite-dimensional formulation of the problem, then we designed suitable algorithms. Could we do the reverse (to make Pierre happy)?

First discretise, then optimise

- Replace function spaces with finite-dimensional subsets
- Constraints are discretised too
- Integrals become sums, duality is defined in terms of discrete surrogates...

Pro: easy to explain/design. Con: mesh-dependency due to choice of discretisation.

Taking a step back: optimisation VS. discretisation

We started from a finite-dimensional formulation of the problem, then we designed suitable algorithms. Could we do the reverse (to make Pierre happy)?

First discretise, then optimise

- Replace function spaces with finite-dimensional subsets
- Constraints are discretised too
- Integrals become sums, duality is defined in terms of discrete surrogates...

Pro: easy to explain/design. Con: mesh-dependency due to choice of discretisation.

First optimise, then discretise

- Carry out analysis using variational calculus/PDE tools
- Related to PDE-constrained optimisation

Pro: better understanding of regularity, mesh independence. **Con**: analysis requires technical tools

Hinze, Rosch, '11

 $\begin{cases} \min_{\theta \in \mathcal{X}} \mathcal{E}(x(\theta); \tilde{f}) \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathcal{H}} \mathcal{F}(x, \theta) \end{cases}$

Examples:

- •
- •
- •

$$\begin{cases} \min_{\theta \ge 0} \frac{1}{2} \| x(\theta) - \tilde{f} \|_{L^2}^2 \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathcal{BV}(\Omega)} |TV(x)| + \frac{\theta}{2} \| x - f \|_{L^2}^2 \end{cases}$$

Examples:

- TV denoising (Schoenlieb, De Los Reyes, '13): bad regularity properties of the solution map $X : \theta \mapsto x(\theta)$ due to BV topology...
- ۰

•

$$\begin{cases} \min_{\theta \in \mathbb{R}^d_{\geq 0}} \frac{1}{2} \| x(\theta) - \tilde{f} \|_{L^2}^2 \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \boldsymbol{H}^1(\Omega)} \ TV_{\varepsilon}(x) + \frac{\varepsilon}{2} \| \nabla x \|_{L^2}^2 + \sum_{i=1}^d \theta_i \Phi_i(x; f) \end{cases}$$

Examples:

- TV denoising (Schoenlieb, De Los Reyes, '13): bad regularity properties of the solution map $X : \theta \mapsto x(\theta)$ due to BV topology...
- Smoothed TV denoising (with general fidelities) (Calatroni, Chung, De Los Reyes, Schoenlieb, Valkonen, '15) in Hilbert scenarios

•

 $\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^{d}} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_{L^{2}}^{2} \\ \text{s.t.} \ x(\theta) \in \arg\min_{x \in \mathcal{H}^{1}(\Omega)} \ TGV_{\varepsilon}^{\theta}(x) + \frac{\varepsilon}{2} \| \nabla x \|_{L^{2}}^{2} + \frac{1}{2} \| x - f \|_{L^{2}}^{2} \end{cases}$

Examples:

- TV denoising (Schoenlieb, De Los Reyes, '13): bad regularity properties of the solution map $X : \theta \mapsto x(\theta)$ due to BV topology...
- Smoothed TV denoising (with general fidelities) (Calatroni, Chung, De Los Reyes, Schoenlieb, Valkonen, '15) in Hilbert scenarios
- Higher-order regularisation $\theta = (\alpha, \beta)$ (Valkonen, De Los Reyes, Schoenlieb, '17, Hintermueller et al. '17-...)

Bilevel problem in infinite-dimensional setting

For \mathcal{X}, \mathcal{H} suitable (reflexive Banach) function spaces consider:

$$\begin{cases} \min_{\theta \in \mathbb{R}_{\geq 0}^d} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_{L^2}^2 \\ \text{s.t.} \quad x(\theta) \in \arg\min_{x \in \mathcal{H}^1(\Omega)} \ TGV_{\varepsilon}^{\theta}(x) + \frac{\varepsilon}{2} \| \nabla x \|_{L^2}^2 + \frac{1}{2} \| x - f \|_{L^2}^2 \end{cases}$$

Examples:

- TV denoising (Schoenlieb, De Los Reyes, '13): bad regularity properties of the solution map $X : \theta \mapsto x(\theta)$ due to BV topology...
- Smoothed TV denoising (with general fidelities) (Calatroni, Chung, De Los Reyes, Schoenlieb, Valkonen, '15) in Hilbert scenarios
- Higher-order regularisation $\theta = (\alpha, \beta)$ (Valkonen, De Los Reyes, Schoenlieb, '17, Hintermueller et al. '17-...)

General idea: use optimality condition (elliptic PDE, thanks to Hilbert) of lower-level

$$e(x,\theta)=0$$

Then, use variational calculus to derive (semismooth, quasi-)Newton-type schemes.

AkA: PDE-constrained optimisation (theory Hinze, Pinnau, Ulbrich, Ulbrich, '10, numerical + codes: De Los Reyes, '15)

Problem: Given a metal bar, generate temperature distribution \times depending on forcing term/boundary conditions θ closest to a given reference \tilde{f} .

 $\begin{cases} \min_{\theta} \frac{1}{2} \| x(\theta) - \tilde{f} \|^2 + \frac{\beta}{2} \| \theta \|^2 \\ \text{s.t.} \quad x(\theta) \quad \text{solves} \quad \Delta x = \theta \\ (\text{or } x = \theta \text{ on } \partial \Omega) \end{cases}$

PDE-constrained optimisation/optimal control problems:

- Regularity/topological assumptions
- Refined notions of differentiability (B-ouligand, Mordukhovich,...) for dealing with non-smoothness
- Similar ideas as in discrete case (smoothing, adjoint systems, Newton-type approaches...)
Bilevel learning of noise modelling

$$f = \tilde{f} + n, \qquad n \sim \mathcal{N}(0, \sigma^2 Id)$$

Scalar bilevel learning from one image pair³, $\varepsilon \ll 1$:

$$\begin{cases} \min_{\theta \ge 0} \ \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \ \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \| x - f \|_{2}^{2} \end{cases}$$

³De Los Reyes, Schoenlieb, '13

Optimal bilevel Gaussian image denoising

$$f = \tilde{f} + n, \qquad n \sim \mathcal{N}(0, \sigma^2 Id)$$

Scalar bilevel learning from one image pair³, $\varepsilon \ll 1$:

 $\begin{cases} \min_{\theta \ge 0} \ \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \ x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^n} \ \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \| x - f \|_2^2 \end{cases}$

³De Los Reyes, Schoenlieb, '13

Optimal bilevel Gaussian image denoising

$$f = \tilde{f} + n, \qquad n \sim \mathcal{N}(0, \sigma^2 Id)$$

Scalar bilevel learning from one image pair³, $\varepsilon \ll 1$:

 $\begin{cases} \min_{\theta \ge 0} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \| x - f \|_{2}^{2} \end{cases}$

³De Los Reyes, Schoenlieb, '13

$$f = \mathcal{P}(ilde{f}) \sim \mathsf{Poiss}(ilde{f})$$

Scalar bilevel learning from one image pair⁴, $\varepsilon, \delta \ll 1$ and $\rho \gg 1$ (positivity penalty)

 $\begin{cases} \min_{\theta \ge 0} \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^n} \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \sum_{i=1}^n (x_i - f_i \log x_i) + \frac{\theta}{2} \| \min(\delta, x) \|_2^2 \end{cases}$

⁴Calatroni, Chung, De Los Reyes, Schoenlieb, Valkonen, '16

$$f = \mathcal{P}(ilde{f}) \sim \mathsf{Poiss}(ilde{f})$$

Scalar bilevel learning from one image pair⁴, $\varepsilon, \delta \ll 1$ and $\rho \gg 1$ (positivity penalty)

 $\begin{cases} \min_{\theta \ge 0} \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^n} \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \sum_{i=1}^n (x_i - f_i \log x_i) + \frac{\theta}{2} \| \min(\delta, x) \|_2^2 \end{cases}$

⁴Calatroni, Chung, De Los Reyes, Schoenlieb, Valkonen, '16

Heuristic

The quality of imaging measurements depends on the experimental setup. A training set $(f_k, \tilde{f}_k), \ k = 1, \ldots, K$ can be provided using (simulated) **phantoms**. Then, the estimated optimal $\theta \in \mathbb{R}^q_{\geq 0}$ can be applied to restore <u>unseen data</u> acquired within the same standard setup.

Heuristic

The quality of imaging measurements depends on the experimental setup. A training set $(f_k, \tilde{f}_k), \ k = 1, \ldots, K$ can be provided using (simulated) **phantoms**. Then, the estimated optimal $\theta \in \mathbb{R}^q_{\geq 0}$ can be applied to restore <u>unseen data</u> acquired within the same standard setup.

- f_k : imperfect noisy data (standard clinical acquisition time)
- \tilde{f}_k : (approximation of) ground truth (longer acquisition time)

Simulated data from OASIS online database.

Bilevel problem: multiple constraints case

$$\begin{cases} \min_{\theta \ge 0} \frac{1}{2K} \sum_{i=1}^{K} \|x_{\varepsilon}^{i}(\theta) - \tilde{f}_{i}\|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}^{i}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \|Dx\|_{2,1,\varepsilon} + \frac{\theta}{2} \|x - f_{i}\|_{2}^{2}, \quad i = 1, \dots, K \end{cases}$$

Large-scale opt. problem: need to solve $\mathcal{K}\gg 1$ (parallel) lower-level problems...

⁵Byrd, Nocedal et al. '13

$$\begin{cases} \min_{\theta \ge 0} \frac{1}{2K} \sum_{i=1}^{K} \| x_{\varepsilon}^{i}(\theta) - \tilde{f}_{i} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}^{i}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \| Dx \|_{2,1,\varepsilon} + \frac{\theta}{2} \| x - f_{i} \|_{2}^{2}, \quad i = 1, \dots, K \end{cases}$$

Large-scale opt. problem: need to solve $K \gg 1$ (parallel) lower-level problems...

- Stochastic optimisation approaches: adapt the size |S| of the training set dynamically, balancing convergence VS. accuracy⁵
- Parallelisation
- Batch gradients evaluated on $S \subset \{1, \dots, K\}$ for computation of $\hat{\theta}_S \geq 0$

K	$\hat{\theta}_{S}$	$ S_0 $	Send	eff.	eff. Dyn. S.	diff.
10	86.31	2	7	180	70	5.2%
20	90.61	4	6	920	180	5.3%
30	94.36	6	7	2100	314	5.6%
40	88.88	8	8	880	496	1.2%
50	88.92	10	10	2200	560	< 1%
60	89.64	12	12	1920	336	1.9%
70	86.09	14	14	2940	532	3.3%
80	87.68	16	16	3520	448	< 1%

⁵Byrd, Nocedal et al. '13

Problem: often times, the noise distribution is unknown.

Idea: feed the model with possibly d > 1 data terms (associated each to single noise models) and perform bilevel estimation.

Due to the fact that we may have $\theta_i = 0$ for some i = 1, ..., d, only "active" noise data terms will be selected.

Problem: often times, the noise distribution is unknown.

Idea: feed the model with possibly d > 1 data terms (associated each to single noise models) and perform bilevel estimation.

Due to the fact that we may have $\theta_i = 0$ for some i = 1, ..., d, only "active" noise data terms will be selected.

$$\Phi_{i}(x; f) = \begin{cases} \min_{\theta \in \mathbb{R}^{d}_{\geq 0}} \frac{1}{2} \|x_{\varepsilon}(\theta) - \tilde{f}\|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \|Dx\|_{2,1,\varepsilon} + \sum_{i=1}^{d} \theta_{i} \Phi_{i}(x; f) \end{cases}$$
$$\Phi_{i}(x; f) = \begin{cases} \frac{1}{2} \|x - f\|_{2}^{2} & \text{Gaussian,} \\ \|x - f\|_{1} & \text{Laplace/S.P} \to \text{smoothed} \\ \sum_{j=1}^{n} (x_{j} - f_{j} \log x_{j}) + \iota_{\geq 0}(x) & \text{Poisson,} \\ \dots & \text{other,} \end{cases}$$

Problem: often times, the noise distribution is unknown.

Idea: feed the model with possibly d > 1 data terms (associated each to single noise models) and perform bilevel estimation.

Due to the fact that we may have $\theta_i = 0$ for some i = 1, ..., d, only "active" noise data terms will be selected.

$$\Phi_{i}(x; f) = \begin{cases} \min_{\theta \in \mathbb{R}^{d}_{\geq 0}} \frac{1}{2} \| x_{\varepsilon}(\theta) - \tilde{f} \|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \| Dx \|_{2,1,\varepsilon} + \sum_{i=1}^{d} \theta_{i} \Phi_{i}(x; f) \end{cases}$$
$$\Phi_{i}(x; f) = \begin{cases} \frac{1}{2} \| x - f \|_{2}^{2} & \text{Gaussian,} \\ \| x - f \|_{1} & \text{Laplace/S.P} \to \text{smoothed,} \\ \sum_{j=1}^{n} (x_{j} - f_{j} \log x_{j}) + \iota_{\geq 0}(x) & \text{Poisson,} \\ \dots & \text{other,} \end{cases}$$

Does the estimation respect the noise mixture/predominance?

$$\begin{cases} \min_{(\theta_1,\theta_2)\in\mathbb{R}^2_{\geq 0}} \frac{1}{2K} \sum_{i=1}^K \|x^i_{\varepsilon}(\theta) - \tilde{f}^i\|_2^2 \\ \text{s.t.} \quad x^i_{\varepsilon}(\theta) = \arg\min_{x\in\mathbb{R}^n} \|Dx\|_{2,1,\varepsilon} + \theta_1 \sum_{j=1}^n \eta_{\varepsilon}(x_j - f^i_j) + \frac{\theta_2}{2} \|x - f^i\|_2^2 \end{cases}$$

$$\begin{cases} \min_{(\theta_1,\theta_2)\in\mathbb{R}^2_{\geq 0}} \frac{1}{2K} \sum_{i=1}^K \|x^i_{\varepsilon}(\theta) - \tilde{f}^i\|_2^2\\ \text{s.t.} \quad x^i_{\varepsilon}(\theta) = \arg\min_{x\in\mathbb{R}^n} \|Dx\|_{2,1,\varepsilon} + \theta_1 \sum_{j=1}^n \eta_{\varepsilon}(x_j - f^i_j) + \frac{\theta_2}{2} \|x - f^i\|_2^2 \end{cases}$$

Actual mixed noise scenario:

f

 $x_{\varepsilon}(\hat{\theta})$

$$\begin{cases} \min_{(\theta_1,\theta_2)\in\mathbb{R}^2_{\ge 0}} \frac{1}{2K} \sum_{i=1}^{K} \|x^i_{\varepsilon}(\theta) - \tilde{f}^i\|_{1,\delta} \\ \text{s.t.} \quad x^i_{\varepsilon}(\theta) = \arg\min_{x\in\mathbb{R}^n} \|Dx\|_{2,1,\varepsilon} + \theta_1 \sum_{j=1}^n \eta_{\varepsilon}(x_j - f^i_j) + \frac{\theta_2}{2} \|x - f^i\|_2^2 \end{cases}$$

"Blind" denoising test: only impulsive noise in the data. Can we discriminate it?

 $\hat{\theta_1} \neq$ 0, $\hat{\theta_2} \approx$ 0. Smoothed ℓ_1 cost.

Bilevel learning of regularisation models

Analysis approach

Task: learn optimal regularisation parameters $\theta = (\theta_1, \dots, \theta_q) \in \mathbb{R}^q_{\geq 0}$ weighting (many) regularisation filters $K_k \in \mathbb{R}^{s \times n}$

$$\begin{cases} \min_{\theta \in \mathbb{R}^{q}_{\geq 0}} \frac{1}{2K} \sum_{i=1}^{K} \|x_{\varepsilon}^{i}(\theta) - \tilde{f}^{i}\|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}^{i}(\theta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{j=1}^{n} \eta_{\varepsilon}((K_{k}x)_{j}) + \frac{1}{2} \|x - f^{i}\|_{2}^{2}, \quad i = 1, \dots, K \end{cases}$$

Analysis approach

Task: learn optimal regularisation parameters $\theta = (\theta_1, \dots, \theta_q) \in \mathbb{R}^q_{\geq 0}$ weighting (many) regularisation filters $K_k \in \mathbb{R}^{s \times n}$

$$\begin{cases} \min_{\theta \in \mathbb{R}^q_{\geq 0}} \frac{1}{2K} \sum_{i=1}^K \|x_{\varepsilon}^i(\theta) - \tilde{f}^i\|_2^2 \\ \text{s.t.} \quad x_{\varepsilon}^i(\theta) = \arg\min_{x \in \mathbb{R}^n} \sum_{k=1}^q \theta_k \sum_{j=1}^n \eta_{\varepsilon}((K_k x)_j) + \frac{1}{2} \|x - f^i\|_2^2, \quad i = 1, \dots, K \end{cases}$$

Convolutional structure of filters employed:

$$K_k \operatorname{vec}(x) = \kappa_k * \operatorname{mat}(x)$$

Examples:

- Standard discretisation of 1st and 2nd order derivatives via finite differences
- Higher-order linear operators obtained from 2D DCT basis (from JPEG compression problems, it is known that they provide a sparse representation of the image)
- Can be seen as a generalisation of TV

(b) $1^{st} + 2^{nd}$

(c) DCT3

Training Dataset: Sample of 64 patches of size 64×64 from Berkley dataset⁶ + AWGN noise of different intensities $\sigma \in \{15, 25, 50\}$.

Images (\tilde{f}, f) obtained by adding AWGN with $\sigma = 25$.

⁶https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

	σ	= 15	$\sigma = 25$		$\sigma = 50$	
Filters	k	$\mathcal{E}(artheta)$	k	$\mathcal{E}(artheta)$	k	$\mathcal{E}(artheta)$
1^{st}	8	162.87	24	302.69	16	601,88
$1^{\rm st} + 2^{\rm nd}$	18	152.45	33	282.02	43	562.44
DCT3	12	147.55	20	270.62	37	542.90
DCT5	16	144.69	44	265.41	100	525.97

Number of Newton steps and value of $\mathcal{E}(\theta)$.

- Lowest energy achieved for very diverse filter banks (DCT5)
- Adding 2nd order information improves significantly TV-type results (known idea of higher-order regularisations)
- Different test on piecewise constant dataset: simple (1st) filters preferred over more complex ones: TV is a good choice for these data.

1) Learning spatially-varying regularisation parameters for WTV⁶

$$\begin{cases} \min_{\theta \in \mathbb{R}^n_{\geq 0}} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 + \beta \| \mathbf{D} \theta \|_2^2, & \beta \ll 1 \\ \text{s.t.} \quad x(\theta) = \arg\min_{x \in \mathbb{R}^n} \ \left\{ \sum_{j=1}^n \theta_j | (\mathbf{D} x)_j |_{\varepsilon} + \frac{1}{2} \| x - f \|_2^2 \right\} \end{cases}$$

• The noise may be not homogeneous in the image (due to device faults): adjust regularisation strength locally \rightarrow requires parameter smoothness

Reconstruction by constant $\hat{\theta} \ge 0$ VS. spatially-varying $\hat{\theta} \in \mathbb{R}^n_{\geq 0}$.

- Local parameters better adapt to capture local image scales
- Treated via Schwarz domain decomposition methods/duality theory
- No clear extension to unseen data!!

⁶Chung, De Los Reves, Schoenlieb, '17, Hintermueller, Papafitsoros, '19

1) Learning spatially-varying regularisation parameters for WTV⁶

$$\begin{cases} \min_{\theta \in \mathbb{R}^n_{\geq 0}} \ \frac{1}{2} \| x(\theta) - \tilde{f} \|_2^2 + \beta \| \mathbf{D} \theta \|_2^2, & \beta \ll 1 \\ \text{s.t.} \quad x(\theta) = \arg\min_{x \in \mathbb{R}^n} \ \left\{ \sum_{j=1}^n \theta_j | (Dx)_j |_{\varepsilon} + \frac{1}{2} \| x - f \|_2^2 \right\} \end{cases}$$

- The noise may be not homogeneous in the image (due to device faults): adjust regularisation strength locally \to requires parameter smoothness
- Local parameters better adapt to capture local image scales
- Treated via Schwarz domain decomposition methods/duality theory

Noisy image, scalar/weighted TV reconstruction and plot of optimal θ^* .

• No clear extension to unseen data!!

⁶Chung, De Los Reyes, Schoenlieb, '17, Hintermueller, Papafitsoros, '19

Learning better models

2) Learning with non-convex priors, e.g. "Field Of Experts" Roth, Black, '09, Samuel, Tappen, '09

Motivation: ℓ_1 -sparsity does not match very well with the actual filter distribution

- Better match achieved by $\log(1+t^2/\mu^2)\sim \sqrt{|t|}$
- Consider

$$R(x) = \sum_{k=1}^{q} \theta_k \sum_{i=1}^{n} \rho((K_k x)_i),$$

 $\rho(t) = \log(1 + t^2)$ and $K_k = \sum_j \beta_{kj} B_j$, $\beta_{kj} \in \mathbb{R}$ and $\{B_j\}$ is DCT basis.

• Learn (θ, β) (Chen, Ranftl, Pock, '14)

$$\begin{cases} \min_{\theta \ge 0,\beta} \frac{1}{2K} \sum_{i=1}^{K} \|x_{\varepsilon}^{i}(\theta,\beta) - \tilde{f}^{i}\|_{2}^{2} \\ \text{s.t.} \quad x_{\varepsilon}^{i}(\theta,\beta) = \arg\min_{x \in \mathbb{R}^{n}} \sum_{k=1}^{q} \theta_{k} \sum_{i=1}^{n} \rho\left(\left(\sum_{j} \beta_{kj} B_{j} x\right)_{i}\right) + \frac{1}{2} \|x - f^{i}\|_{2}^{2}, \end{cases}$$

2) Learning with non-convex priors, e.g. "Field Of Experts" Roth, Black, '09, Samuel, Tappen, '09

(5.21,0.33)	(5.03,0.22)	(4.96,0.29)	(4.88,0.13)	(4.87,0.22)	(4.84,0.01)	(4.83,0.13)	(4.83,0.02)	(4.83,0.03)	(4.82,0.27)
\sim	1		4	#					72
(4.81,0.25)	(4.81,0.07)	(4.81,0.08)	(4.81,0.02)	(4.80,0.05)	(4.78,0.05)	(4.77,0.02)	(4.77,0.05)	(4.75,0.02)	(4.75,0.13)
36	200			**	4	2	1	12	
(4.75,0.25)	(4.74,0.02)	(4.74,0.18)	(4.73,0.02)	(4.73,0.01)	(4.73,0.02)	(4.71,0.01)	(4.71,0.03)	(4.70,0.13)	(4.68,0.23)
di.		14		32		32		88	-
(4.68,0.20)	(4.68,0.01)	(4.65,0.02)	(4.65,0.23)	(4.63,0.02)	(4.61,0.01)	(4.60,0.10)	(4.56,0.02)	(4.53,0.01)	(4.51,0.19)
30		88	ð,	32		æ,			58
(4.50,0.42)	(4.48,0.10)	(4.46,0.10)	(4.42,0.01)	(4.39,0.03)	(4.34,0.01)	(4.32,0.34)	(4.32,0.23)	(4.29,0.01)	(4.17,0.34)
Зй-		4		88	83	-	101		T.
(4.09,0.14)	(4.03,0.29)	(4.02,0.25)	(4.00,0.41)	(3.99,0.27)	(3.97,0.13)	(3.96,0.24)	(3.94,0.50)	(3.89,0.44)	(3.72,0.60)
		R	11	${\bf e}_{i}$		2	4	*	H.
(3.64,0.32)	(3.58,0.27)	(3.53, 0.23)	(3.41, 0.29)	(3.40, 0.23)	(3.24,0.70)	(3.22,0.59)	(3.15,0.43)	(3.09, 0.45)	(2.90,0.59)
10	Ż	31		\mathbf{x}_{i}	N.	*	2	*	\mathcal{A}
(2.88.0.24)	(2.74,0.58)	(2.71,0.69)	(2.59,0.44)	(2.59,0.39)	(2.37,0.63)	(2.15,1.17)	(2.14,0.78)	(1.90,0.79)	(1.51,0.56)
2	1	1		۰.	1	1		30	1

- Used on unseen data they perform as well as state-of-the art (BM3D, FoE...)
- These filters can be used on different tasks (deblurring, inpainting...) outperforming classical methods

DCT-7 atoms, q = 80, random initialisation + normalisation

2) Learning with non-convex priors, e.g. "Field Of Experts" Roth, Black, '09, Samuel, Tappen, '09

Noisy, TV reconstructed and optimal FoE reconstruction

2) Learning with non-convex priors, e.g. "Field Of Experts" Roth, Black, '09, Samuel, Tappen, '09

Deblurring test (20 pix. motion blur + noise), comparison with deblurring-tuned models. GMM-EPLL (27.46 dB), GOAL (27.97 dB), learned FoE (28.26 dB).

Analogous work in learning reaction-diffusion models (Chen, Yu, Pock, '15)...

Extensions

Motivation: very often (e.g. in biological imaging) the theoretical form of the convolution operator (PSF) is not known/does not correspond with the actual one...

Problem: estimate both solution and (convolutional) model operator

find x, h s.t. f = h * x + b

Blind bilevel learning

Motivation: very often (e.g. in biological imaging) the theoretical form of the convolution operator (PSF) is not known/does not correspond with the actual one...

Problem: estimate both solution and (convolutional) model operator

find
$$x, h$$
 s.t. $f = h * x + b$

Training data (no training PSF!):

Blind bilevel learning

Motivation: very often (e.g. in biological imaging) the theoretical form of the convolution operator (PSF) is not known/does not correspond with the actual one...

Problem: estimate both solution and (convolutional) model operator

find
$$x, h$$
 s.t. $f = h * x + b$

Training data (no training PSF!):

ĥ $x(\hat{\theta})$ $\begin{cases} \min_{\theta \ge 0, h \in Q_h} \|x_{\varepsilon}(\theta) - \tilde{f}\|_2^2 + \frac{\beta}{2} \|Dh\|_2^2 \\ \text{s.t.} \quad x_{\varepsilon}(\theta) = \arg\min_{x \in \mathbb{R}^n} \frac{\epsilon}{2} \|Dx\|_2^2 + \|Dx\|_{2,1,\varepsilon} + \frac{\theta}{2} \|h * x - f\|_2^2 \end{cases}$ $Q_h := \left\{ h \in \mathbb{R}^{|\Omega_h|} : \sum h_j = 1, h_j \ge 0 \right\}$. See Hintermueller, Wu, '15

Towards deep learning approaches

Instead of solving lower-level problem exactly, **unroll** the iterative algorithm used to solve the lower level.

$$\begin{cases} \min_{\theta \ge 0, T} \frac{1}{2K} \sum_{i=1}^{K} \|x^{i}(\theta) - \tilde{f}_{i}\|_{2}^{2} \\ \text{s.t.} \quad x_{t+1}^{i} = x_{t}^{i}(\theta) - \tau_{t} \left(\sum_{k=1}^{n} \theta_{k} \sum_{j=1}^{n} \mathcal{K}_{k}^{T} \rho'((\mathcal{K}_{k} x_{t}^{j})_{j}) + (x_{t}^{i} - f^{i}) \right), \quad i = 1, \dots, K, \quad t = 1, \dots, T \\ x^{i}(\theta) = x_{T}^{i} \end{cases}$$

• Smooth lower-level problems: choosing the right T (early stopping) \rightarrow optimal control problem

T is too large

Instead of solving lower-level problem exactly, **unroll** the iterative algorithm used to solve the lower level.

$$\begin{cases} \min_{\theta \ge 0} \frac{1}{2K} \sum_{i=1}^{K} \|x^{i}(\theta) - \tilde{t}_{i}\|_{2}^{2} \\ \text{s.t.} \quad x_{t+1}^{i} = \mathsf{Algo}\left(x_{t}^{i}; f^{i}, \mathcal{G}(\theta)\right), \quad i = 1, \dots, K, \quad t \ge 1 \end{cases}$$

- Smooth lower-level problems: choosing the right T (early stopping) \rightarrow optimal control problem
- Non-smooth lower-level problems: proximal gradient algorithms (Variational networks Kobler, Klazer et al. '17, Plug & Play ⁶ with learned denoiser *G* Meinhardt, Moeller, Hazirbas, Cremers, '17, primal-dual algorithms (Ochs, Rantfl, Brox, Pock, '14)

Computation of derivatives is still possible via backpropagation

⁶Journée ISIS, September 10 2021:

http://www.gdr-isis.fr/index.php?page=reunion&idreunion=454

Comparison with deep learning approaches

Deep learning: analogies

- Use many (\tilde{f}_i, f_i) , $i = 1, \dots K$ as training examples
- Choose a parametric function \mathcal{G} (network) s.t. $\mathcal{G}(f_i; \theta) \approx \tilde{f}_i$
- For training: compute optimal $\theta \in X$ s.t.

$$\min_{\theta} \; \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(\mathcal{G}(f_i; \theta); \tilde{f}_i)$$

Comparison with deep learning approaches

Deep learning: analogies

- Use many (\tilde{f}_i, f_i) , i = 1, ..., K as training examples
- Choose a parametric function \mathcal{G} (network) s.t. $\mathcal{G}(f_i; \theta) \approx \tilde{f}_i$
- For training: compute optimal $\theta \in X$ s.t.

$$\min_{\theta} \ \frac{1}{\kappa} \sum_{i=1}^{\kappa} \mathcal{L}(\mathcal{G}(f_i; \theta); \tilde{f}_i)$$

Bilevel learning allows for more versatility (no black box): hybrid approach.

Stick with ℓ_1 fidelity, but use \mathcal{G} as denoiser: $x_{t+1} = \mathcal{G}(x_t - \tau_t \nabla \Phi(x_t; f))$.
Bilevel learning

Mathematically grounded idea for learning within an interpretable (variational) framework.

Pro's

- Interpretability (≠ many deep learning approaches)
- Adaptivity to different parameter estimation problems
- Trained on **denoising** models, can be applied/tuned also on **more complex** tasks

Bilevel learning

Mathematically grounded idea for learning within an interpretable (variational) framework.

Pro's

- Interpretability (≠ many deep learning approaches)
- Adaptivity to different parameter estimation problems
- Trained on **denoising** models, can be applied/tuned also on **more complex** tasks

Con's

- Smoothness of lower level problem (for computing/inverting Hessians) and exact minimisation or early stopping
- Computationally heavy (despite stochastic optimisation ideas...): does not scale well for large parameter spaces...
- Non-convexity

- K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci., 6(2):938-983, 2013.
- J. C. De los Reyes and C.-B. Schönlieb, Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization, Inverse Probl. Imaging, 7(4), 2013.
- - L. Calatroni, C. Cao, J. C. De Los Reyes, C.-B. Schönlieb, T. Valkonen, *Bilevel approaches for learning of variational imaging models*, RADON book series, vol. 18 on Variational Methods, (2016).

Y. Chen, T. Pock, R. Ranftl, H. Bischof, *Revisiting loss-specific training of filter-based MRFs for image restoration*, GCPR, 2014.

Codes: https://github.com/VLOGroup/pgmo-lecture (T. Pock's lectures on optimisation and learning + Python notebooks) https://github.com/VLOGroup/denoising-variationalnetwork + https://github.com/dvillacis/bilevel_toolbox (MATLAB)

Thanks!

Questions?

calatroni@i3s.unice.fr