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x ∈ X

Z ∈ R

◮ Consider a computer model for
◮ a system to be designed (engineering),
◮ a physical or biological phenomenon. . .

◮ “Computer experiment”
◮ 1 experiment = run the program for some

x ∈ X and obtain one output value Z ∈ R

(or Rp, or. . . )
◮ Assumed to be time-consuming.
◮ Can be deterministic or stochastic.

◮ Statistical tasks (DACE)
◮ Design: choose x1, x2, . . .
◮ Analysis: process the results Z1, Z2, . . .

⇒ various possible goals
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Example 1: intake port design (Renault)

Context: automotive industry

◮ intake port design

◮ complex simulation chain
(3D CAD, meshing, PDE solving)

◮ source: PhD thesis of
Villemonteix (2008)

Goal: bi-objective optimization

◮ maximize engine performance

◮ minimize emission of pollutants

Features

◮ several hours / computation
on dedicated high-end servers

◮ ∼ 5–10 geometric parameters to optimize
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Example 2: the BEMUSE case

Context : nuclear safety

◮ loss-of-coolant accident (LOCA)
; thermal-hydraulic computations

◮ BEMUSE: international benchmark
(de Crécy et al., NED, 2008)

◮ software: CATHARE
(CEA, IRSN, EDF, FRAMATOME)

Features

◮ QoI: maximal temperature Tmax

◮ ≈ 10 minutes / computations

◮ 53 uncertain parameters (→ random)

Some possible goals

◮ estimate a quantile of Tmax

◮ sensitivity analysis (B. Iooss, J. Nat. Fiabilité, 2010)

https://cathare.cea.fr/
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Example 3: hyper-parameter tuning in ML
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Exploratory designs

◮ Space-filling designs: “filling” the input space X ⊂ R
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◮ various criteria (distance-based, discrepancies, etc.)
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Exploratory designs

◮ Space-filling designs: “filling” the input space X ⊂ R
d

◮ various criteria (distance-based, discrepancies, etc.)
◮ full space vs low-dimensional projections

◮ Example: maximin Latin Hypercube Designs (maximin LHDs)

Illustration from Morris & Mitchell (1995):

a maximin LHD in [0, 1]2, size n = 9

◮ Suitable for global approximation
◮ a.k.a. “meta-modeling”, a.k.a. “surrogate modeling”. . .
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◮ “Localized” quantities of interest, e.g.:
◮ Optimization: minima and/or minimizers, Pareto set. . .
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Sequential designs

◮ “Localized” quantities of interest, e.g.:
◮ Optimization: minima and/or minimizers, Pareto set. . .
◮ Reliability: level sets, probabilities of failure, quantiles. . .

◮ Local knowledge through sequential design (a.k.a. active learning)

✏ Start from an initial space-filling DoE

of size n0 (here n0 = 9)

✏ Choose Xn0+1 using Z1, . . . , Zn0

✏ Choose Xn0+2 using Z1, . . . , Zn0+1

✏ . . .

◮ Fully-sequential versus batch-sequential design
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The Bayesian approach to sequential design

◮ Probabilistic modeling of knowledge / uncertainty
◮ Prior knowledge about the computer model ; prior distrib. P0

◮ Posterior distrib. Pn, Pn+1. . . ; used to select Xn+1, Xn+2. . .
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◮ Prior on unknown function ⇒ non-parametric Bayes
◮ Notation: ξ = random function that represents the unknown f
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Gaussian processes

◮ Definition: ξ ∼ GP(m, k) if, ∀n ≥ 1, ∀x1, . . . , xn ∈ X,




ξ(x1)
...

ξ(xn)


 ∼ N







m(x1)
...

m(xn)


 ,




k(x1, x1) . . . k(x1, xn)
... k(xi , xj)

...

k(xn, x1) . . . k(xn, xn)







◮ Terminology
◮ m : X → R: mean function
◮ k : X × X → R: covariance function

◮ Existence (Daniell-Kolmogorov theorem)
◮ ξ ∼ GP(m, k) iff k is symmetric and positive-definite
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Gaussian processes (cont’d)

◮ Simplified notations:

◮ Teminology from geostatistics
◮ m ≡ 0 (or known mean): simple kriging
◮ m ≡ µ ∈ R, µ ∼ UR: ordinary kriging
◮ m =

∑
j βjϕj , βj

iid
∼ UR: universal kriging

◮ Remark: complex-valued GPs can be defined too.
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Posterior distribution

◮ Assume m ≡ 0 (simple kriging) for simplicity, and

Zi = ξ(xi) + τiUi , Ui
iid
∼ N (0, 1), 1 ≤ i ≤ n.

◮ then. . .

◮ Remark: similar equations hold for ordinary & universal kriging
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Posterior distribution (cont’d)

◮ The noiseless case (“exact measurements”)
◮ The equations remain valid when τi = 0 for (some or) all i .
◮ Then ξ̂n interpolates the observations.
◮ Commonly used for deterministic computer experiments.
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Posterior distribution (cont’d)

◮ The noiseless case (“exact measurements”)
◮ The equations remain valid when τi = 0 for (some or) all i .
◮ Then ξ̂n interpolates the observations.
◮ Commonly used for deterministic computer experiments.

◮ More teminology from geostatistics
◮ Posterior mean ξ̂n(x): kriging predictor
◮ Posterior variance σ2

n(x) , kn(x , x): kriging variance

◮ ξ̂n: one interpolation/regression method, many names
◮ noiseless case w/ k(x , x ′) = g (‖x − x ′‖)

⇔ RBF interpolation
◮ noisy (regression) case

⇔ smoothing splines

(Remark: the correspondance with RBF interpolation and smoothing splines holds in full if we consider the

universal kriging case, with a generalized notion of—conditionally positive definite—covariance function.)
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Illustration

STK demos (https://github.com/stk-kriging/stk)

stk_example_kb01

◮ Ordinary kriging in 1D, with noiseless data

stk_example_kb01n

◮ Ordinary kriging in 1D, with noisy data

stk_example_kb03

◮ Ordinary kriging in 2D

stk_example_kb05

◮ Generation of conditioned sample paths

https://github.com/stk-kriging/stk
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Practical GP modeling: bird’s-eye view

Practical GP modeling involves various additional steps:

◮ Choosing the (a family of. . . ) GP model
◮ mean function
◮ covariance function

◮ Selecting (“estimating”) suitable hyper-parameters
◮ for the covariance function
◮ for the noise model (regression case only)
◮ for the mean function (if applicable)

◮ Assessing the goodness of fit
◮ LOO cross-validation plot
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Choosing the mean function

◮ Standard “default” choices
◮ m ≡ 0 (simple kriging) + empirical output centering
◮ m ≡ µ ∼ UR: ordinary kriging → used in this lecture
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Choosing the mean function

◮ Standard “default” choices
◮ m ≡ 0 (simple kriging) + empirical output centering
◮ m ≡ µ ∼ UR: ordinary kriging → used in this lecture

◮ Some other possible choices (universal kriging framework)
◮ polynomial trend

◮ e.g., Le Riche & Picheny (2021) recommend the general use

of a quadratic trend for Bayesian optimisation applications

◮ periodic trend
◮ multi-fidelity / calibration: using a cheap approximation

ξ(x) = δ + α fcheap(x ; θ) + ξcentered(x)

(with δ, α, θ: hyper-parameters)
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Stationary covariance functions

◮ stationarity: k(x , x ′) = k̃(x − x ′), x , x ′ ∈ X ⊂ R
d
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Stationary covariance functions

◮ stationarity: k(x , x ′) = k̃(x − x ′), x , x ′ ∈ X ⊂ R
d

◮ Theorem (Bochner): k is a real, continuous and stationary

covariance function iff. . .

◮ Special case: isotropic / geometrically anisotropic
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The Matérn family of covariance functions

◮ k is an isotropic Matérn covariance function if the spectral

density S is of the Student-t type: ∃ν > 0,

S(ω) ∝

(
1 +

1
2ν

‖ω‖2
)−(ν+ d

2 )

Named after Bertil Matérn. Popularized by M. L. Stein (1999).
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The Matérn family of covariance functions

◮ k is an isotropic Matérn covariance function if the spectral

density S is of the Student-t type: ∃ν > 0,

S(ω) ∝

(
1 +

1
2ν

‖ω‖2
)−(ν+ d

2 )

Named after Bertil Matérn. Popularized by M. L. Stein (1999).

◮ Tunable regularity !

Theorem

ξ ∼ GP(0, Maternν) is k-times differentiable

in the mean-square sense iff ν > k.

(The regularity parameter can also be shown to control the smoothness of the sample paths of ξ in the

scale of L2 Hölder spaces; cf. Scheuerer, 2010.)
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The Matérn family of covariance functions (cont’d)

◮ Special cases

◮ ν = 1
2 : r(h) = exp(−h)

◮ ν = 3
2 : r(h) = (1 + h) exp(−h)

◮ . . .

◮ ν → +∞: r(h) → exp(− 1
2 h2)
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Range and regularity parameters: illustration

STK demos (https://github.com/stk-kriging/stk)

stk_example_misc01

◮ Several correlation functions from the Matern family

stk_example_kb07

◮ Simulation of sample paths with various values of ν

◮ Simulation of sample paths with various values of ρ

https://github.com/stk-kriging/stk
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Choosing the hyper-parameters

◮ Most commonly used: the maximum likelihood approach

◮ θ̂ ML = argmax ℓn(θ), where ℓn is the log-likelihood:

−2ℓn(θ) = n ln(2π) + ln det(Kn)

+ (Z n − m(xn)))t (Kn + ∆n)−1 (Z n − m(xn)))

◮ with θ: all the hyper-parameters of m, k and τ 2.
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Choosing the hyper-parameters

◮ Most commonly used: the maximum likelihood approach

◮ θ̂ ML = argmax ℓn(θ), where ℓn is the log-likelihood:

−2ℓn(θ) = n ln(2π) + ln det(Kn)

+ (Z n − m(xn)))t (Kn + ∆n)−1 (Z n − m(xn)))

◮ with θ: all the hyper-parameters of m, k and τ 2.

◮ Other approaches
◮ Restricted ML (ReML): supports generalized cov. functions
◮ Hierachical Bayes, with a prior on θ

◮ Maximum a posteriori (MAP)

◮ Fully Bayes (⇒ numerical integration, e.g., MCMC or SMC)
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Goodness-of-fit diagnostic: LOO-CV plots

◮ Set ξ̂
(−i)
n (x) , E (ξ(x) | Zi ′ , i ′ 6= i), for all i ≤ n.

◮ LOO-CV plot: scatter plot of Zi versus ξ̂
(−i)
n (Xi).

STK demo (https://github.com/stk-kriging/stk)

stk_example_kb10

◮ LOO cross-validation plots (including residuals)

◮ “Borehole function”, d = 8, n = 10d = 80, ReML

Note: hyper-parameters often kept fixed → “virtual LOO” formulas.

https://github.com/stk-kriging/stk
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