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Introduction

Inverse problems

Let u € B, denote a signal from a vector space B (finite or infinite).
We are given a finite number m of corrupted linear measurements:

y = P(Au),

where
@ A: B — R™ is defined by
(Av); = (ai,u), a; € B”

@ P:R™ — R™ is a perturbation operator (e.g. quantization, additive noise,
modulus...).

Problem

How can we retrieve an approximation @ of u knowing y and A?




Introduction

Example 1: Photography
On a conventional cameras:
ai(-) = h(- — i)

where h is a function localized around 0 and z; denotes a pixel center.
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Example 2: Tomography

In tomography a; allows measuring line integrals.
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Example 3: MRI

In MRI the functions a; are complex exponentials.




Introduction - Quadratic regularization

A critical issue

Regularization is critical whenever dim(B) > m.




Introduction - Quadratic regularization

A critical issue

Regularization is critical whenever dim(B) > m.

Tikhonov regularization (before 1943)
When B is a Hilbert space, we can solve:

1
inf ol Au —yllz + || Lul 2z,

where L : B — L? is a linear operator (e.g. the derivative)
v Solutions given by linear systems.

v/ Sometimes solution of a finite dimensional problem yields an infinite dimensional
solution (RKHS).

X Typically restricts B to Hilbert spaces such as W™?2.




Introduction - Quadratic regularization

A critical issue

Regularization is critical whenever dim(B) > m.

Tikhonov regularization (before 1943)
When B is a Hilbert space, we can solve:

1
inf ol Au —yllz + || Lul 2z,

where L : B — L? is a linear operator (e.g. the derivative)
v Solutions given by linear systems.

v/ Sometimes solution of a finite dimensional problem yields an infinite dimensional
solution (RKHS).

X Typically restricts B to Hilbert spaces such as W™?2.
X Solutions live in a fixed subspace that depends on A and L only:

m
u* = Zaiwi + ug, where ug € ker(L). (1)
i=1

A first representer theorem.




Introduction - More recent approaches

Analysis formulation (before 1973)

inf fy(Au) + | Lullr,
ueB
@ L:B — M is a linear operator (e.g. the derivative).

@ M is the space of Radon measures.
9 fy :R™ — RU {+o0} is a data fitting term.

Synthesis formulation (before 1973)

Jnf fy(ADp) + lllm,
where D : M — B is a linear operator called dictionary.
The estimate of 4 is given by @ = Diji.

S.D. Fisher and J.W. Jerome.
Spline solutions to 11 extremal problems in one and several variables.
Journal of Approximation Theory, 13(1):73-83, 1975




Introduction - More recent approaches

Other popular examples
Nonnegative least squares:

inf 1

2
weEB,u>0 2 ”Au B y||2

Nuclear norm minimization:
inf ||l
ueB, Au=y

Plenty of such examples scattered in the literature.

The question tackled today

Can we derive representer theorems for problems of the form:

irelfB fy(Au) + R(u), where R is convex?




PART I: THE MAIN THEORETICAL RESULTS




Preliminaries

Decomposition of a convex set

Let C denote a (linearly closed) convex set in B.

We can decompose C = K + C, where
@ K = Lin(C) is the lineality space of C,

@ C is a linearly closed set that contains no line.

Convex gauge

The gauge of C is defined by:

Re(u) = _inf
A>0,u€AC




Preliminaries

Our setting
I will focus on the properties of the minimizers of:

inf f,(Au) + Re ().

where f, : R™ — RU {+o0} is either:
@ a convex closed function.

@ an arbitrary (nonconvex function).

We assume that the set of minimizers U is non empty.




Preliminaries

Carathéodory - Klee (1957)

Let C denote a linearly closed convex set that contains no line in dimension m.

Then any point u € C' can be expressed either as:
@ A convex combination of m + 1 points in Ext(C).

@ A convex combination of m points in Ext(C) U Ray(C).

€0 es

P1
€1

V. Klee.
Extremal structure of convex sets.
Archiv der Mathematik, 8(3):234-240, August 1957




Preliminaries

Dubins - Klee (1963)

Let C denote a linearly closed convex set that contains no line.
Let H denote an affine space of co-dimension m.

Then the extreme points and extreme rays of C' N H can be expressed as:
@ A convex combination of m + 1 + j points in Ext(C).
@ A convex combination of m + j points in Ext(C) U Ray(C).

Where j = 0 for the extreme points and j = 1 for the extreme rays.




Main results

A representer theorem: the nonconvex case (New result)
Consider the problem:
£ = inf f,(Au) + Re(u),
ue

where fy, is an arbitrary function. Assume that at least one solution exists.

Then there exists a solution @ of the form:

m—+z
= Z i + uk,
i=1
where
@ ug € Lin(C).
0 1; € Ext(C) URay(C) are the atoms of C'.
o z S 1t*=0 = dlm(AK)

The bound is tight.




Main results

A representer theorem: the convex case (New result)

Consider the problem:
¢ = irég fy(Au) + Re(u),

where f, is either strictly convex or the indicator of a convex, linearly closed set.
Assume that at least one solution exists.

Then the extreme points and rays of the solution set U are of the form:

m+z
U= Z o + uk,
i=1
where
@ ug € Lin(C).
0 1; € Ext(C) URay(C) are the atoms of C.

0 2z < 1yr—g +j+ —dim(AK), with j = 0 for extreme points and j = 1 for extreme
rays.




Main results

The (rough) proof
Let u* denote a solution and t* = Re(u*). Consider the problem:

inf Re(u)

weEB, Au=Au*
Any solution 4 is a solution of the original problem and satisfies Re(4) = t*.

So U = H N D, where:

H={ueB,Au= Au™}
and

D ={ue€ C,Re(u) <t}

Applying Klee’s theorem (on H N D quotiented by K), we get a complete descrip-
tion of this subset.
We can gain 1 point since the solutions live on the boundary of C.




PART II: EXAMPLES OF APPLICATIONS




Applications

/1 and total variation minimization
Consider the problems:
inf A
nf f,(Au) + full
or
inf A
nf fy (Auw) + fJullaq

There is at least one solution are m sparse:
m
= E aﬂSzi o
i=1

S.C. Chen, D. Donoho, and M. Saunders.
Atomic decomposition by basis pursuit.
SIAM review, 43(1):129-159, 2001.

D.L. Donoho.
Compressed sensing.
IEEE T. Inf. Theory, 52(4):1289-1306, 2006.

E. Candés and C. Fernandez-Granda.
Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906-956, -




Applications

Nonnegative constraints
Consider the problem:

. 1 2
ue]%%" || u y||2

Then the extreme points and rays of the solution set are m sparse.

Don’t use ¢! when looking for sparse nonnegative signals!

D. Donoho and J. Tanner.
Sparse nonnegative solution of underdetermined linear equations by linear programming.
P. Nat. Acad. Sci. USA, 102(27):9446-9451, 2005.

A. Eftekhari, J. Tanner, A. Thompson, B. Toader, and H. Tyagi.
Sparse non-negative super-resolution-simplified and stabilised.
arXiv preprint arXiv:1804.01490, 2018.




Applications

Analysis priors - finite dimension

Let L € R™*™ denote a linear mapping.
Consider the problem:
min f, (Au) + || Lulls.

Then:

@ If L is surjective, at least one solution can be written as:
m
= ZaiL+5zi +uk,ux € ker(L).
i=1
@ If L is not surjective, then there is a combinatorial explosion of the extreme points:
#Ext({u € R™, || Lu|l; < 1}) < 2m~mHiom—rtt

Finding the vertices is the convex hull problem.




Applications

Analysis priors - infinite dimension (Old and new results)

Let L : B — M denote a linear and surjective mapping (plus some technical
assumptions), where

B={u€eD LuecM,|ul|x < oo}

Consider the problem:
inf £, (Au) + ||l

Then at least one solution is of the form:

u= Za¢L+(6zi) + uK.

S.D. Fisher and J.W. Jerome.
Spline solutions to 11 extremal problems in one and several variables.
Journal of Approximation Theory, 13(1):73-83, 1975.

M. Unser, J. Fageot, and John P. Ward.
Splines are universal solutions of linear inverse problems with generalized tv regularization.
SIAM Review, 59(4):769-793, 2017.

A. Flinth and P. Weiss.
Exact solutions of infinite dimensional total-variation regularized problems.
arXiv preprint arXiv:1708.02157, 2017




Applications

Analysis priors - Biharmonic approximation (New result)

Solve

inf o ; 2+ [|AAu]|ag-

Letting ¥ (x) = ||z|* log(]|z||), we get a solution of the form:
'ELZZ z'¢( _Zz + uk,

is a polyharmonic spline, with ux a polynomial of degree 1.

POLYHARMONIC SPLINES ARE USED FOR DATA INTERPOLATION




Applications

Analysis priors - Biharmonic approximation (New result)

Solve
N
11161% 5 E_ 2+ | AAY| pm

Letting ¥ (x) = ||z|* log(]|z||), we get a solution of the form:

m
:E - — zi) + uk,

is a polyharmonic spline, with ux a polynomial of degree 1.

The traditional approach
Usually, polyharmonic splines are appearing in the frame of RKHS.

. 1& 5
ueH2(R2 52 ) = y:)® + | Aul 72 gay-




Applications

Total gradient variation (New result)
Consider the following problem:

inf fy(Az) + || Dul| am,
wEBV (RY)

then there exists a solution of the form:

m
u = E a;v; + ¢,
=il
where c is a constant and
¥; = 1, where w; is a simple set.

W.H. Fleming.

Functions with generalized gradient and generalized surfaces.
Annali di Matematica Pura ed Applicata, 44(1):93

103, 1957.

L. Ambrosio, V. Caselles, S. Masnou, and J.M. Morel.

Connected components of sets of finite perimeter and applications to image processing.
Journal of the European Mathematical Society, 3(1):39-92, 2001.




Applications

Other applications...
@ Nuclear norm minimization = low rank.

Linear, semi-definite and conic programming = sparse, low rank.
Optimal transport = permutation matrices.

()]
(]
@ Rank sparsity ball = low rank and sparse.
(]

Some notes on computing
Representer theorems allow solving infinite dimensional problem exactly!

E. Candés and C. Fernandez-Granda.
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956, 2014

V. Duval and G. Peyreé.
Exact support recovery for sparse spikes deconvolution.
Foundations of Computational Mathematics, 15(5):1315-1355, 2015

A. Flinth and P. Weiss.
Exact solutions of infinite dimensional total-variation regularized problems.
arXiv preprint arXiv:1708.02157, 2017.
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