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Introduction

Inverse problems
Let u ∈ B, denote a signal from a vector space B (finite or infinite).
We are given a finite number m of corrupted linear measurements:

y = P (Au),

where
A : B → Rm is defined by

(Au)i = 〈ai, u〉, ai ∈ B∗

P : Rm → Rm is a perturbation operator (e.g. quantization, additive noise,
modulus...).

Problem
How can we retrieve an approximation û of u knowing y and A?
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Introduction

Example 1: Photography
On a conventional camera:

ai(·) = h(· − xi)

where h is a function localized around 0 and xi denotes a pixel center.
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Introduction

Example 2: Tomography
In tomography ai allows measuring line integrals.
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Introduction

Example 3: MRI
In MRI the functions ai are complex exponentials.

7 / 27
N



Introduction - Quadratic regularization

A critical issue
Regularization is critical whenever dim(B) > m.

Tikhonov regularization (before 1943)
When B is a Hilbert space, we can solve:

inf
u∈B

1

2
‖Au− y‖22 + ‖Lu‖2L2 ,

where L : B → L2 is a linear operator (e.g. the derivative)
4 Solutions given by linear systems.

4 Sometimes solution of a finite dimensional problem yields an infinite dimensional
solution (RKHS).

5 Typically restricts B to Hilbert spaces such as Wn,2.

5 Solutions live in a fixed subspace that depends on A and L only:

u? =

m∑
i=1

αiψi + uK , where uK ∈ ker(L). (1)

A first representer theorem.
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Introduction - More recent approaches

Analysis formulation (before 1973)

inf
u∈B

fy(Au) + ‖Lu‖M,

L : B →M is a linear operator (e.g. the derivative).

M is the space of Radon measures.

fy : Rm → R ∪ {+∞} is a data fitting term.

Synthesis formulation (before 1973)

inf
µ∈M

fy(ADµ) + ‖µ‖M,

where D :M→ B is a linear operator called dictionary.

The estimate of û is given by û = Dµ̂.

S.D. Fisher and J.W. Jerome.
Spline solutions to l1 extremal problems in one and several variables.
Journal of Approximation Theory, 13(1):73–83, 1975.
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Introduction - More recent approaches

Other popular examples
Nonnegative least squares:

inf
u∈B,u≥0

1

2
‖Au− y‖22.

Nuclear norm minimization:
inf

u∈B,Au=y
‖u‖∗.

Plenty of such examples scattered in the literature.

The question tackled today

Can we derive representer theorems for problems of the form:

inf
u∈B

fy(Au) +R(u), where R is convex?
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Part I: The main theoretical results
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Preliminaries

Decomposition of a convex set
Let C denote a (linearly closed) convex set in B.
We can decompose C = K + C, where

K = Lin(C) is the lineality space of C,
C is a linearly closed set that contains no line.

C = C +
K

Convex gauge
The gauge of C is defined by:

RC(u) = inf
λ≥0,u∈λC

λ
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Preliminaries

Our setting
I will focus on the properties of the minimizers of:

inf
u∈B

fy(Au) +RC(u).

where fy : Rm → R ∪ {+∞} is either:
a convex closed function.

an arbitrary (nonconvex function).

We assume that the set of minimizers Û is non empty.
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Preliminaries

Carathéodory - Klee (1957)
Let C denote a linearly closed convex set that contains no line in dimension m.

Then any point u ∈ C can be expressed either as:
A convex combination of m+ 1 points in Ext(C).

A convex combination of m points in Ext(C) ∪ Ray(C).

ρ1

ρ2

+∞

+∞

e0

e1

e2

V. Klee.
Extremal structure of convex sets.
Archiv der Mathematik, 8(3):234–240, August 1957.
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Preliminaries

Dubins - Klee (1963)
Let C denote a linearly closed convex set that contains no line.
Let H denote an affine space of co-dimension m.

Then the extreme points and extreme rays of C ∩H can be expressed as:
A convex combination of m+ 1 + j points in Ext(C).

A convex combination of m+ j points in Ext(C) ∪ Ray(C).

Where j = 0 for the extreme points and j = 1 for the extreme rays.

e0

e1

e2

e3

15 / 27
N



Main results

A representer theorem: the nonconvex case (New result)
Consider the problem:

t? = inf
u∈B

fy(Au) +RC(u),

where fy is an arbitrary function. Assume that at least one solution exists.

Then there exists a solution û of the form:

û =

m+z∑
i=1

αiψi + uK ,

where
uK ∈ Lin(C).
ψi ∈ Ext(C) ∪ Ray(C) are the atoms of C.

z ≤ 1t?=0 − dim(AK).

The bound is tight.
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Main results

A representer theorem: the convex case (New result)
Consider the problem:

t? = inf
u∈B

fy(Au) +RC(u),

where fy is either strictly convex or the indicator of a convex, linearly closed set.
Assume that at least one solution exists.

Then the extreme points and rays of the solution set Û are of the form:

û =

m+z∑
i=1

αiψi + uK ,

where
uK ∈ Lin(C).
ψi ∈ Ext(C) ∪ Ray(C) are the atoms of C.

z ≤ 1t?=0 + j +−dim(AK), with j = 0 for extreme points and j = 1 for extreme
rays.

17 / 27
N



Main results

The (rough) proof
Let u? denote a solution and t? = RC(u

?). Consider the problem:

inf
u∈B,Au=Au?

RC(u)

Any solution û is a solution of the original problem and satisfies RC(û) = t?.
So Û = H ∩D, where:

H = {u ∈ B, Au = Au?}

and
D = {u ∈ C,RC(u) ≤ t?}.

Applying Klee’s theorem (on H ∩D quotiented by K), we get a complete descrip-
tion of this subset.
We can gain 1 point since the solutions live on the boundary of C.
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Part II: Examples of applications
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Applications

`1 and total variation minimization
Consider the problems:

inf
u∈Rn

fy(Au) + ‖u‖1

or
inf
u∈M

fy(Au) + ‖u‖M

There is at least one solution are m sparse:

û =

m∑
i=1

αiδzi .

S.C. Chen, D. Donoho, and M. Saunders.
Atomic decomposition by basis pursuit.
SIAM review, 43(1):129–159, 2001.

D.L. Donoho.
Compressed sensing.
IEEE T. Inf. Theory, 52(4):1289–1306, 2006.

E. Candès and C. Fernandez-Granda.
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.
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Applications

Nonnegative constraints
Consider the problem:

min
u∈Rn

+

1

2
‖Au− y‖22

Then the extreme points and rays of the solution set are m sparse.

Don’t use `1 when looking for sparse nonnegative signals!

D. Donoho and J. Tanner.
Sparse nonnegative solution of underdetermined linear equations by linear programming.
P. Nat. Acad. Sci. USA, 102(27):9446–9451, 2005.

A. Eftekhari, J. Tanner, A. Thompson, B. Toader, and H. Tyagi.
Sparse non-negative super-resolution-simplified and stabilised.
arXiv preprint arXiv:1804.01490, 2018.
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Applications

Analysis priors - finite dimension
Let L ∈ Rm×n denote a linear mapping.
Consider the problem:

min
u∈Rn

fy(Au) + ‖Lu‖1.

Then:
If L is surjective, at least one solution can be written as:

û =
m∑
i=1

αiL
+δzi + uK , uK ∈ ker(L).

If L is not surjective, then there is a combinatorial explosion of the extreme points:

#Ext({u ∈ Rn, ‖Lu‖1 ≤ 1}) ≤ 2m−n+1Cm−n+1
m

Finding the vertices is the convex hull problem.
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Applications

Analysis priors - infinite dimension (Old and new results)
Let L : B → M denote a linear and surjective mapping (plus some technical
assumptions), where

B = {u ∈ D′, Lu ∈M, ‖u‖K <∞}.

Consider the problem:
inf
u∈B

fy(Au) + ‖Lu‖M.

Then at least one solution is of the form:

û =
m∑
i=1

αiL
+(δzi) + uK .

S.D. Fisher and J.W. Jerome.
Spline solutions to l1 extremal problems in one and several variables.
Journal of Approximation Theory, 13(1):73–83, 1975.

M. Unser, J. Fageot, and John P. Ward.
Splines are universal solutions of linear inverse problems with generalized tv regularization.
SIAM Review, 59(4):769–793, 2017.

A. Flinth and P. Weiss.
Exact solutions of infinite dimensional total-variation regularized problems.
arXiv preprint arXiv:1708.02157, 2017.
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Applications

Analysis priors - Biharmonic approximation (New result)
Solve

inf
u∈B

1

2

m∑
i=1

(u(xi)− yi)2 + ‖∆∆u‖M.

Letting ψ(x) = ‖x‖2 log(‖x‖), we get a solution of the form:

û =

m∑
i=1

αiψ(· − zi) + uK ,

is a polyharmonic spline, with uK a polynomial of degree 1.

Polyharmonic splines are used for data interpolation
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Letting ψ(x) = ‖x‖2 log(‖x‖), we get a solution of the form:

û =

m∑
i=1

αiψ(· − zi) + uK ,

is a polyharmonic spline, with uK a polynomial of degree 1.

The traditional approach
Usually, polyharmonic splines are appearing in the frame of RKHS.

inf
u∈H2(R2)

1

2

m∑
i=1

(u(xi)− yi)2 + ‖∆u‖2L2(Rd).
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Applications

Total gradient variation (New result)
Consider the following problem:

inf
u∈BV (Rd)

fy(Ax) + ‖Du‖M,

then there exists a solution of the form:

û =

m∑
i=1

αiψi + c,

where c is a constant and

ψi = 1ωi , where ωi is a simple set.

W.H. Fleming.
Functions with generalized gradient and generalized surfaces.
Annali di Matematica Pura ed Applicata, 44(1):93–103, 1957.

L. Ambrosio, V. Caselles, S. Masnou, and J.M. Morel.
Connected components of sets of finite perimeter and applications to image processing.
Journal of the European Mathematical Society, 3(1):39–92, 2001.
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Applications

Other applications...
Nuclear norm minimization ⇒ low rank.

Linear, semi-definite and conic programming ⇒ sparse, low rank.

Optimal transport ⇒ permutation matrices.

Rank sparsity ball ⇒ low rank and sparse.

...

Some notes on computing
Representer theorems allow solving infinite dimensional problem exactly!

E. Candès and C. Fernandez-Granda.
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.

V. Duval and G. Peyré.
Exact support recovery for sparse spikes deconvolution.
Foundations of Computational Mathematics, 15(5):1315–1355, 2015.

A. Flinth and P. Weiss.
Exact solutions of infinite dimensional total-variation regularized problems.
arXiv preprint arXiv:1708.02157, 2017.
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Some references

Thank you very much!
S.I. Zuhovickĭi.
Remarks on problems in approximation theory.
Mat. Zbirnik KDU, pages 169–183, 1948.
(Ukrainian).

V. Klee.
Extremal structure of convex sets.
Archiv der Mathematik, 8(3):234–240, August 1957.

S.D. Fisher and J.W. Jerome.
Spline solutions to l1 extremal problems in one and several variables.
Journal of Approximation Theory, 13(1):73–83, 1975.

V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky.
The convex geometry of linear inverse problems.
Found. Comp. Math., 12(6):805–849, 2012.

A. Flinth and P. Weiss.
Exact solutions of infinite dimensional total-variation regularized problems.
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