Physics of imaging Unconventional imaging and co-design
Part III: Image reconstruction methods and examples in DH

Corinne Fournier

Equipe ODIR (Optical Design and Image Reconstruction), Laboratoire Hubert Curien, UMR CNRS 5516 corinne.fournier@univ-st-etienne.fr

june 2021

Outline

2 Reconstruction methods based on Physics

8 Reconstruction methods based on IP approach

- Principle
- Forward model
- Norm

Extraction of images information

1 Extraction of images information

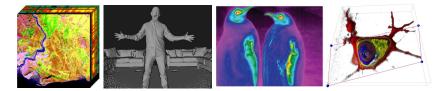
2 Reconstruction methods based on Physics

3 Reconstruction methods based on IP approach

- Principle
- Forward model
- Norm

Strength of unconventional imaging = richer information

- Measurements of physical quantities : Depth, humidity, chemical composition, temperature, phase shift (optical thickness, refractive index), ...
- Quantitative imaging.
- Super resolution/Low cost setups...
- Various applications : Biomedical imaging, Chemical engineering, ...



Reconstruction

To obtain the measurements of the physical quantities from the data several approaches exist based on :

- physics
- signal processing
- machine learning

These approaches are illustrated in the following in digital holographic microscopy.

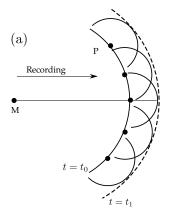
Reconstruction methods based on Physics

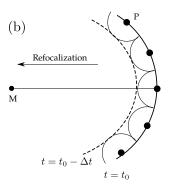
Extraction of images information

2 Reconstruction methods based on Physics

- Reconstruction methods based on IP approach
 - Principle
 - Forward model
 - Norm

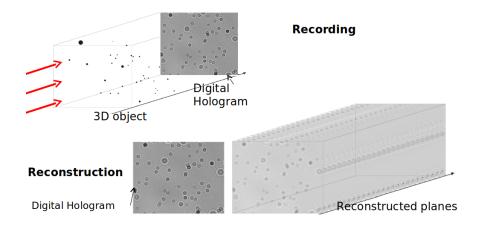
Back-Propagation





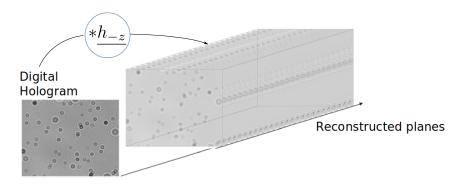
Principle of the reversibility of light. Propagation models.

Back-Propagation



Back-Propagation

Reconstruction



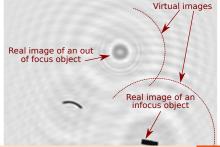
Free space propagation model : Rayleigh-Sommerfeld, Fresnel, Fraunhofer, ...

Mathematical formulation

$$\begin{split} \underline{\mathbf{U}}^{\operatorname{Rec}}(\mathbf{x},\mathbf{y}) &= \mathrm{I}_{z}(\mathbf{x},\mathbf{y}) \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z} \\ &= \underbrace{\left(1 + \left|\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z}\right|^{2}\right) \underset{(0)}{*} \underline{\mathbf{h}}_{-z}}_{(0)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z}}_{(+1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z}}_{(+1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z}}_{(+1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{z} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underline{\mathbf{h}}_{-2z}}_{(-1)} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underbrace{-\underline{\vartheta} \underset{\mathbf{y}}{*} \underbrace{-\underline{\vartheta} \underset{\mathbf{x},\mathbf{y}}{*} \underbrace{-\underline{\vartheta} \underset{\mathbf{y},\mathbf{y}}{*} \underbrace{-\underline$$

Propagation model with parameter -z does not invert hologram recording because of the non linearity introduced by the intensity. \rightarrow Virtual images, borders distor-

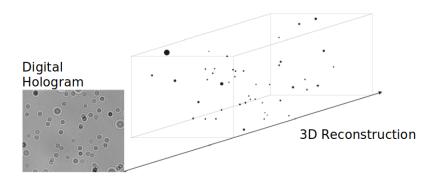
tions (numerical artifact), ...



Corinne Fournier - Unconventional imaging and co-design

Stack segmentation

After segmentation

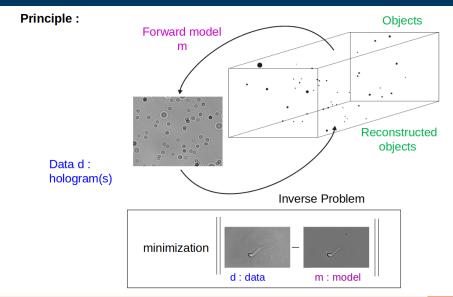


Reconstruction methods based on IP approach

- Extraction of images information
- 2 Reconstruction methods based on Physics
- 3 Reconstruction methods based on IP approach
 - Principle
 - Forward model
 - Norm

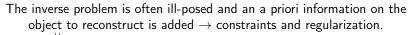
- Extraction of images information
- 2 Reconstruction methods based on Physics
- 8 Reconstruction methods based on IP approach
 - Principle
 - Forward model
 - Norm

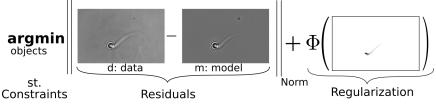
Minimization of data misfits



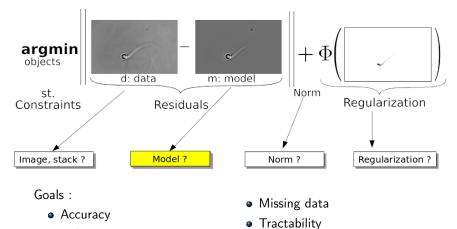
Corinne Fournier – Unconventional imaging and co-design

a priori information





Key questions



Robustness vs noise

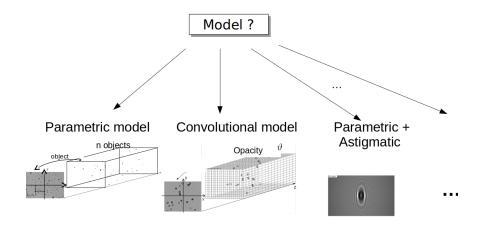
Forward model

Forward model

- Extraction of images information
- 2 Reconstruction methods based on Physics
- 8 Reconstruction methods based on IP approach
 - Principle
 - Forward model
 - Norm

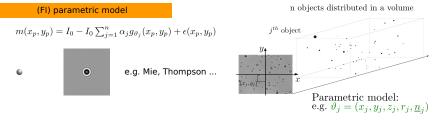
Forward model

Forward models



Parametric and convolutional models

Example of simple, linear additive model : parametric model

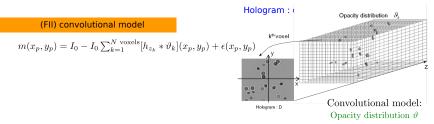


Hologram : d

Forward model

Parametric and convolutional models

Example of simple, linear additive model : convolutional mode

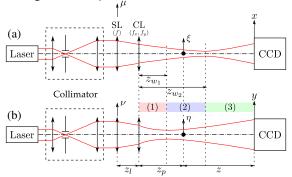


Other non linear and non additive models (accounting for interferences) exist as BPM (Beam Propagation Model) :

* Kamilov, Papadopoulos, Shoreh, Ĝoy, Vonesch, Ünser, & Psaltis, "Léarning approach to optical tomography". Optica, 2015

Parametric model example

Parametric models are very constrains \rightarrow used to (self-)calibrate a setup. Example of an astigmatic setup :



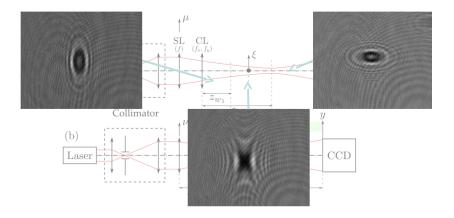
The model depends on the object parameters (calibration bead) and on the setup parameters (astigmatism parameters ...) N. Verrier et al, "In-line particle holography with an astigmatic beam : setup

self-calibration using an "inverse problems" approach", Applied Optics, 2014.

Corinne Fournier – Unconventional imaging and co-design

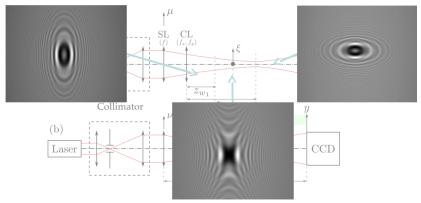
Forward model

Parametric model example



Forward model

Parametric model example



Agreement between the model and the experimental patterns

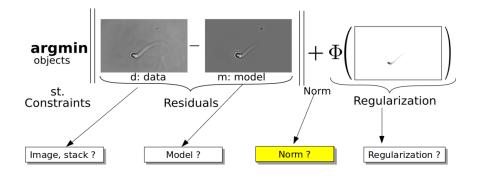
N. Verrier et al, "In-line particle holography with an astigmatic beam : setup self-calibration using an "inverse problems" approach", Applied Optics, 2014.

2 Reconstruction methods based on Physics

8 Reconstruction methods based on IP approach

- Principle
- Forward model
- Norm

Key question

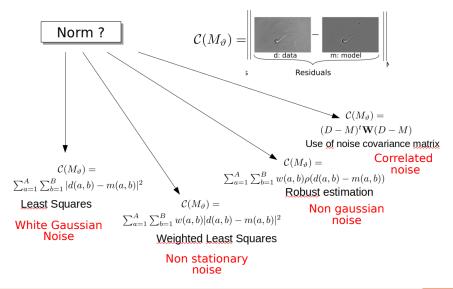


Goals :

- Accuracy
- Robustness vs noise

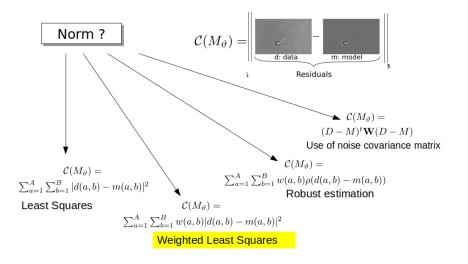
- Missing data
- Tractability

Norm choice depends on the noise model



Corinne Fournier – Unconventional imaging and co-design

Weighted least squares

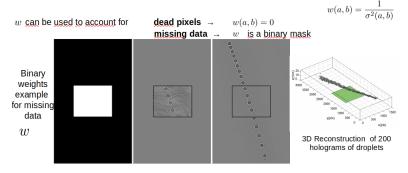


Weight matrix

Weighted Least Squares

$$\mathcal{C}(M_{\vartheta}) = \sum_{a=1}^{A} \sum_{b=1}^{B} w(a,b) |d(a,b) - m(a,b)|^2$$

Assumption : additive White Gaussian Noise (WGN) with a varying variance in the field



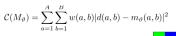
F. Soulez et al., "Inverse-problem approach for particle digital holography : accurate location based on local optimization", JOSA A,2007.

F. Soulez et al., "Inverse-problem approach for particle digital holography : out-of-field particle detection made possible", JOSA A,2007.

Corinne Fournier - Unconventional imaging and co-design

Weight matrix

Weighted Least Squares

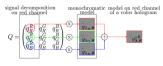


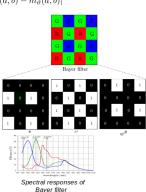
Bayer Color matrix example

$$\mathcal{C}(M_{\vartheta}) = \sum_{c=1}^{3} \sum_{a=1}^{A} \sum_{b=1}^{B} w^{c}(a,b) |d^{c}(a,b) - m^{c}(a,b)|^{2}$$

=> avoid interpolation

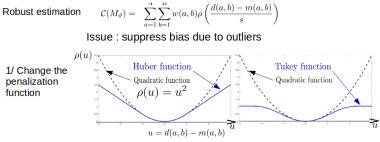
=> makes possible self calibration : estimation of the crosstalk coefficients





O. Flasseur, C. Fournier, N. Verrier, L. Denis, F. Jolivet, A. Cazier, T. Lépine, "Self-calibration for lensless color microscopy". Applied Optics, 2017.

Robust estimation



- reduce the penalization of largest difference between data and model
- replace the least squares by another objective function \Rightarrow Using the M-estimator

P.J. Huber, "Robust statistics. " Springer, 2011.

Penalization function

Robust estimation
$$C(M_{\vartheta}) = \sum_{a=1}^{A} \sum_{b=1}^{D} w(a,b) \rho\left(\frac{d(a,b) - m_{\vartheta}(a,b)}{s}\right)$$

Issue : suppress bias due to outliers

2/ Change the outliers weights

$$\hat{\vartheta}_{\mathbf{k+1}} = \operatorname{argmin}_{\vartheta} \quad \sum_{a=1}^{A} \sum_{b=1}^{B} w_k(a, b) \rho\left(\frac{d(a, b) - m_{\vartheta}(a, b)}{s}\right)^2$$

$$w_k(a,b) = w(a,b)\frac{s}{r_k(a,b)} \cdot \frac{\partial \rho(u)}{\partial u}|_{u=r_k(a,b)/s}.$$

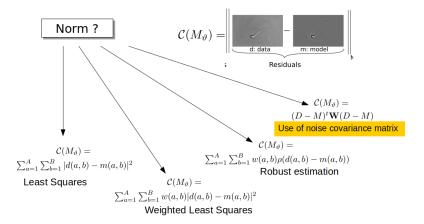
Penalization function

video

O. Elasseur. et al. "Robust object characterization from lensless microscopy videos", In IEEE European Signal Processing Conference (EUSIPCO), 2017.

Corinne Fournier – Unconventional imaging and co-design

Use of noise covariance matrix



O. Flasseur, L. Denis, E. Thébaut, et al. "ExPACO : detection of an extended pattern under nonstationary correlated noise by patch covariance modeling", IEEE European Signal Processing Conference (EUSIPCO), 2019.

Corinne Fournier – Unconventional imaging and co-design