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Salem Said 2019 – École d’été de Peyresq

CNRS — Université de Bordeaux

You should become able to read this :

Zhou & Said (2018) : fast asymptotically-e�icient
recursive estimation in a Riemannian manifold
(h�ps ://arxiv.org/abs/1805.06811)

Nothing is more practical than a good theory ! !

0 / 29



Plan

1 Introduction with surfaces

2 Higher dimension

3 Convex stochastic optimisation

4 Riemannian recursive estimation

5 Proposed reading

1 / 29



What is a manifold ?

� Riemann (1854) : any space which one can describe by varying n real parameters

{a�itude of a solid body in space}
{shape of a deformable elastic body}
{color}

� Abstract manifolds (1920s-30s) : the cartographer’s definition

{(z ,w) ∈ C × C |w2 − z2 + 4 = 0} is a cylindre ! !

a manifold is a space with at atlas which is a set of compatible local charts

�Whitney’s theorem (1944) : all manifolds are concrete

–any smooth n-dimensional manifold can be embedded into R2n

– the embedding is di�icult, but we know it always exists
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What is a Riemannian manifold ?

� Riemannian metric : length is measured by a quadratic form

think of an embedded manifold M ⊂ RN

L(γ ) =
∫ 1

0
〈 Ûγ (t) , Ûγ (t)〉

1
2 dt curve γ : [0.1] → M

 reparameterisation-invariant definition of length L(γ ◦ ϕ) = L(γ )
� Riemannian distance :

d(x, y) = inf {L(γ ) ; γ (0) = x and γ (1) = y }

� Geodesics : locally length-minimising curves

L(γ |[t, t + ϵ ]) = d(γ (t) ,γ (t + ϵ )) for each t ∈ (0 ,1)

a geodesic may fail to be globally minimising ! !

� there exists an infinite choice of Riemannian metrics on a given manifold

� Curvature is a more relevant quantity

Gauss-Bonnet for surfaces :
1

4π

∫
M

R dvol = 2 − 2g
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ϵ essentially depends
on current point γ (t)



Curvature and distance function
� Geodesic spherical coordinates : fix some point x ∈ M

(r, θ ) 7−→ γθ (r) for r ∈ (0 ,ϵx ) , θ ∈ S1

� The metric :
〈v ,v 〉 = v2

r + f
2(r, θ ) v2

θ︸                           ︷︷                           ︸
scalar product

ds2 = dr2 + f 2(r, θ ) dθ 2︸                          ︷︷                          ︸
length element

� Jacobi equation : second order linear ode

frr + K f = 0 K (r, θ ) sectional curvature

� Constant curvature :

f (r, θ ) = k−1 sin(kr)︸                      ︷︷                      ︸
positive curvature k2

f (r, θ ) = k−1 sinh(kr)︸                       ︷︷                       ︸
negative curvature −k2

� Distance function (locally ! !) : y = γθ (r) =⇒ d(x, y) = r

� Hessian of distance function :

∇2r '
(

0 0

0 fr/f

)
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in direction θ

K determines M up to
coverings

f (r, θ ) ∼ r for
small r

fr /f may become
negative or diverge ‼



Hessian comparison

� Constant curvature : “curvature of a sphere” S = fr/f

S(r, θ ) = k cot(kr)︸                   ︷︷                   ︸
positive curvature k2

S(r, θ ) = k coth(kr)︸                    ︷︷                    ︸
negative curvature −k2

 distance can fail to be convex or smooth ! !

� Comparison :
α ≤ K (r, θ ) ≤ β =⇒ Sβ (r) ≤ S(r, θ ) ≤ Sα (r)︸                          ︷︷                          ︸

note reverse order

 some local estimates

π
2
√
β
≤ r ≤ π

2
√
α

π√
β
≤ r ≤ π√

α

convexity is lost conjugate points (foci)

� Hessian of squared distance :

ex (y) = d2(x, y) ∇2ex '
(

2 0

0 2rS

)
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Triangle comparison

� Geodesic triangle ∆ = xyz :

(zy)2 =
[
(zx)2 − 2(zx)(xy) cos ∠zxy + (xy)2

]︸                                          ︷︷                                          ︸
planar triangle

+ E(∆)

� Error estimate :

(xy)2(DSβ (D) − 1) ≤ E(∆) ≤ (xy)2(DSα (D) − 1)

� Sign of K :

K ≥ 0 ⇒ α = 0 ⇒ E(∆) ≤ 0 so (zy) ≤ (zy)plane

K ≤ 0 ⇒ β = 0 ⇒ E(∆) ≥ 0 so (zy) ≥ (zy)plane
�Other comparisons :

metric, area, sum of angles, …

fβ (r) ≤ f (r, θ ) ≤ fα (r)︸                          ︷︷                          ︸
f = 0 before fα and a�er fβ
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second-order Taylor of
f (γ (t)) = d2(z, γ (t))



Cut and conjugate locus

Cut(x) = {γθ (rc) | γθ not minimising a�er rc }

Conj(x) = {r(θ ) | f (r, θ ) = 0 for the first time}

�Why does a geodesic fail to minimise?

— Contains conjugate points : not a local minimum
— It is not unique (broken geodesics don’t minimise)

y ∈ Cut(x) ⇔ y ∈ Conj(x) or y = c(1) = γ (1)︸             ︷︷             ︸
typical case

� Cut locus and topology true in any dimension

Cut locus is a negligeable set

M = Dx ∪ Cut(x) Cut(x) deformation retract of M − {x }
� Injectivity radius

i(x) = inf
y Cut(x)

d(x, y) = d(x, Cut(x))

� Klingenberg

i(x) ≥ min

{
π√
β
,
`

2

}
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Convexity of squared distance

� Recall the Hessian :

∇2ex '
(

2 0

0 2rS

)
≥ 2 β r cot(β r) (positive curvature)

≥ 2 (non-positive curvature)

� But is it convex ?

The problem comes from closed geodesics

� Convexity radius : when is a geodesic ball convex?

B(x, R) is convex if R ≤ i(M)
2

; R ≤ π

2
√
β

� Hadamard-von Mangoldt : squared distance is globally strongly convex on
simply-connected surfaces of negative curvature
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i(M) = infx i(x)
(possibly zero)
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Riemannian connection (Levi-Civita)

�Why do we need a connection ?

Define acceleration of a curve, Hessian of a function, … : di�erentiate a vector field !

� A�ine connection :
∇vX = derivative of vector field X along direction v

� Levi-Civita connection : (compatible with the metric)

∇v 〈X ,Y 〉 = 〈∇vX ,Y 〉 + 〈X ,∇vY 〉

(zero torsion)

∇XY − ∇YX = [X ,Y ]

� Koszul formula :

∇Y = 1
2
LY g︸ ︷︷ ︸

elasticity tensor

+
1
2
d(g · Y )︸     ︷︷     ︸

skew-symmetric
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Riemannian connection (Levi-Civita)

� Example 1 : embedded submanifold

(∇vX )(x) = Πx (DvX ) projection of component-wise derivative

� Example 2 : geodesic spherical coordinates

∇∂r ∂r = 0 ∇∂r ∂θ = S(r ,θ )∂θ

∇∂θ ∂r = S(r ,θ )∂θ ∇∂θ ∂θ = −(f
2)r∂r

� Interpretation :

∇∂r ∂r = 0︸      ︷︷      ︸
geodesic equation

∇∂θ ∂r = S(r ,θ )∂θ︸                    ︷︷                    ︸
Hessian of distance
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Some definitions

� Geodesic equation :

∇ Ûγ Ûγ = 0 zero-acceleration parameterised curve

� Gradient ∇f :
v · f︸︷︷︸

directional derivative

= df (x) · v︸    ︷︷    ︸
df (x):TxM→M

= 〈∇f , v 〉x︸    ︷︷    ︸
gradient

� Hessian ∇2f :

∇2f · v = ∇v∇f (x)︸                  ︷︷                  ︸
self-adjoint endomorphism

∇2f · (u ,v) = 〈∇2f · u ,v 〉︸                              ︷︷                              ︸
symmetric bilinear form

� Second-order Taylor :

f (γ (1)) = f (γ (0)) + 〈∇f , Ûγ 〉γ (0) +
1
2
∇2f · ( Ûγ , Ûγ )

����
t∗

where t∗ ∈ (0 ,1)
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The exponential map

� Definition from ODE theory :

∇ Ûγ Ûγ = 0 i.c.
(
γ (0) = x and Ûγ (0) = v = y i∂i

)
︸                                                          ︷︷                                                          ︸

the solution is unique for given initial conditions

=⇒ Expx (v) = γ (1) = y

� Completeness and Hopf-Rinow :

Expx (v) is defined for all v ⇐⇒ any x ,y ∈ M connected by a minimising geodesic

� Normal coordinates : is the relation y 7→ y i unique?

M = Dx ∪ Cut(x) Exp di�eomorphism of Dx

�What happens on Cut(x) :

— |dExpx (v) | = 0 conjugate point

— Exp is not bijective
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Convex sets and functions

� Convex A ⊂ M :

x ,y ∈ A : length-minimising γ (0) = x ,γ (1) = y and γ (t) ∈ A

A ball may fail to be convex ! !

� Convexity radius : (small balls are always convex)

Rcx (M) ≥ min

{
i(M)

2
,
π

2
√
β

}
� Convex function f : A→ R :

f ◦ γ : [0, 1] → R is convex

� Example :
ex : B(x, R) → R where ex (y) = d2(x, y)

 if R < Rcx this function is convex

� Characterisation :
A is convex and ∇2φ(y) ≥ 0 for y ∈ A
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Hadamard manifolds

M simply connected, complete, with sectional curvature ≤ 0

� Examples :

� Euclidean space

� Poincaré half plane

� Cones of covariance matrices

� Nice properties : i(M) = ∞ no conjugate points, no closed geodesics

� Exp is a di�eomorphism

� squared distance is smooth

� squared distance is strongly convex

∇2ex (y) ≥ 1 all x and y in M (ex (y) = d2(x, y))

� Barycentre problem : (Fréchet mean)

F (y) = 1
N

N∑
n=1

d2(xn ,y)︸                          ︷︷                          ︸
smooth strongly convex function

 unique minimum and stationary point x̂N
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Stochastic optimisation

� Loss function (L : M→ R) :

L(x) = Ez `(x ,z) or L(x) = 1
N

N∑
n=1

`(x ,zn)

�Main issues :

loss function unknown ; evaluation too costly

� Idea : learn and optimise at the same time ! !

− generate or observe zn where n = 1, 2, . . .

− follow the gradient on average xn+1 = Expxn (−γn+1∇`(xn ,zn+1))

� Deterministic vs stochastic :

find stationary point find local min local rate of convergence

deterministic YES NO geometric
stochastic YES YES harmonic

� Limit set : connected component of {∇L = 0} ∪ {∞} (for more, recall the capture theorem)
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Local rate of convergence

xn+1 = Expxn (−γn+1∇`(xn ,zn+1))

� Assumptions :

(xn) ⊂ D compact convex set

exactly one stationary point x∗ ∈ D
L is µ-strongly convex in D

controle of moments of noise

strong convexity (x ,y ∈ D) : L(y) − L(x) ≥ 〈∇L(x) , Exp−1
x (y)〉x +

µ
2
d2(x, y)︸                                                          ︷︷                                                          ︸

(a convex function is above all its tangents)

 strong a�raction : − µ
2
d2(x, x∗) ≥ 〈∇L(x) , Exp−1

x (x∗)〉x︸                                            ︷︷                                            ︸
(a�raction to x∗ is super-linear)
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triangle comparison : d2(xn+1 ,x∗) ≤ d2(xn ,x∗) + 2〈un+1 , Exp−1
xn (x

∗)〉 + DSα (D) ‖un+1 ‖2

conditional expectation : En d2(xn+1 ,x∗) ≤ d2(xn ,x∗) + 2γn+1 〈∇L(xn) , Exp−1
xn (x

∗)〉 + Cγ 2
n+1

strong a�raction : En d2(xn+1 ,x∗) ≤ (1 − γn+1µ) d2(xn ,x∗) + Cγ 2
n+1

take expectation : E d2(xn+1 ,x∗) ≤ (1 − γn+1µ)E d2(xn ,x∗) + Cγ 2
n+1

� A first conclusion :
we must take lim supγn+1µ < 1
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The problem of tuning

� Usual choice of step-size :

γn =
A

nα + B
where α ∈ (0 ,1] α ↑ 1 stops the algorithm faster

� Local rate of convergence :
E d2(xn ,x∗) ≤ Cγ βn where β ∈ (0 ,1)

�Optimal rate :

E d2(xn ,x∗) ≤ Cγn requires A >
α
µ

(Please note these are only local rates !)

� Conclusion : ∗ we need to know µ (spend money)

∗ we need to guess µ (spend time)

∗ convergence can be arbitrarily bad

∗ anyway, a small µ is a bad case

� Can we get around knowing µ ?

 there exist some very nice tricks
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Averaged stochastic gradient

�Maintain a constant step-size :

xn+1 = Expxn (−γ ∇`(xn ,zn+1)) γ constant (or slowly decreasing)

� Does this converge ?

a stationary Markov process (the question is convergence in law, or ergodicity)

 somehow, we need to stabilise it

� Recursive Riemannian average : (generalise the Polyak average)

x̂n+1 = x̂n # 1
n+1

xn+1︸                    ︷︷                    ︸
geodesic weighted average

In a Euclidean space, this reduces to

x̂n+1 =
n

n + 1
x̂n +

1
n + 1

xn+1

 SGD becomes the input of a Riemannian AR(1)
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A digression about barycentres

� Riemannian barycentre (Fréchet mean) :

x̄ any global minimum of E(x) =
∫
M

d2(x ,y)P(dy)

apparently, just stochastic optimisation

� In Euclidean space :

x̄ =
∫
M

y P(dy) unique global minimiser

� Law of large numbers :

x̂n =
1
n

n∑
m=1

xm → x̄ x̂n+1 =
n

n + 1
x̂n +

1
n + 1

xn+1

� General Riemannian case :

E(x) is non-di�erentiable, non-convex, and has multiple minima ! !

− Conclsuion :
Open problem : barycentre of a Markov chain
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The problem of recursive estimation

� Estimation/learning problem :

minimise a statistical divergence θ ∗ = argminD(Ptrue |Pθ )
θ ∈ Θ (model space, a manifold)

no reason to think Ptrue = Pθ ∗

 but we do not know Ptrue in the first place ! !

� Empirical estimation : (example of KL divergence)

D(Ptrue |Pθ ) =
∫

log
[

ptrue(x)
pθ (x)

]
dPtrue(x) ≈

1
N

N∑
n=1

log ptrue(xn) −
1
N

N∑
n=1

log pθ (xn)︸                                               ︷︷                                               ︸
first term does not depend on θ

Drawbacks Advantages

changes the original minimisation problem consistent, asymptotically e�icient

recomputes from scratch with new samples uses established optimisation methods

not suitable to very complicated models

� Recursive estimation : we try to have the same advantages without the drawbacks

23 / 29



The problem of recursive estimation

� Estimation/learning problem :

minimise a statistical divergence θ ∗ = argminD(Ptrue |Pθ )
θ ∈ Θ (model space, a manifold)

no reason to think Ptrue = Pθ ∗

 but we do not know Ptrue in the first place ! !

� Empirical estimation : (example of KL divergence)

D(Ptrue |Pθ ) =
∫

log
[

ptrue(x)
pθ (x)

]
dPtrue(x) ≈

1
N

N∑
n=1

log ptrue(xn) −
1
N

N∑
n=1

log pθ (xn)︸                                               ︷︷                                               ︸
first term does not depend on θ
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advantages without the drawbacks

θn+1 = φ(θn , . . . ,xn+1) lim θn = θ ∗
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The Fisher information metric

� First definition :

a metric adapted to the divergence D(Pθ |Pθ+dθ ) =
1
2
‖dθ ‖2 + . . .

� Is this really a metric ?

(case of Kullback-Leibler) ‖dθ ‖2 = −
∑
a

∑
b

Eθ

(
∂2 log pθ
∂θ a∂θ b

)
dθ adθ b

Rao’s discovery ‖dθ ‖2 = ‖dθ ′ ‖2︸                 ︷︷                 ︸
invariance by reparameterisation

� Second definition (Chentsov’s theorem) : a formula is not a definition

there is (essentially) a unique metric on Θ invariant by su�icient statistics

D(Pθ |Pθ+dθ ) = D(Pθ ◦ φ |Pθ+dθ ◦ φ) (φ su�icient statistic)

 many computations become automatic . . .
 explains the appearance of a�ine-invariance
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Recursive estimation

� Gradient flow :

Ûθ = −∇θ D(Ptrue |Pθ ) Limit set (forward)

{∞} or {stationary point} or {stationary infinite set}
 we cannot run this dynamical system ! !

� Stochastic approximation :
θn+1 = Expθn (γn+1 u(θn ,xn+1))

� Limit set (a.s.) :

∑
γn = ∞ ,

∑
γ 2
n < ∞

Etrue u(θ, x) = −∇D(θ )

 =⇒ same as above

� Reflected algorithm : introduce “walls” to avoid going to {∞}

� Unstable points :
εn(θ ) = u(θ, x) − Etrue u(θ, x) (approximation noise)

isotropic noise =⇒ Ptrue(θn → unstable point) = 0

25 / 29



Recursive estimation

� Gradient flow :

Ûθ = −∇θ D(Ptrue |Pθ ) Limit set (forward)

{∞} or {stationary point} or {stationary infinite set}
 we cannot run this dynamical system ! !

� Stochastic approximation :
θn+1 = Expθn (γn+1 u(θn ,xn+1))

� Limit set (a.s.) :

∑
γn = ∞ ,

∑
γ 2
n < ∞

Etrue u(θ, x) = −∇D(θ )

 =⇒ same as above

� Reflected algorithm : introduce “walls” to avoid going to {∞}

� Unstable points :
εn(θ ) = u(θ, x) − Etrue u(θ, x) (approximation noise)

isotropic noise =⇒ Ptrue(θn → unstable point) = 0

25 / 29

or any C2 retraction



Local rate of convergence

� Behavior at stable point :

∇D(θ ∗) = 0 ; ∇2D(θ ∗) � 0 (least eigenvalue λ)︸                                        ︷︷                                        ︸
λ depends on the choice of metric

� Strong a�raction : if λ > µ > 0 there exists open Θ∗ at θ ∗

−µ d2(θ,θ ∗) ≥ 〈∇D(θ ) , Exp−1
θ (θ

∗)〉θ for all θ ∈ Θ∗

� Best achievable rate :

γn =
A
n

and A >
1

2µ
=⇒ d2(θ,θ ∗) = O

(
n−1

)
� Automatic tuning : (assume θ ∗ = θtrue)

information metric  λ = 1
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(Hessian as bilinear form)



Asymptotic normality
� Normalised error :

ξn =
√
γn Exp−1

θ ∗ (θn)

� The CLT :
ξn =⇒ N(0 , Σ) (expressed in o.n.b.)

� Lyapunov equation :

H Σ + ΣH = −A2 Σ∗ γn = A
n

H = 1
2 Id − ∇2D(θ ∗)

Σ∗ = Etrue (εn(θ ∗) ⊗ εn(θ ∗))

�What does this mean ?? !

(asymptotic behavior) dξ (t) = Hξ (t)dt + Σ−
1
2 dW (t)︸                                  ︷︷                                  ︸

linear a�raction + white noise

� Asymptotic e�iciency

information metric  Σ = Σ∗ = (I(θ ∗))−1

d(θn , θ ∗) ⇒ χ 2
dimΘ︸                    ︷︷                    ︸

useful for change detection
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Unknown information metric

� Examples of “di�icult models” :

mixture models

neural networks

FIM known but complicated

� “partial FIM” :
retain diagonal part and try to find λ and Σ

� Automatic tuning : (averaged stochastic gradient under some suitable metric)

θn+1 = Expθn (−γ u(θn ,xn+1)) γ constant (or slowly decreasing)

θ̂n+1 = θ̂n # 1
n+1

θ̂n+1 geodesic average

� this guarantees O
(
n−1) convergence rate and asymptotic e�iciency

� Exp and # need to be manageable (chose a symmetric geometry ..)
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Proposed reading

�Manifolds and Riemannian geometry :

J.M. Lee : Introduction to Topological manifolds

J.M. Lee : Introduction to Smooth Manifolds

J.M. Lee : Introduction to Riemannian manifolds

� Information geometry :

S.I Amari : Methods of information geometry

… … : Learn from the state of the art ! !

� Recursive estimation :

Nevilson & Hasminskii : Stochastic approximation and recursive estimation

Marie Duflo : Algorithmes Stochastiques + Random iterative models

� Riemannian recursive estimation :

Bonnabel : Stochastic gradient descent on Riemannian manifolds

Tripuraneni & al : Averaging stochastic gradient descent on
Riemannian manifolds

29 / 29


	Introduction with surfaces
	Higher dimension
	Convex stochastic optimisation
	Riemannian recursive estimation
	Proposed reading

