Recursive estimation
in Riemannian manifolds

Salem Said 2019 — Ecole d’été de Peyresq

CNRS — Université de Bordeaux

You should become able to read this :

Zhou & Said (2018) : fast asymptotically-efficient
recursive estimation in a Riemannian manifold
(https ://arxiv.org/abs/1805.06811)

Nothing is more practical than a good theory !!
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What is a manifold ?

© Riemann (1854) : any space which one can describe by varying n real parameters
{attitude of a solid body in space}
{shape of a deformable elastic body}
{color}

o Abstract manifolds (1920s-30s) : the cartographer’s definition
{(z,w) e CxC|w? = 2% + 4 =0} is a cylindre !!

a manifold is a space with at atlas which is a set of compatible local charts

o Whitney’s theorem (1944) : all manifolds are concrete
-any smooth n-dimensional manifold can be embedded into R?"

- the embedding is difficult, but we know it always exists
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What is a Riemannian manifold ?

o Riemannian metric : length is measured by a quadratic form

think of an embedded manifold M c RN

! 1
L(y) = /0 (&), y())2dt  curvey :[0.1] > M

~» reparameterisation-invariant definition of length Ly o¢) = L(y)

o Riemannian distance :
d(x, y) = inf{L(y); y(0) = x and y(1) = y}
o Geodesics : locally length-minimising curves

L(y|lt, t+ €]) = d(y(t),y(t + €)) foreach t € (0,1)

a geodesic may fail to be globally minimising!!
o there exists an infinite choice of Riemannian metrics on a given manifold

o Curvature is a more relevant quantity

1
Gauss-Bonnet for surfaces : —/ Rdvol = 2-2g
4 M
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Curvature and distance function

o Geodesic spherical coordinates :

(r, 0) — yp(r) for re(0,e), 0 €S
o The metric :
(v,v) = V2 +fA(r, 0) v} ds? = dr? + f(r, 6) d©*
scalar product length element

© Jacobi equation : second order linear ode

fr+Kf=0 K(r, 0) sectional curvature
o Constant curvature :
f(r, ) = k7" sin(kr) f(r, ) = k™" sinh(kr)
positive curvature k* negative curvature —k?
o Distance function (locally!!) : y=yor) = d(x,y)=r

o Hessian of distance function :

R 0 0
Ver~
(o fr/f)

fix some point x € M

4/29



Curvature and distance function

o Geodesic spherical coordinates :

Yo unit speed geodesic (r, 0) — )/g(r) for re(0,ex) , 0 € ST
in direction 6

o The metric :
(v,v) =V +fX(r,0) v} ds® = dr* + f(r, 0) d6?

scalar product length element

o Jacobi equation : second order linear ode

fr+Kf=0 K(r, 0) sectional curvature
o Constant curvature :
f(r, 0) = k7" sin(kr) f(r, 0) = k™" sinh(kr)
positive curvature k? negative curvature —k?
o Distance function (locally!!) : y=yo(r) = d(x,y)=r

o Hessian of distance function :

V2~0 0
o fi/f

fix some point x € M

4/29



Curvature and distance function

o Geodesic spherical coordinates :

Yo unit speed geodesic (r, 0) — )/g(r) for re(0,ex) , 0 € ST
in direction 6

o The metric :
(v,v) =V +fX(r,0) v} ds® = dr* + f(r, 0) d6?

scalar product length element

o Jacobi equation : second order linear ode

K determines M up to _ .
coverings for+Kf=0 K(r, ) sectional curvature

o Constant curvature :

f(r, 0) = k7" sin(kr) f(r, 0) = k™" sinh(kr)
— ———— N—— ——
positive curvature k? negative curvature —k?
o Distance function (locally!!) : y=yo(r) = d(x,y)=r

o Hessian of distance function :

V2~0 0
o fi/f

fix some point x € M

4/29



Curvature and distance function

o Geodesic spherical coordinates :

Yo unit speed geodesic (r, 0) — )/g(r) for re(0,ex) , 0 € ST
in direction 6

o The metric :
(v,v) =V +fX(r,0) v} ds® = dr* + f(r, 0) d6?

scalar product length element

o Jacobi equation : second order linear ode

K determines M up to _ .
coverings for+Kf=0 K(r, ) sectional curvature

o Constant curvature :

6. 0) ~ 1 for f(r, 0) = k™" sin(kr) f(r, 0) = k™" sinh(kr)
small r _— _—
positive curvature k? negative curvature —k?
o Distance function (locally!!) : y=yo(r) = d(x,y)=r

o Hessian of distance function :

V2~0 0
o fi/f

fix some point x € M

4/29



Curvature and distance function

o Geodesic spherical coordinates :

Yo unit speed geodesic (r, 0) — )/g(r) for re(0,ex) , 0 € ST
in direction 6

o The metric :
(v,v) =V +fX(r,0) v} ds® = dr* + f(r, 0) d6?

scalar product length element

o Jacobi equation : second order linear ode

K determines M up to _ .
coverings for+Kf=0 K(r, ) sectional curvature

o Constant curvature :

6. 0) ~ 1 for f(r, 0) = k™" sin(kr) f(r, 0) = k™" sinh(kr)
small r _— _—
positive curvature k? negative curvature —k?
o Distance function (locally!!) : y=yo(r) = d(x,y)=r

o Hessian of distance function :

0 0 fr/f may become
2r > negative or diverge !!
0 Jfilf

fix some point x € M

4/29



Hessian comparison

o Constant curvature : “curvature of a sphere” S = f,/f
S(r, 6) = k cot(kr) S(r, 6) = k coth(kr)
— —
positive curvature k* negative curvature —k?

~» distance can fail to be convex or smooth!!

o Comparison :

a <K(r,0) < B = Spg(r) < S(r, 0) < Su(r)

note reverse order

~> some local estimates

T

T T T
2\/53"52\/3 \/_

convexity is lost  conjugate points (foci)

<||=*

o Hessian of squared distance :

ex(y) = d*(x, y) VZe, = 20
WrE @y Lo s
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Hessian comparison

o Constant curvature : “curvature of a sphere” S = f,/f
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2B e VB S
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<|I='

o Hessian of squared distance :
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X = X, x =
Y y 0 2rS
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2 0 0 0
CR P R P
0 2 0 2rS-1)

<|I='
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Triangle comparison

< L

o Geodesic triangle A = xyz : spherical planar hyperbolic

(zy)2 = [(zx)2 — 2(zx)(xy) cos Lzxy + (xy)z] + &(A)

planar triangle

o Error estimate :
(xy)(DSp(D) - 1) < E(A) < (xy)*(DSa(D) - 1)
<o Sign of K : second-order Taylor of
fly(@®) = d*(z y (1)
K20 =2 a=0 = &) <0s0(zy) < (zy)plane
K<0 = =0 = &) 20s0(zy) 2 (2y)plane
© Other comparisons :

metric, area, sum of angles, ...

Ip(r) < f(r, 0) < fa(r)

f = 0before f, and after fg

P

6
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Cut and conjugate locus

Cut(x) = {yg(rc) | yo not minimising after rc}

pladapt)
Conj(x) = {r(0)|f(r, 8) = 0 for the first time}
¥pef
o Why does a geodesic fail to minimise?
— Contains conjugate points : not a local minimum “epe
— It is not unique (broken geodesics don’t minimise)
y € Cut(x) © y € Conj(x) or y = c(1)=y(1)
N
typical case
o Cut locus and topology true in any dimension

Cut locus is a negligeable set
M = Dy U Cut(x) Cut(x) deformation retract of M — {x}

o Injectivity radius

i(x)=inf d(x,y) = d(x, Cut(x))

y Cut(x)

i(x) >m|n{‘/> i}

o Klingenberg
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Convexity of squared distance

o Recall the Hessian :

P
o — <

2 0
Ve = > 2 Breot(fr) (positive curvature)
0 2rS

>2 (non-positive curvature)

o But is it convex ?

The problem comes from closed geodesics

o Convexity radius : when is a geodesic ball convex?

i(M
B(x, R) is convex if R < I(—z) ; R< T

26

o Hadamard-von Mangoldt : squared distance is globally strongly convex on
simply-connected surfaces of negative curvature
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Riemannian connection (Levi-Civita)

© Why do we need a connection ?

Define acceleration of a curve, Hessian of a function, ... : differentiate a vector field !

o Affine connection :
VX = derivative of vector field X along direction v
o Levi-Civita connection : (compatible with the metric)
VX, Y) = (VuX,Y) +(X,V,Y)
(zero torsion)

VXY - VyX=[X,Y]

o Koszul formula :

1 1
V= SLvg + Sdig-Y)
S~—— ——
elasticity tensor  skew-symmetric
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Riemannian connection (Levi-Civita)

o Example 1 : embedded submanifold

(VyX)(x) = II(DyX) projection of component-wise derivative

o Example 2 : geodesic spherical coordinates
Vo,0r = 0 Vo, 00 = S(r,0)dg
Vo Or = S(r,0)d¢ V0o = ~(f?),0,

o Interpretation :

Vo,0r =0 Vag 9y = S(r,0)0¢
— S————
geodesic equation Hessian of distance
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Riemannian connection (Levi-Civita)

o Example 1 : embedded submanifold

(VyX)(x) = II(DyX) projection of component-wise derivative

o Example 2 : geodesic spherical coordinates
Vo 0r =0 Vo009 = S(r.0)9
Voo 0r = S(r,0)d¢ Voy00 = (%), 6,
o Interpretation : R
/ ?F ™~
Vo0, =0 Vo, 0r = S(r,0)0¢ !
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Some definitions

o Geodesic equation :

Vyy =0 zero-acceleration parameterised curve
o Gradient Vf :
v-f = df(x)-v = (Vf,v)x
—— N——— ————
directional derivative  df(x): TyM—M gradient
o Hessian V2f :
V2f v =V, Vf(x) V2f - (u,v) = (V2 - u,v)
e ——
self-adjoint endomorphism symmetric bilinear form

o Second-order Taylor :

S = f ) + (V. ¥y + %VZf'(Y, ) where t* € (0,1)
o
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The exponential map

o Definition from ODE theory :

Vyy =0 ic (y(O) =x and y(0)=v= y’a,) = Exp,(v)=y(1) =y

the solution is unique for given initial conditions
o Completeness and Hopf-Rinow :
Exp,(v) is defined for all v <= any x,y € M connected by a minimising geodesic
o Normal coordinates : is the relation y + y' unique?
M = Dy U Cut(x) Exp diffeomorphism of Dy
o What happens on Cut(x) :

— |dExp,(v)| = 0 conjugate point

— Exp is not bijective
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Convex sets and functions

oConvex ACM:
x,y € A : length-minimising y(0) = x,y(1) =y and y(t) € A
A ball may fail to be convex!!

o Convexity radius : (small balls are always convex)

iMoo
RCX(M)me{ 5 ’2\/E}

o Convex function f : A— R :
foy:[0,1] = R is convex

o Example :
ex : B(x, R) = R where e,(y) = d*(x, y)

~» if R < Ry this function is convex

o Characterisation :
Aiis convex and V2¢(y) > 0fory € A
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Hadamard manifolds

M simply connected, complete, with sectional curvature < 0

o Examples :

o Euclidean space
o Poincaré half plane

o Cones of covariance matrices
o Nice properties : i(M) = 0o ~» no conjugate points, no closed geodesics

o Exp is a diffeomorphism
o squared distance is smooth

o squared distance is strongly convex

Vzex(y) >1 all xandyinM (ex(y) = d*(x, y))

o Barycentre problem : (Fréchet mean)

N
1
Fy) = N Z d*(xs,y) ~» unique minimum and stationary point Xy

n=1

smooth strongly convex function
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Stochastic optimisation

¢ Loss function (L : M — R) :

N
L(x) =E; €(x,z) or L(x):%Zf(X,zn)
n=1

© Main issues :
loss function unknown ; evaluation too costly

o Idea : learn and optimise at the same time!!

— generate or observe z, wheren=1,2, ...

— follow the gradient on average  x,. = Exp, (=¥n+1 VE(Xp s 2ps1))

o Deterministic vs stochastic :

find stationary point  find local min  local rate of convergence
deterministic YES NO geometric
stochastic YES YES harmonic

o Limit set : connected component of {VL =0} U {co} (for more, recall the capture theorem)
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Local rate of convergence

Xpe1 = EXan (=¥n+1 VL (Xn, 2p11))
o Assumptions :
@ (x;) C D compact convex set
@ exactly one stationary point x* € D
@ Lis p-strongly convex in D

@ controle of moments of noise

strong convexity (x,y € D): L(y)— L(x) = (VL(x), Exp;1(y))x + %dz(x, y)

(a convex function is above all its tangents)

~» strong attraction : —gdz(x, x*) = (VL(x), Expy ' (x*))x

(attraction to x* is super-linear)
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Local rate of convergence

Xn+1 = EXPX" (=¥ne1 VE(X0 3 2041)) s ser Un+1 = Yne1 V€(Xn > Zns1)
© Assumptions :
@ (x;) € D compact convex set
@ exactly one stationary point x* € D
@ Lis p-strongly convex in D
°

controle of moments of noise
triangle comparison : d*(Xps1,x*) < d?(Xy,X*) + 2(Ups1, Exp;"1 (x*)) + DSe (D) || tpar |1
conditional expectation : E, d*(Xp11,X") < d?(xp,x*) + 2¥ns1 (VL(X,), Exp;J(x*)) +CyA,
strong attraction : B, d?(Xps1,x*) < (1= Ypr1pt) d?(xn,x¥) + Cyf+1

take expectation : B d?(xpe1,x*) < (1= Y1) B d?(x,x*) + Cyni1

o A first conclusion :
we must take limsup ypeip < 1
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The problem of tuning

o Usual choice of step-size :

Yn = —— where a €(0,1] a T 1stops the algorithm faster
n* + B

o Local rate of convergence :
Ed?(x,,x") < Cy? where B € (0,1)
o Optimal rate :
a
E d?(x,,x*) < Cy, requires A> —
7
(Please note these are only local rates!)

o Conclusion : * we need to know p (spend money)
* we need to guess p (spend time)
* convergence can be arbitrarily bad

* anyway, a small y is a bad case

o Can we get around knowing p ?

~» there exist some very nice tricks
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Averaged stochastic gradient

© Maintain a constant step-size :

Xn+1 = EXPX,, (7YV[(Xn 7Zn+1))

© Does this converge ?

a stationary Markov process (the question is convergence in law, or ergodicity)

~» somehow, we need to stabilise it

o Recursive Riemannian average : (generalise the Polyak average)

In a Euclidean space, this reduces to

Xnt1 = Xn #% Xn+1
n
[N —

geodesic weighted average

N n + 1
Xps1 = ——Xp + —— Xn+1
m n+1 " n+1 "

y constant (or slowly decreasing)

~» SGD becomes the input of a Riemannian AR(1)
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A digression about barycentres

© Riemannian barycentre (Fréchet mean) :
x any global minimum of &(x) = / d*(x,y)P(dy)
M

apparently, just stochastic optimisation
o In Euclidean space :

X = / y P(dy) unique global minimiser
M
o Law of large numbers :
“ 1< _ N n 1
Xn—;;)(m - X Xn+1 = mxn"'mxn-ﬂ

o General Riemannian case :

&(x) is non-differentiable, non-convex, and has multiple minima !!

— Conclsuion :

Open problem : barycentre of a Markov chain
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The problem of recursive estimation

o Estimation/learning problem :

minimise a statistical divergence ~ 0* = argmin D(Pyy. |Po)
6 € © (model space, a manifold)

no reason to think Py = Py«

~» but we do not know Py in the first place!!

o Empirical estimation : (example of KL divergence)

N N
Pirue (X ) 1 1
D(PuselPo) = | log [ o) | AP0 = 7 2 108 Pueo) = 7 D Tog o)

first term does not depend on @

Drawbacks Advantages
changes the original minimisation problem consistent, asymptotically efficient
recomputes from scratch with new samples uses established optimisation methods

not suitable to very complicated models

o Recursive estimation : we try to have the same advantages without the drawbacks
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N N
Prrue(X) 1 3 1 3
= ue: 7 ~ — - — | n
D(Ptruelpe) /log[ PQ(X) dPtrue(X) N = IOg ptrue(xn) N o og Py(X)

first term does not depend on 0

© Recursive estimation : we try to have the same
advantages without the drawbacks

9n+l = ‘I’(en, .- -an+1) lim 9,, =0"
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The Fisher information metric

o First definition :
1
a metric adapted to the divergence D(Pg|Pg+d0) = 2 I1do||* +

o Is this really a metric ?

8% log p
. 2 _ 0 a b
(case of Kullback-Leibler) ||dO]] E E Eg ( 50°58h ) do%do
Rao’s discovery 1do > = ||do’||?

invariance by reparameterisation

o Second definition (Chentsov’s theorem) : a formula is not a definition

there is (essentially) a unique metric on © invariant by sufficient statistics

D(Pg|Pg+d0) = D(Pg © @|Pgsrde © @) (¢ sufficient statistic)

~> many computations become automatic. . .
~» explains the appearance of affine-invariance
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Recursive estimation

o Gradient flow :
0 =-V, D(Pirue [Po) Limit set (forward)
{oo} or {stationary point} or {stationary infinite set}

~» we cannot run this dynamical system !!

© Stochastic approximation :
9n+1 = EXPH,, (Ynﬂ u(emxnﬂ))

o Limit set (a.s.) :

z Yn=100, x Ynz <o
= same as above
Eirue u(9, X) = _VD(G)
o Reflected algorithm : introduce “walls” to avoid going to {co}

o Unstable points :
en(0) = u(0, x) — Eyye u(0, x) (approximation noise)

isotropic noise == Pyye(6, — unstable point) = 0
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Local rate of convergence

o Behavior at stable point :

VD(0*) =0 ; V2D(6*) > 0 (least eigenvalue 1)

A depends on the choice of metric

o Strong attraction : if A > g > 0 there exists open ©* at 6*
—ud*(6,0%) = (VD(0), Exp,'(0))e  forall 6 € ©
© Best achievable rate :
Yo = % and A > i = ¢0.0") = 0(n")
o Automatic tuning : (assume 0" = Oyye)

information metric ~» A =1
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Local rate of convergence

o Behavior at stable point :

VD(0*) =0 ; V2D(6*) > 0 (least eigenvalue A) (Hessian as bilinear form)

A depends on the choice of metric

o Strong attraction : if A > g > 0 there exists open ©* at 6*
—ud*(6,0%) = (VD(0), Exp,'(0))e  forall 6 € ©
© Best achievable rate :
Yo = % and A > i = ¢0.0") = 0(n")
o Automatic tuning : (assume 0" = Oyye)

information metric ~» A =1
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Asymptotic normality

o Normalised error :

& = \/EEXp;l(O,,)

o The CLT :

& = N(0, X) (expressed in o.n.b.)

o Lyapunov equation :

HY +3H = —A*3*

o What does this mean ?7?!

(asymptotic behavior)

o Asymptotic efficiency

information metric

Yn:%
H=31d- V2D(6")

" = Biue (6‘,,(9*) ® En(e*))

dE() = HE(Ddt+ 377 dW(t)

linear attraction + white noise

w o Z=3=(6%)"
d(6n, 0") = Ximo

—_—
useful for change detection
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Unknown information metric

o Examples of “difficult models” :
@ mixture models
@ neural networks

@ FIM known but complicated

o “partial FIM” :
retain diagonal part and try to find A and

o Automatic tuning : (averaged stochastic gradient under some suitable metric)

Opiq = Expg, (—y u(Bn,xp+1)) y constant (or slowly decreasing)

Opir = Op# 1 Oniy geodesic average
n+1

o this guarantees O (n") convergence rate and asymptotic efficiency

o Exp and # need to be manageable (chose a symmetric geometry ..)
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Plan

o Introduction with surfaces

@ Higher dimension

° Convex stochastic optimisation

° Riemannian recursive estimation

@ Proposed reading
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Proposed reading

o Manifolds and Riemannian geometry :
J.M. Lee : Introduction to Topological manifolds
J.M. Lee : Introduction to Smooth Manifolds
J.M. Lee : Introduction to Riemannian manifolds
o Information geometry :
S.I Amari : Methods of information geometry
... ... : Learn from the state of the art !!
o Recursive estimation :
Nevilson & Hasminskii : Stochastic approximation and recursive estimation
Marie Duflo : Algorithmes Stochastiques + Random iterative models
© Riemannian recursive estimation :

Bonnabel : Stochastic gradient descent on Riemannian manifolds

Tripuraneni & al : Averaging stochastic gradient descent on
Riemannian manifolds
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