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Several definitions of the mean

Tensor moments of a random point on M

 𝔐1 𝑥 = 𝑀׬ 𝑥𝑧 𝑑𝑃(𝑧) Tangent mean: (0,1) tensor field

 𝔐2(𝑥) = 𝑀׬ 𝑥𝑧 ⊗ 𝑥𝑧 𝑑𝑃(𝑧) Covariance: (0,2) tensor field

 𝔐𝑘(𝑥) = 𝑀׬ 𝑥𝑧 ⊗ 𝑥𝑧⊗⋯ ⊗ 𝑥𝑧 𝑑𝑃(𝑧) k-contravariant tensor field

 𝜎2 𝑥 = 𝑇𝑟𝑔 𝔐2 𝑥 = 𝑀׬ 𝑑𝑖𝑠𝑡2 𝑥, 𝑧 𝑑𝑃(𝑧) Variance function

Mean value = optimum of the variance

 Frechet mean [1944] = (global) minima of p-variance (includes median)

 Karcher mean [1977] = local minima

 Exponential barycenters = critical points (P(C) =0)

𝔐1 ҧ𝑥 = 𝑀׬ ҧ𝑥𝑧 𝑑𝑃(𝑧) = 0 (implicit definition)

Covariance at the mean

 𝔐2 ҧ𝑥 = 𝑀׬ ҧ𝑥𝑧 ⊗ ҧ𝑥𝑧 𝑑𝑃 𝑧
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Asymptotic behavior of the mean

Uniqueness of p-means with convex support
[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11] 

 Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]

 Positive curvature: [Karcher 77 & Kendall 89] concentration conditions:

Support in a regular geodesic ball of radius 𝑟 < 𝑟∗ =
1

2
min 𝑖𝑛𝑗 𝑀 , 𝜋/ 𝜅

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]

 Under suitable concentration conditions, for IID n-samples:

 ҧ𝑥𝑛 → ҧ𝑥 (consistency of empirical mean)

 𝑛 𝑙𝑜𝑔 ҧ𝑥( ҧ𝑥𝑛)→𝑁(0, ഥ𝐻−1 𝛴 ഥ𝐻−1) if  ഥ𝐻 = 𝑀𝐻𝑒𝑠𝑠׬ ҧ𝑥 𝑑2 𝑦, ҧ𝑥 𝜇(𝑑𝑦) invertible

Questions

 Intelligible expression of Hessian? 

 What happens for a small sample size (non-asymptotic behavior)?

 Can we extend results to affine connection spaces?
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Concentration assumptions

 Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.

 Supp 𝜇 ⊂ 𝐵(𝑥, 𝑟) with r <
1

2
𝑖𝑛𝑗(𝑥)

 sup
𝑥∈𝐵(𝑥,𝑟)

𝜅(𝑥) < 𝜋2/ 4𝑟 2

Affine connection spaces: Arnaudon & Li convexity cond.

 𝜌:𝑀 ×𝑀 → 𝑅+ separating function

 Separability: 𝜌 𝑥, 𝑦 = 0 ֞ 𝑥 = 𝑦

 Convexity along geodesic: 𝜌 𝛾1 𝑡 , 𝛾2(𝑡) : 𝑅 → 𝑅+ 𝑐𝑜𝑛𝑣𝑒𝑥

 p-convex geometry: c distp x, y ≤ 𝜌 𝑥, 𝑦 ≤ 𝐶 𝑑𝑖𝑠𝑡𝑝 𝑥, 𝑦

 Uniqueness of exponential barycenter (compact support)
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Taylor expansion in manifolds

The mean is an exponential barycenter

 Tangent mean field: 𝔐1 𝑥 = 𝑀׬ log𝑥(𝑧) 𝜇(𝑑𝑧)

has a zero at ҧ𝑥.  Problem: vector field

 Recentered man field is a mapping of vector spaces

𝑁𝑥 𝑣 = Π𝑥𝑣
𝑥 𝔐1 exp𝑥(𝑣) = න

𝑀

Π𝑥𝑣
𝑥 log𝑥𝑣 𝑦 𝜇(𝑑𝑦)

has a zero at ҧ𝑣 = log𝑥( ҧ𝑥)

Neighboring log expansion (derived from Gavrilov)
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𝑙𝑥 𝑣, 𝑤

= 𝑤 − 𝑣 +
1

6
𝑅 𝑤, 𝑣 𝑣 − 2𝑤 +

1

24
𝛻𝑣𝑅 𝑤, 𝑣 2𝑣 − 3𝑤

+
1

24
𝛻𝑤𝑅 𝑤, 𝑣 𝑣 − 2𝑤 + 𝑂 5



Non-Asymptotic behavior of empirical means
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Moments of the Fréchet mean of a n-sample
 Taylor expansions based on [Gavrilov 2007]

 Unexpected bias in 1/n on empirical mean (gradient of curvature-cov.)

𝐛𝐢𝐚𝐬( ҧ𝑥𝑛) = 𝑬 𝑙𝑜𝑔 ҧ𝑥 ҧ𝑥𝑛 =
𝟏

𝟔𝒏
𝕸𝟐: 𝛁𝑹:𝕸𝟐 + 𝑂 𝜖5, 1/𝑛2

 Concentration rate modulated by the curvature-covariance:

𝑪𝒐𝒗( ҧ𝑥𝑛) = 𝑬 𝑙𝑜𝑔 ҧ𝑥 ҧ𝑥𝑛 ⊗ 𝑙𝑜𝑔 ҧ𝑥 ҧ𝑥𝑛 =
𝟏

𝒏
𝕸𝟐 +

𝟏

𝟑𝒏
𝕸𝟐: 𝑹:𝕸𝟐 + 𝑂 𝜖5, 1/𝑛2

 Asymptotically infinitely fast CV for negative curvature

 No convergence (LLN fails) at the limit of KKC condition

[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]



Constant curvature spaces

 Symmetric spaces: no bias

 Variance is modulated w.r.t. Euclidean: 𝑉𝑎𝑟 ҧ𝑥𝑛 = 𝛼
𝜎2

𝑛

High concentration expansion

 𝛼 = 1 +
2

3
1 −

1

𝑑
1 −

1

𝑛
𝜅𝜎2 + 𝑂(𝜖5)

Asymptotic CLT expansion

 𝛼 =
1

𝑑
+ 1 −

1

𝑑
തℎ

−2
+ 𝑂 𝑛−2

Archetypal modulation factor

 Uniform distrib on 𝑆 ҧ𝑥, 𝜃 ⊂ 𝑀 , 

large n, large d

 𝛼 =
tan2 𝜅𝜃2

𝜅𝜃2

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 9



X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 10



Conclusions

High concertation expansion very accurate for low theta

Asymptotic expansion very accurate for n> 10

Main variable controlling the modulation is variance-

curvature tensor

𝑅(∎, °)∎:𝔐2

Main variable controling the bias

𝔐2: 𝛻°𝑅(°,∎)∎:𝔐2
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 Beyond the 0-dim mean  higher dimensional subspaces

 When embedding structure is already manifold (e.g. Riemannian):  

Not manifold learning (LLE, Isomap,…) but submanifold learning

 Natural subspaces for extending PCA to manifolds?

Low dimensional subspace approximation? 
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Manifold of cerebral ventricles

Etyngier, Keriven, Segonne 2007.

Manifold of brain images

S. Gerber et al, Medical Image analysis, 2009.



Tangent PCA (tPCA)

Maximize the squared distance to the mean 

(explained variance)

 Algorithm

 Unfold data on tangent space at the mean 

 Diagonalize covariance at the mean Σ 𝑥 ∝ σ𝑖 ҧ𝑥𝑥𝑖 ҧ𝑥𝑥𝑖
𝑡

 Generative model: 

 Gaussian (large variance) in the horizontal subspace 

 Gaussian (small variance) in the vertical space

 Find the subspace of 𝑇𝑥𝑀 that best explains the variance
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Problems of tPCA

Analysis is done relative to the mean

 What if the mean is a poor description of the data? 

 Multimodal distributions

 Uniform distribution on subspaces

 Large variance w.r.t curvature
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Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low 

dimensional subspace (unexplained variance) 

 Geodesic Subspace: 𝐺𝑆 𝑥,𝑤1, …𝑤𝑘 = exp𝑥 σ𝑖 𝛼𝑖𝑤𝑖 𝑓𝑜𝑟 𝛼 ∈ 𝑅𝑘

 Parametric subspace spanned by geodesic rays from point x

 Beware: GS have to be restricted to be well posed [XP, AoS 2018]

 PGA (Fletcher et al., 2004, Sommer 2014)

 Geodesic PCA (GPCA, Huckeman et al., 2010) 

 Generative model:

 Unknown (uniform ?) distribution within the subspace

 Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in 𝐺𝑆 𝑥,𝑤1, …𝑤𝑘

 Totally geodesic at x only
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Patching the Problems of tPCA / PGA 
Improve the flexibity of the geodesics

 1D regression with higher order splines [Gu, Machado, Leite, Vialard, 

Singh, Niethammer, Absil,…]

 Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development 
[HCA, Sommer GSI 2013]

 Iterated construction of  subspaces 

 Parallel transport in frame bundle

 Intrinsic asymmetry between components

Nested “algebraic” subspaces

 Principal nested spheres [Jung, Dryden, Marron 2012]

 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 

 No general semi-direct product space structure in general 

Riemannian manifolds  
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Affine span in Euclidean spaces

Affine span of (k+1) points: 

weighted barycentric equation

Aff x0, x1, … xk = {x = σ𝑖 𝜆𝑖 𝑥𝑖 𝑤𝑖𝑡ℎ σ𝑖 𝜆𝑖 = 1} 

= x ∈ 𝑅𝑛 𝑠. 𝑡 σ𝑖 𝜆𝑖 (𝑥𝑖−𝑥 = 0, 𝜆 ∈ 𝑃𝑘
∗} 

Key ideas: 

 tPCA, PGA: Look at data points from the 

mean (mean has to be unique)

 Triangulate from several reference: 

locus of weighted means

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 19

A. Manesson-Mallet. La géométrie Pratique, 1702



Barycentric subspaces and Affine span

in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)

 Normalized weighted variance: σ2(x,λ) = σλ𝑖𝑑𝑖𝑠𝑡
2 𝑥, 𝑥𝑖 /σλ𝑖

 Set of absolute / local minima of the 𝜆-variance

 Works in stratified spaces (may go accross different strata)

 Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span

 Weighted exponential barycenters: 𝔐1 𝑥, 𝜆 = σ𝑖 𝜆𝑖 𝑥𝑥𝑖 = 0

 EBS 𝑥0, … 𝑥𝑘 = 𝑥 ∈ 𝑀∗ 𝑥0, … 𝑥𝑘 𝔐1 𝑥, 𝜆 = 0}

 Affine span = closure of EBS in M 𝐴𝑓𝑓 𝑥0, … 𝑥𝑘 = 𝐸𝐵𝑆 𝑥0, … 𝑥𝑘

Questions

 Local structure: local manifold? dimension? stratification? 

 Relationship between KBS ⊂ FBS, EBS and affine span?
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[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]



Analysis of Barycentric Subspaces

Assumptions:

 Restrict to the punctured manifold 𝑀∗ 𝑥0, … 𝑥𝑘 = 𝑀 / ∪ 𝐶 𝑥𝑖
 𝑑𝑖𝑠𝑡2 𝑥, 𝑥𝑖 , log𝑥(𝑥𝑖) are smooth but 𝑀∗ may be split in pieces

 Affinely independent points: 

𝑥𝑖𝑥𝑗 0≤𝑖 ≠𝑗≤𝑘
exist and are linearly independent for all i

Local well posedness for the barycentric simplex:

 EBS / KBS are well defined in a neighborhood of reference points

 For reference points in a sufficiently small ball and positive weights:

unique Frechet = Karcher = Exp Barycenter in that ball: smooth 

graph of a k-dim function [proof using Buser & Karcher 81]

SVD characterization of EBS:        𝔐1 x, λ = 𝑍 𝑥 𝜆 = 0
 SVD: 𝑍 𝑥 = [ 𝑥𝑥0, … 𝑥𝑥𝑘] = 𝑈 𝑥 𝑆 𝑥 𝑉𝑡(𝑥)

 𝐸𝐵𝑆 𝑥0, … 𝑥𝑘 = Zero level-set of l>0 singular values of Z(x) 

 Stratification on the number of vanishing singular values
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Analysis of Barycentric Subspaces

Exp. barycenters are critical points of 𝜆-variance on M*

 𝛻σ2(x,λ)= −2𝔐1 x, λ = 0 𝑲𝑩𝑺 ∩ 𝑴∗ ⊂ 𝑬𝑩𝑺

Caractérisation of local minima: Hessian (if non degenerate)

𝐻(x,λ) = −2෍

𝑖

𝜆𝑖𝐷𝑥 log𝑥 𝑥𝑖 = 𝐈𝐝 −
𝟏

𝟑
𝐑𝐢𝐜 𝕸𝟐 𝐱, 𝝀 + HOT

Regular and positive pts (non-degenerated critical points)

 𝑬𝑩𝑺𝑹𝒆𝒈 𝒙𝟎, … 𝒙𝒌 = 𝒙 ∈ 𝑨𝒇𝒇 𝒙𝟎, …𝒙𝒌 , 𝒔. 𝒕. 𝑯 𝒙, 𝝀∗(𝒙) ≠ 𝟎

 𝑬𝑩𝑺+ 𝒙𝟎, … 𝒙𝒌 = { 𝒙 ∈ 𝑨𝒇𝒇 𝒙𝟎, … 𝒙𝒌 , 𝒔. 𝒕. 𝑯 𝒙, 𝝀∗(𝒙) 𝑷𝒐𝒔. 𝒅𝒆𝒇. }

Theorem: EBS partitioned into cells by the index of the Hessian

of λ-variance: KBS = EBS+ on M*
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Example on the sphere

Manifold

 Unit sphere ℳ = 𝑺𝒏 embedded in ℝ𝒏+𝟏

 ||x|| =1

Exp and log map

exp𝑥 𝑣 = cos 𝑣 𝑥 +
sin( 𝑣 )

𝑣
𝑣

log𝑥 𝑦 = 𝑓 𝜃 𝑦 − cos 𝜃 with 𝜃 = arccos 𝑥𝑡𝑦

Distance       𝑑𝑖𝑠𝑡 𝑥, 𝑦 = log𝑥(𝑦) = 𝜃

(k+1)-pointed & punctured Sphere

 𝑋 = 𝑥0, 𝑥1, … , 𝑥𝑘 ∈ 𝑆𝑛
𝑘

 Punctured sphere: exclude antipodal points:  𝑆𝑛
∗ = 𝑆𝑛/ −𝑋
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KBS / FBS with 3 points on the sphere

EBS: great subspheres spanned by reference points (mod cut loci)

EBS 𝑥0, … 𝑥𝑘 = 𝑆𝑝𝑎𝑛 𝑋 ځ 𝑆𝑛 \𝐶𝑢𝑡(𝑋) 𝐴𝑓𝑓 𝑥0, … 𝑥𝑘 = 𝑆𝑝𝑎𝑛 𝑋 𝑆𝑛ځ

KBS/FBS: look at index of the Hessian of 𝜆-variance

H(x,𝜆) =σλ𝑖𝜃𝑖 cot 𝜃𝑖 Id − xxt + σ(1 − λ𝑖𝜃𝑖 cot 𝜃𝑖 ) 𝑥𝑥𝑖 𝑥𝑥𝑖
𝑡

 Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]

 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point            

 KBS/EBS less interesting than EBS/affine span
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Weighed Hessian index: brown = -2 (min) = KBS / green = -1 (saddle) / blue = 0 (max)



Example on the hyperbolic space

Manifold

 Unit pseudo-sphere ℳ = 𝑯𝒏

embedded in Minkowski space ℝ𝟏,𝒏

 𝑥 ∗
2 = −𝑥0

2 + 𝑥1
2 +⋯𝑥𝑛

2 = −1

Exp and log map

exp𝑥 𝑣 = cosh 𝑣 ∗ 𝑥 +
sinh( 𝑣 ∗)

𝑣 ∗
𝑣

log𝑥 𝑦 = 𝑓∗ 𝜃 𝑦 − cosh 𝜃 with 𝜃 = arcosh − 𝑥 𝑦 ∗

Distance  𝑑𝑖𝑠𝑡 𝑥, 𝑦 = log𝑥 𝑦 ∗ = 𝜃

Punctured hyperbolic space: no cut locus to exclude
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Example on the hyperbolic space

EBS = Affine span: great sub-hyperboloids spanned by reference points

EBS 𝑥0, … 𝑥𝑘 = 𝐴𝑓𝑓 𝑥0, … 𝑥𝑘 = 𝑆𝑝𝑎𝑛 𝑋 ∩ 𝐻𝑛

KBS: locus of maximal index of the Hessian of 𝜆-variance

H(x,𝜆) =σλ𝑖𝜃𝑖coth 𝐽 + 𝐽xxt𝐽𝑡 + σ(1 − 𝜆𝑖coth 𝜃𝑖 )𝐽 𝑥𝑥𝑖 𝑥𝑥𝑖
𝑡
𝐽𝑡

 Complex algebric geometry problem

 3 points on Hn: better than for spheres, but still disconnected components
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Weighted Hessian Index: brown = -2 (min) = KBS / blue = 1 (saddle)



Geodesic subspaces are limit cases of affine span

Theorem

 𝐺𝑆 𝑥,𝑤1, …𝑤𝑘 = {exp𝑥 σ𝑖 𝛼𝑖𝑤𝑖 𝑓𝑜𝑟 𝛼 ∈ 𝑅𝑘 } is the limit 

of 𝐴𝑓𝑓 𝑥0, exp𝑥𝑜 𝜖 𝑤1 , … exp𝑥𝑜 𝜖 𝑤𝑘 when 𝜖 → 0.

 Reference points converge to a 1st order (k,n)-jet

 PGA [Fletcher et al. 2004, Sommer et al. 2014]

 GPGA [Huckemann et al. 2010]

Conjecture

 This can be generalized to higher order derivatives 

 Quadratic, cubic splines [Vialard, Singh, Niethammer]

 Principle nested spheres [Jung, Dryden, Marron 2012]

 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 28



Application in Cardiac motion analysis

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Application in Cardiac motion analysis
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Take a triplet of 

reference images

Find weights li and 

SVFs vi such that:

• 𝒗𝒊 registers image

to reference i

• σ𝒊𝝀𝒊 𝒗𝒊 = 𝟎 𝒗𝟎

𝒗𝟏

𝒗𝟐

Optimize reference 

images to achieve 

best registration 

over the sequence

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]



Application in Cardiac motion analysis
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𝝀𝟎

𝝀𝟏

𝝀𝟐

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]

Barycentric coefficients curvesOptimal Reference Frames



Cardiac Motion Signature

32

Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients

Low-dimensional representation of motion using:

Barycentric coefficients curvesOptimal Reference Frames

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)

[2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)
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Cardiac motion synthesis
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Barycentric Reconstruction 

(3 images)

Original Sequence PCA Reconstruction 

(2 modes)

3 images + 2 coeff.

Reconstr. error: 18.75

Compression ratio: 1/10

30 images 1 image + 2 SVF + 2 coeff.

Reconstr. error: 26.32 (+40%) 

Compression ratio: 1/4

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]



Cardiac motion tracking

34

Method evaluated on one synthetic cardiac sequence*

[*] Prakosa, A., et al.: Generation of Synthetic but Visually Realistic Time Series of 

Cardiac Images Combining a Biophysical Model and Clinical Images. IEEE TMI (2013)

ES
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Geometric Statistics: Mathematical 

foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Manifold-Valued Image Processing

Metric and Affine Geometric Settings for Lie Groups 

Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

 Estimation of the empirical Fréchet mean & CLT

 Principal component analysis in manifolds

 Natural subspaces in manifolds: barycentric subspaces

 Rephrasing PCA with flags of subspaces



The natural object for PCA:

Flags of subspaces in manifolds

Subspace approximations with variable dimension

 Optimal unexplained variance  non nested subspaces

 Nested forward / backward procedures  not optimal

 Optimize first, decide dimension later  Nestedness required

[Principal nested relations: Damon, Marron, JMIV 2014]

Flags of affine spans in manifolds: 𝐹𝐿(𝑥0 ≺ 𝑥1 ≺ ⋯ ≺ 𝑥𝑛)

 Sequence of nested subspaces

A𝑓𝑓 𝑥0 ⊂ 𝐴𝑓𝑓 𝑥0, 𝑥1 ⊂ ⋯𝐴𝑓𝑓 𝑥0, … 𝑥𝑖 ⊂ ⋯𝐴𝑓𝑓 𝑥0, … 𝑥𝑛 = 𝑀

Barycentric subspace analysis (BSA):

 Energy on flags: Accumulated Unexplained Variance

 optimal flags of subspaces in Euclidean spaces = PCA
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[ X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018 ] 



Robustness with Lp norms

Affine spans is stable to p-norms 

 σ𝑝(x,λ) =
1

𝑝
σλ𝑖𝑑𝑖𝑠𝑡

𝑝 𝑥, 𝑥𝑖 /σλ𝑖

 Critical points of σ𝑝(x,λ) are also critical points of  σ2(x,λ′) with

𝜆𝑖
′ = 𝜆𝑖 𝑑𝑖𝑠𝑡

𝑝− 2 𝑥, 𝑥𝑖 (non-linear reparameterization of affine span)

Unexplained p-variance of residuals

 2 < 𝑝 → +∞: more weight on the tail,

at the limit: penalizes the maximal distance to subspace

 0 < 𝑝 < 2: less weight on the tail of the residual errors: 

statistically robust estimation

 Non-convex for p<1 even in Euclidean space

 But sample-limited algorithms do not need gradient information
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3 clusters on a 5D sphere

 10, 9 and 8 points (stddev 6 deg) around three orthogonal 

axes plus 30 points uniformly samples on 5D sphere

Experiments on the sphere
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p=2 p=1 p=0.1

• FBS: Forward Barycentric Subspace: mean and median not in clusters

• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k



3 clusters on a 5D hyperboloid (50% outliers)

 15 random points (stddev 0.015) around an equilateral triangle of 

length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

Experiments on the hyperbolic space
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p=2 p=1 p=0.5

• FBS: Forward Barycentric Subspace: ok for 𝒑≤0.5

• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only 

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for 𝒑 ≤ 𝟏



Take home messages

Natural subspaces in manifolds

 PGA & Godesic subspaces: 

look at data points from the (unique) mean

 Barycentric subspaces: 

« triangulate » several reference points

 Justification of multi-atlases?

Critical points (affine span) rather than 

minima (FBS/KBS)

 Barycentric coordinates need not be 

positive (convexity is a problem)

 Affine notion (more general than metric)

 Generalization to Lie groups (SVFs)?

Natural flag structure for PCA

 Hierarchically embedded approximation 

subspaces to summarize / describe data

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 40

A. Manesson-Mallet. La géométrie Pratique, 1702



Pushing the frontiers of Geometric Statistics

Beyond the mean and unimodal concentrated laws

 Flags (nested sequences) of subspace in manifolds

 Non Gaussian statistical models within subspaces?

Beyond the Riemannian / metric structure

 Riemannian manifolds, Non-Positively Curved (NPC) metric spaces

 Towards Affine connection, Quotient, Stratified spaces

Unify statistical estimation theory

 Explore influence of curvature, singularities 

(borders, corners, stratifications)

on non-asymptotic estimation theory
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Quotient spaces

Functions/Images modulo time/space parameterization

 Amplitude and phase discrimination problem
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[Allassoniere, Amit, Trouvé, 2005],

Example by Loic Devillier, IPMI 2017



The curvature of the template 

shape’s orbit and presence of 

noise creates a repulsive bias

𝜎
𝜎2: variance of 

measurement error

43

Bias ෡𝑻, 𝑻 =
𝜎2

2
𝑯 𝑻 + 𝒪(𝜎4)

where 𝐇 𝑻 : mean curvature vector of template’s orbit

Theorem [Miolane et al. (2016)]: Bias of estimator ෡𝑻 of the template 𝑻

Bias

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 

2019

Noise in top space = 

Bias in quotient spaces

Extension to Hilbert of ∞-dim: bias for  𝜎 > 0, asymptotic for 𝜎 → ∞,
[Devilliers, Allasonnière, Trouvé and XP. SIIMS 2017, Entropy, 2017] 

 Estimated atlas is topologically more complex than should be



Towards non-smooth spaces

Stratified spaces

 Correlation matrices
 Positive semi definite (PSD) matrices

with unit diagonal [Grubisic and Pietersz, 2004]

 Orthant spaces (phylogenetic trees)
 BHV tree space [Billera Holmes Voigt, Adv Appl Math, 2001] 

[Nye AOS 2011] [Feragen 2013] [Barden & Le, 2017]

Can we explain non standard statistical results?
 Sticky mean [Hotz et al 2013] [Barden & Le 2017], repulsive mean [Miolane 2017]

 Faster convergence rate with #sample in NPC spaces [Basrak, 2010]
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[Ellingson et al, Topics in Nonparametric Statistics, 2014]

Adapted from 

[Rousseeuw and 

Molenberghs, 

1994].

Corr(3)

Tree space T4

Adapted from [Dinh et 

al, AoS 2018, 



Part 1: Foundations
 1: Riemannian geometry [Sommer, Fetcher, Pennec]

 2: Statistics on manifolds [Fletcher]

 3: Manifold-valued image processing with SPD matrices [Pennec]

 4: Riemannian Geometry on Shapes and Diffeomorphisms 

[Marsland, Sommer]

 5: Beyond Riemannian: the affine connection setting for 

transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]

 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]

 8: Statistics in stratified spaces [Ferage, Nye]

 9: Bias in quotient space and its correction [Miolane, 

Devilier,Pennec]

 10: Probabilistic Approaches to Statistics on Manifolds: 

Stochastic Processes, Transition Distributions, and Fiber Bundle 

Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 

Their Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]

 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]

 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]

 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]

 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

To appear 09-2019, Elsevier
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