Xavier Pennec

Univ. Côte d'Azur and Inria, France

http://www-sop.inria.fr/asclepios/cours/Peyresq_2019/

Geometric Statistics

Mathematical foundations and applications in computational anatomy

Freely adapted from "Women teaching geometry", in Adelard of Bath translation of Euclid's elements, 1310.

5/ Advanced Stats: empirical estimation and generalized PCA

Ecole d'été de Peyresq, Jul 1-5 2019

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Manifold-Valued Image Processing

Metric and Affine Geometric Settings for Lie Groups

Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Manifold-Valued Image Processing
Metric and Affine Geometric Settings for Lie Groups
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Several definitions of the mean

Tensor moments of a random point on M

$$\square \ \mathfrak{M}_1(x) = \int_M \overrightarrow{xz} \, dP(z)$$

Tangent mean: (0,1) tensor field

$$\square \ \mathfrak{M}_2(x) = \int_M \overrightarrow{xz} \otimes \overrightarrow{xz} \, dP(z)$$

Covariance: (0,2) tensor field

$$\square \ \mathfrak{M}_k(x) = \int_M \overrightarrow{xz} \otimes \overrightarrow{xz} \otimes \cdots \otimes \overrightarrow{xz} \, dP(z) \qquad \text{k-contravariant tensor field}$$

$$\Box \ \sigma^2(x) = Tr_g(\mathfrak{M}_2(x)) = \int_M dist^2(x, z) dP(z)$$

Variance function

Mean value = optimum of the variance

- □ Frechet mean [1944] = (global) minima of p-variance (includes median)
- Karcher mean [1977] = local minima
- □ Exponential barycenters = critical points $(P(C) = 0)/\sqrt{D}$

$$\mathfrak{M}_1(\bar{x}) = \int_M \overline{\bar{x}z} \, dP(z) = 0$$
 (implicit definition)

Covariance at the mean

$$\square \ \mathfrak{M}_2(\bar{x}) = \int_M \ \overline{\bar{x}z} \otimes \overline{\bar{x}z} \ dP(z)$$

Asymptotic behavior of the mean

Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11]

- Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
- Positive curvature: [Karcher 77 & Kendall 89] concentration conditions: Support in a regular geodesic ball of radius $r < r^* = \frac{1}{2} \min(inj(M), \pi/\sqrt{\kappa})$

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]

- □ Under suitable concentration conditions, for IID n-samples:
 - $\bar{x}_n \to \bar{x}$ (consistency of empirical mean)
 - $\sqrt{n} \log_{\bar{x}}(\bar{x}_n) \rightarrow N(0, \overline{H}^{-1} \Sigma \overline{H}^{-1})$ if $\overline{H} = \int_M Hess_{\bar{x}}(d^2(y, \bar{x})) \mu(dy)$ invertible

Questions

- Intelligible expression of Hessian?
- What happens for a small sample size (non-asymptotic behavior)?
- Can we extend results to affine connection spaces?

Concentration assumptions

 \Box Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.

- □ Supp (μ) ⊂ B(x,r) with $r < \frac{1}{2} inj(x)$
- $\square \sup_{x \in B(x,r)} \kappa(x) < \pi^2/(4r)^2$

Affine connection spaces: Arnaudon & Li convexity cond.

- $\neg \rho: M \times M \rightarrow R^+$ separating function
 - Separability: $\rho(x, y) = 0 \Leftrightarrow x = y$
 - Convexity along geodesic: $\rho(\gamma_1(t), \gamma_2(t)): R \to R^+ \ convex$
- \neg p-convex geometry: c dist^p(x,y) $\leq \rho(x,y) \leq C \ dist^p(x,y)$
- Uniqueness of exponential barycenter (compact support)

Taylor expansion in manifolds

The mean is an exponential barycenter

- □ Tangent mean field: $\mathfrak{M}_1(x) = \int_M \log_x(z) \, \mu(dz)$ has a zero at \bar{x} . Problem: vector field
- Recentered man field is a mapping of vector spaces

$$N_{\mathcal{X}}(v) = \prod_{x_v}^{\mathcal{X}} \mathfrak{M}_1(\exp_{\mathcal{X}}(v)) = \int_{M} \prod_{x_v}^{\mathcal{X}} \log_{\mathcal{X}_v}(y) \, \mu(dy)$$

has a zero at $\bar{v} = \log_{x}(\bar{x})$

Neighboring log expansion (derived from Gavrilov)

$$l_{x}(v,w) = \exp_{x}(v)$$

$$v = \exp_{x}(v)$$

$$v = \exp_{x}(w)$$

$$v = \exp_{x}(w)$$

$$l_{x}(v,w) = m_{x} \log_{x}(\exp_{x}(w))$$

$$l_{x}(v,w) = \frac{1}{6}R(w,v)(v-2w) + \frac{1}{24}\nabla_{v}R(w,v)(2v-3w)$$

$$+ \frac{1}{24}\nabla_{w}R(w,v)(v-2w) + O(5)$$

Non-Asymptotic behavior of empirical means

Moments of the Fréchet mean of a n-sample

- Taylor expansions based on [Gavrilov 2007]
- □ Unexpected bias in 1/n on empirical mean (gradient of curvature-cov.)

$$\mathbf{bias}(\bar{x}_n) = E(\log_{\bar{x}}(\bar{x}_n)) = \frac{1}{6n} \left(\mathfrak{M}_2 : \nabla R : \mathfrak{M}_2 \right) + O(\epsilon^5, 1/n^2)$$

Concentration rate modulated by the curvature-covariance:

$$\operatorname{Cov}(\bar{x}_n) = \operatorname{E}(\log_{\bar{x}}(\bar{x}_n) \otimes \log_{\bar{x}}(\bar{x}_n)) = \frac{1}{n} \mathfrak{M}_2 + \frac{1}{3n} \mathfrak{M}_2 : R : \mathfrak{M}_2 + O(\epsilon^5, 1/n^2)$$

- Asymptotically infinitely fast CV for negative curvature
- No convergence (LLN fails) at the limit of KKC condition

[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418]

Constant curvature spaces

- Symmetric spaces: no bias
- \square Variance is modulated w.r.t. Euclidean: $Var(\bar{x}_n) = \alpha \frac{\sigma^2}{n}$

High concentration expansion

$$\alpha = 1 + \frac{2}{3} \left(1 - \frac{1}{d} \right) \left(1 - \frac{1}{n} \right) \kappa \sigma^2 + O(\epsilon^5)$$

Asymptotic CLT expansion

$$\alpha = \left(\frac{1}{d} + \left(1 - \frac{1}{d}\right)\bar{h}\right)^{-2} + O(n^{-2})$$

Archetypal modulation factor

□ Uniform distrib on $S(\bar{x}, \theta) \subset M$ large n, large d

$$\square \ \alpha = \frac{\tan^2(\sqrt{\kappa\theta^2})}{\kappa\theta^2}$$

X. Pennec – Ecole d'été de Peyresq, Jul 1-5 2019

Convergence rate modulation factor, hyperbolic space, space dim=3, N > 5

Conclusions

High concertation expansion very accurate for low theta

Asymptotic expansion very accurate for n> 10

Main variable controlling the modulation is variancecurvature tensor

$$R(\blacksquare, \circ) \blacksquare : \mathfrak{M}_2$$

Main variable controling the bias

$$\mathfrak{M}_2$$
: $\nabla \circ R(\circ, \blacksquare) \blacksquare$: \mathfrak{M}_2

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Manifold-Valued Image Processing
Metric and Affine Geometric Settings for Lie Groups
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Low dimensional subspace approximation?

Manifold of cerebral ventricles

Etyngier, Keriven, Segonne 2007.

Manifold of brain images

- S. Gerber et al, Medical Image analysis, 2009.
- □ Beyond the 0-dim mean → higher dimensional subspaces
- When embedding structure is already manifold (e.g. Riemannian):
 Not manifold learning (LLE, Isomap,...) but submanifold learning
- Natural subspaces for extending PCA to manifolds?

Tangent PCA (tPCA)

Maximize the squared distance to the mean (explained variance)

- Algorithm
 - Unfold data on tangent space at the mean
 - □ Diagonalize covariance at the mean $Σ(x) ∝ Σ_i \overrightarrow{\bar{x}} \overrightarrow{x_i} \overrightarrow{\bar{x}} \overrightarrow{x_i}^t$
- □ Generative model:
 - Gaussian (large variance) in the horizontal subspace
 - Gaussian (small variance) in the vertical space
- \Box Find the subspace of T_xM that best explains the variance

Problems of tPCA

Analysis is done relative to the mean

- □ What if the mean is a poor description of the data?
 - Multimodal distributions
 - Uniform distribution on subspaces
 - Large variance w.r.t curvature

Bimodal distribution on S2

Images courtesy of S. Sommer

Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low dimensional subspace (unexplained variance)

- □ Geodesic Subspace: $GS(x, w_1, ... w_k) = \{\exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k \}$
 - Parametric subspace spanned by geodesic rays from point x
 - Beware: GS have to be restricted to be well posed [XP, AoS 2018]
 - □ PGA (Fletcher et al., 2004, Sommer 2014)
 - Geodesic PCA (GPCA, Huckeman et al., 2010)
- □ Generative model:
 - Unknown (uniform?) distribution within the subspace
 - Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in $GS(x, w_1, ... w_k)$

Totally geodesic at x only

Patching the Problems of tPCA / PGA

Improve the flexibity of the geodesics

- 1D regression with higher order splines [Gu, Machado, Leite, Vialard, Singh, Niethammer, Absil,...]
 - Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development [HCA, Sommer GSI 2013]

- Iterated construction of subspaces
- Parallel transport in frame bundle
 - Intrinsic asymmetry between components

Nested "algebraic" subspaces

- Principal nested spheres [Jung, Dryden, Marron 2012]
- Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]
 - No general semi-direct product space structure in general Riemannian manifolds

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Manifold-Valued Image Processing
Metric and Affine Geometric Settings for Lie Groups
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Affine span in Euclidean spaces

Affine span of (k+1) points: weighted barycentric equation

$$\begin{aligned} \text{Aff}(\mathbf{x}_0, \mathbf{x}_1, \dots \mathbf{x}_k) &= \{\mathbf{x} = \sum_i \lambda_i \, x_i \ with \ \sum_i \lambda_i = 1\} \\ &= \{\mathbf{x} \in R^n \ s. \ t \ \sum_i \lambda_i \, (x_i - x) = 0, \lambda \in P_k^*\} \end{aligned}$$

Key ideas:

□ tPCA, PGA: Look at data points from the mean (mean has to be unique)

□ Triangulate from several reference:
 locus of weighted means

Barycentric subspaces and Affine span in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)

- □ Normalized weighted variance: $\sigma^2(\mathbf{x}, \lambda) = \sum \lambda_i dist^2(\mathbf{x}, x_i) / \sum \lambda_i$
- \square Set of absolute / local minima of the λ -variance
- Works in stratified spaces (may go accross different strata)
 - Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span

- □ Weighted exponential barycenters: $\mathfrak{M}_1(x,\lambda) = \sum_i \lambda_i \overrightarrow{xx_i} = 0$
- $\square \ \mathsf{EBS}(x_0, ... x_k) = \{ \ x \in M^*(x_0, ... x_k) \ | \mathfrak{M}_1(x, \lambda) = 0 \}$
- □ Affine span = closure of EBS in M $Aff(x_0, ... x_k) = \overline{EBS(x_0, ... x_k)}$

Questions

- □ Local structure: local manifold? dimension? stratification?
- □ Relationship between KBS ⊂ FBS, EBS and affine span?

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Analysis of Barycentric Subspaces

Assumptions:

- \square Restrict to the **punctured manifold** $M^*(x_0, ... x_k) = M / \cup C(x_i)$
 - $dist^2(x, x_i)$, $\log_x(x_i)$ are smooth but M^* may be split in pieces
- Affinely independent points: $\{\overrightarrow{x_ix_j}\}_{0 \le i \ne i \le k}$ exist and are linearly independent for all i

Local well posedness for the barycentric simplex:

- □ EBS / KBS are well defined in a neighborhood of reference points
- □ For reference points in a sufficiently small ball and positive weights: unique Frechet = Karcher = Exp Barycenter in that ball: smooth graph of a k-dim function [proof using Buser & Karcher 81]

SVD characterization of EBS: $\mathfrak{M}_1(x,\lambda) = Z(x)\lambda = 0$

$$\mathfrak{M}_1(\mathbf{x},\lambda) = Z(\mathbf{x})\lambda = 0$$

- SVD: $Z(x) = [\overrightarrow{xx_0}, ... \overrightarrow{xx_k}] = U(x)S(x)V^t(x)$
 - $EBS(x_0, ... x_k) = Zero$ level-set of l>0 singular values of Z(x)
 - Stratification on the number of vanishing singular values

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Analysis of Barycentric Subspaces

Exp. barycenters are critical points of λ -variance on M*

$$\square \nabla \sigma^2(\mathbf{x}, \lambda) = -2\mathfrak{M}_1(\mathbf{x}, \lambda) = 0$$

$$KBS \cap M^* \subset EBS$$

Caractérisation of local minima: Hessian (if non degenerate)

$$H(\mathbf{x},\lambda) = -2\sum_{i} \lambda_{i} D_{x} \log_{x}(x_{i}) = \mathbf{Id} - \frac{1}{3} \operatorname{Ric}(\mathfrak{M}_{2}(\mathbf{x},\lambda)) + \operatorname{HOT}$$

Regular and positive pts (non-degenerated critical points)

$$\Box EBS^{Reg}(x_0, ... x_k) = \{ x \in Aff(x_0, ... x_k), s.t. H(x, \lambda^*(x)) \neq 0 \}$$

$$\Box EBS^{+}(x_{0},...x_{k}) = \{ x \in Aff(x_{0},...x_{k}), s.t. H(x,\lambda^{*}(x)) Pos. def. \}$$

Theorem: EBS partitioned into cells by the index of the Hessian of λ -variance: KBS = EBS⁺ on M^{*}

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Example on the sphere

Manifold

- \square Unit sphere $\mathcal{M} = S_n$ embedded in \mathbb{R}^{n+1}
- ||x|| = 1

$$\exp_{x}(v) = \cos(||v||) x + \frac{\sin(||v||)}{||v||} v$$

$$\log_x (y) = f(\theta)(y - \cos(\theta))$$
 with $\theta = \arccos(x^t y)$

$$\theta = \arccos(x^t y)$$

Distance
$$dist(x, y) = ||\log_x(y)|| = \theta$$

(k+1)-pointed & punctured Sphere

 \square Punctured sphere: exclude antipodal points: $S_n^* = S_n / -X$

 T_xM

KBS / FBS with 3 points on the sphere

EBS: great subspheres spanned by reference points (mod cut loci)

$$\mathsf{EBS}(x_0, \dots x_k) = Span(X) \cap S_n \setminus Cut(X) \qquad Aff(x_0, \dots x_k) = Span(X) \cap S_n$$

KBS/FBS: look at index of the Hessian of λ -variance

$$H(x,\lambda) = \sum \lambda_i \theta_i \cot(\theta_i) (Id - xx^t) + \sum (1 - \lambda_i \theta_i \cot(\theta_i)) \overrightarrow{xx_i} \overrightarrow{xx_i}^t$$

- □ Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]
- □ 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point
- □ KBS/EBS less interesting than EBS/affine span

Weighed Hessian index: **brown = -2 (min) = KBS** / green = -1 (saddle) / blue = 0 (max)

Example on the hyperbolic space

Manifold

- \square Unit pseudo-sphere $\mathcal{M} = H_n$ embedded in Minkowski space $\mathbb{R}^{1,n}$
- $||x||_*^2 = -x_0^2 + x_1^2 + \cdots + x_n^2 = -1$

Exp and log map

$$\exp_{x}(v) = \cosh(\|v\|_{*}) x + \frac{\sinh(\|v\|_{*})}{\|v\|_{*}} v$$

$$\log_{x}(y) = f_{*}(\theta)(y - \cosh(\theta))$$
 with $\theta = \operatorname{arcosh}(-\langle x|y\rangle_{*})$

$$\theta = \operatorname{arcosh}(-\langle x|y\rangle_*)$$

Distance
$$dist(x, y) = ||\log_x(y)||_* = \theta$$

Punctured hyperbolic space: no cut locus to exclude

Example on the hyperbolic space

EBS = Affine span: great sub-hyperboloids spanned by reference points

$$\mathsf{EBS}(x_0, \dots x_k) = Aff(x_0, \dots x_k) = Span(X) \cap H_n$$

KBS: locus of maximal index of the Hessian of λ -variance

$$H(\mathbf{x},\lambda) = \sum \lambda_i \theta_i \coth(J + J \mathbf{x} \mathbf{x}^t J^t) + \sum (1 - \lambda_i \coth(\theta_i)) J \overrightarrow{xx_i} \overrightarrow{xx_i}^t J^t$$

- □ Complex algebric geometry problem
- □ 3 points on Hⁿ: better than for spheres, but still disconnected components

Weighted Hessian Index: **brown = -2 (min) = KBS** / blue = 1 (saddle)

Geodesic subspaces are limit cases of affine span

Theorem

- $\Box GS(x, w_1, ... w_k) = \{\exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k \} \text{ is the limit of } Aff(x_0, \exp_{x_0}(\epsilon w_1), ... \exp_{x_0}(\epsilon w_k)) \text{ when } \epsilon \to 0.$
- □ Reference points converge to a 1st order (k,n)-jet
 - PGA [Fletcher et al. 2004, Sommer et al. 2014]
 - GPGA [Huckemann et al. 2010]

Conjecture

- □ This can be generalized to higher order derivatives
 - Quadratic, cubic splines [Vialard, Singh, Niethammer]
 - Principle nested spheres [Jung, Dryden, Marron 2012]
 - Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]

Application in Cardiac motion analysis

Application in Cardiac motion analysis

Find weights λ_i and SVFs v_i such that:

• v_i registers image to reference i

• $\sum_{i} \lambda_{i} v_{i} = 0$

Optimize reference images to achieve best registration over the sequence

Application in Cardiac motion analysis

Barycentric coefficients curves Optimal Reference Frames $\lambda = (0, 1, 0)$ $\lambda_3 < 0$ $\lambda = (1, 0, 0)$ $\lambda = (0, 0, 1)$

Cardiac Motion Signature

Low-dimensional representation of motion using:

Optimal Reference Frames

Barycentric coefficients curves

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients

Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

- [1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)
- [2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)

Cardiac motion synthesis

Original Sequence

Barycentric Reconstruction (3 images)

PCA Reconstruction (2 modes)

30 images

3 images + 2 coeff.

1 image + 2 SVF + 2 coeff.

Reconstr. error: 18.75 Compression ratio: 1/10

Reconstr. error: 26.32 (+40%)
Compression ratio: 1/4

Cardiac motion tracking

Method evaluated on one synthetic cardiac sequence*

Frame of the cardiac sequence

Frame of the cardiac sequence

[*] Prakosa, A., et al.: Generation of Synthetic but Visually Realistic Time Series of

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Manifold-Valued Image Processing
Metric and Affine Geometric Settings for Lie Groups
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

The natural object for PCA: Flags of subspaces in manifolds

Subspace approximations with variable dimension

- □ Optimal unexplained variance → non nested subspaces
- □ Nested forward / backward procedures → not optimal
- □ Optimize first, decide dimension later → Nestedness required
 [Principal nested relations: Damon, Marron, JMIV 2014]

Flags of affine spans in manifolds: $FL(x_0 < x_1 < \cdots < x_n)$

Sequence of nested subspaces

$$Aff(x_0) \subset Aff(x_0, x_1) \subset \cdots Aff(x_0, \dots x_i) \subset \cdots Aff(x_0, \dots x_n) = M$$

Barycentric subspace analysis (BSA):

- □ Energy on flags: Accumulated Unexplained Variance
 - → optimal flags of subspaces in Euclidean spaces = PCA

[X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018]

Robustness with L_p norms

Affine spans is stable to p-norms

$$\Box \sigma^p(\mathbf{x}, \lambda) = \frac{1}{p} \sum \lambda_i dist^p(\mathbf{x}, x_i) / \sum \lambda_i$$

 \Box Critical points of $\sigma^p(x,\lambda)$ are also critical points of $\sigma^2(x,\lambda')$ with $\lambda'_i = \lambda_i \ dist^{p-2}(x,x_i)$ (non-linear reparameterization of affine span)

Unexplained p-variance of residuals

- □ 2 : more weight on the tail, at the limit: penalizes the maximal distance to subspace
- 0 : less weight on the tail of the residual errors: statistically robust estimation
 - Non-convex for p<1 even in Euclidean space
 - But sample-limited algorithms do not need gradient information

Experiments on the sphere

3 clusters on a 5D sphere

 10, 9 and 8 points (stddev 6 deg) around three orthogonal axes plus 30 points uniformly samples on 5D sphere

- FBS: Forward Barycentric Subspace: mean and median not in clusters
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k

Experiments on the hyperbolic space

3 clusters on a 5D hyperboloid (50% outliers)

 □ 15 random points (stddev 0.015) around an equilateral triangle of length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

- FBS: Forward Barycentric Subspace: ok for $p \le 0.5$
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for $p \le 1$

Take home messages

Natural subspaces in manifolds

- PGA & Godesic subspaces:
 look at data points from the (unique) mean
- Barycentric subspaces:« triangulate » several reference points
 - Justification of multi-atlases?

Critical points (affine span) rather than minima (FBS/KBS)

- Barycentric coordinates need not be positive (convexity is a problem)
- Affine notion (more general than metric)
 - Generalization to Lie groups (SVFs)?

Natural flag structure for PCA

 Hierarchically embedded approximation subspaces to summarize / describe data

Pushing the frontiers of Geometric Statistics

Beyond the mean and unimodal concentrated laws

- Flags (nested sequences) of subspace in manifolds
- Non Gaussian statistical models within subspaces?

Beyond the Riemannian / metric structure

- □ Riemannian manifolds, Non-Positively Curved (NPC) metric spaces
- □ Towards Affine connection, Quotient, Stratified spaces

Unify statistical estimation theory

 Explore influence of curvature, singularities (borders, corners, stratifications) on non-asymptotic estimation theory

Geometric /

erc

Statistics

Quotient spaces

Functions/Images modulo time/space parameterization

Amplitude and phase discrimination problem

[Allassoniere, Amit, Trouvé, 2005], Example by Loic Devillier, IPMI 2017

Noise in top space = Bias in quotient spaces

The curvature of the **template** shape's orbit and presence of noise creates a repulsive bias

Theorem [Miolane et al. (2016)]: Bias of estimator \hat{r} of the template r

$$\operatorname{Bias}(\widehat{\boldsymbol{T}}, \boldsymbol{T}) = \frac{\sigma^2}{2} \boldsymbol{H}(\boldsymbol{T}) + \mathcal{O}(\sigma^4)$$

where H(T): mean curvature vector of template's orbit

Extension to Hilbert of ∞ -dim: bias for $\sigma > 0$, asymptotic for $\sigma \to \infty$, [Devilliers, Allasonnière, Trouvé and XP. SIIMS 2017, Entropy, 2017]

→ Estimated atlas is topologically more complex than should be

Towards non-smooth spaces

Stratified spaces

- Correlation matrices
 - Positive semi definite (PSD) matrices with unit diagonal [Grubisic and Pietersz, 2004]

Adapted from [Rousseeuw and Molenberghs, 1994].

- □ Orthant spaces (phylogenetic trees)
 - BHV tree space [Billera Holmes Voigt, Adv Appl Math, 2001] [Nye AOS 2011] [Feragen 2013] [Barden & Le, 2017]

Can we explain non standard statistical results?

- □ Sticky mean [Hotz et al 2013] [Barden & Le 2017], repulsive mean [Miolane 2017]
- □ Faster convergence rate with #sample in NPC spaces [Basrak, 2010]

[Ellingson et al, Topics in Nonparametric Statistics, 2014]

RIEMANNIAN GEOMETRIC STATISTICS IN MEDICAL IMAGE **ANALYSIS**

To appear 09-2019, Elsevier

Edited by Xavier Pennec, Stefan Sommer, Tom Fletcher

Part 1: Foundations

- 1: Riemannian geometry [Sommer, Fetcher, Pennec]
- 2: Statistics on manifolds [Fletcher]
- 3: Manifold-valued image processing with SPD matrices [Pennec]
- 4: Riemannian Geometry on Shapes and Diffeomorphisms [Marsland, Sommer]
- 5: Beyond Riemannian: the affine connection setting for transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces

- 6: Object Shape Representation via Skeletal Models (s-reps) and Statistical Analysis [Pizer, Maron]
- 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with Applications [Chakraborty, Vemuri]
- 8: Statistics in stratified spaces [Ferage, Nye]
- 9: Bias in quotient space and its correction [Miolane, Devilier, Pennec]
- 10: Probabilistic Approaches to Statistics on Manifolds: Stochastic Processes, Transition Distributions, and Fiber Bundle Geometry [Sommer]
- 11: Elastic Shape Analysis, Square-Root Representations and Their Inverses [Zhang, Klassen, Srivastava]

Part 3: Deformations, Diffeomorphisms and their Applications

- 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy: currents, varifolds, fshapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
- 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
- 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
- 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
- 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

References on Barycentric Subpsace Analysis

- Barycentric Subspace Analysis on Manifolds
 - X. P. Annals of Statistics. 46(6A):2711-2746, 2018. [arXiv:1607.02833]
 - Barycentric Subspaces and Affine Spans in Manifolds Geometric Science of Information GSI'2015, Oct 2015, Palaiseau, France. LNCS 9389, pp.12-21, 2015.
 Warning: change of denomination since this paper: EBS →affine span
 - Barycentric Subspaces Analysis on Spheres Mathematical Foundations of Computational Anatomy (MFCA'15), Oct 2015, Munich, Germany. pp.71-82, 2015. https://hal.inria.fr/hal-01203815
- Sample-limited L p Barycentric Subspace Analysis on Constant
 Curvature Spaces. X.P. Geometric Sciences of Information (GSI 2017), Nov 2017, Paris, France. LNCS 10589, pp.20-28, 2017.
- Low-Dimensional Representation of Cardiac Motion Using Barycentric Subspaces: a New Group-Wise Paradigm for Estimation, Analysis, and Reconstruction. M.M Rohé, M. Sermesant and X.P. Medical Image Analysis vol 45, Elsevier, April 2018, 45, pp.1-12.
 - Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking. M.M Rohé, M. Sermesant and X.P. Proc of MICCAI 2016, Athens, LNCS 9902, p.300-307, Oct 2016.