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The goal of this talk is to...

* Present the main ideas behind the dualistic structures of
information geometry

e Avoid common misconceptions and pitfalls

* Decouple and explain the interplay of geometric structures
with distances (dissimilarities/divergences/diversities)

* Minimize the use of equations to introduce the key concepts
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A (too) brief history of geometry

. F
e Science for Earth measurements /‘b |

* Pythagoras’s theorem (c570-495 BC)  a'+b'=c¢

e Euclid’s axiomatization and deduction (c300 BC)

Euclidean geometry

* Figures, congruences, construction with compass/rulers SR
| \ e o irciae b
* Lobachevskian hyperbolic geometry is consistent (c1800) S

e Riemannian geometry (c1850): infinitely many consistent
differential geometries

e Klein’s Erlangen program: classification (action of a group)
* Etc.

© Frank Nielsen



Geometry is an incredibly creative science!

Geometry is the most complete

science. GEOMETRY
AND THE IMAGINATION

David. ffilbert

D. HILBERT AND S, COEN-VOSSEN

AMS CHELSEA PURLISHING
Amaruun Matmeraio sl ety + Prowbeina, Kinde Wand

A Jacob's Ladder
to Modern
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Analytic versus synthetic geometry

e Descartes (c1600) introduced the Cartesian coordinates
and calculus in geometry
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2 = L2 2
B a b T C At the heart
of the
Euclidean distance
C {a W
C _ 2 2
A b d(q,p) = \/(Q1 —p1)” + (g2 —p2)
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Pythagoras’ theorem generalizes to the
law of cosines for arbitrarytriangles

Law of Cosines

C a* =b*+c¢* —2bcCosA
A b'=a’+¢* —2acCosB
a ¢’ =a’ +b° —2abCosC

C

We shall see that for Bregman manifolds in information geometry ...
... we have dual Pythagorean theorems with generalized law of cosines
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A modern view of Pythagoras’ theorem:
A triangle PQR is rectangle if and only if
straight lines perpendicular at Q induce distance identity

Squared Euclidean distance DE(X, Y) — d%—] (X, Y) — HX — YHz

(P-Q) (Q—R)=0

1P =QI°+[Q—R|*=|P-R|?



Riemannian differential geometry

e Gauss pioneered the study of 3D surfaces and curvature

Gauss |
* |ntroduce a positive-definite matrix G Riemann
 Define a geometric object called a metric tensor
 An infinitesimal Pythagoras theorem

dx? =
C
&
G
X

Length of a curve by integration ds® =[dz dy] [(1] (1]] [jﬂ]
Y

Infinitesimal length element: ds® = gi1du® + 2g12du dv + gy dv?
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Riemannian geometry: Infinitesimal Pythagorean theorem

da?

X d.’l?l

Pythagorean theorem Infinitesimal Riemannian Pythagorean theorem

Infinitesimal length element ds
Riemannian distance is (locally) length of shortest path

© Frank Nielsen



Riemannian geometry: A revolution that changed
our perception of the universe and data science

Sun Neutron star Black hole

e
General relativity of spacetime W §;f;

. - MATTER
Spa Cetl me+Matter Hermann Weyl




Riemannian manifolds: Extrinsic vs intrinsic views

Visualized extrinsically as smooth surfaces of the ambient
Euclidean space: Whitney embedding theorem

Extrinsic geometry Hassler Whitney
(1907-1989)

Isometric
embedding:

L el
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Manifold learning/reconstruction
Intrinsic geometry from data points (Swiss roll)

Intrinsic geometry versus isometric Whithey embedding (in dim 2D)
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Conformal versus non-conformal metric tensor field:
Hyperbolic geometry

Conformal
J © © © © © ©
.'\-Qf N Aaae
_J N N N
Upper Poincare plane Poincare disk Klein disk
(conformal) (conformal) (non-conformal)
~

Metric tensor scaled by positive function: gp — ef(p) g

Conformal: metric tensor a scalar-value function of the Euclidean metric tensor
In conformal geometry, we can measure angles without distortions

© Frank Nielsen



Smooth manifold

Global geometric objects
VS
Local descriptions
in local chart coordinates

Locally Euclidean “ “.\ : Atlas

(homeomorph) )
Coordinate charts

3D mesh 2D texture image textured bunny

UV mapping in computer graphics
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Visualizing (shortest) paths in a chart:
(i.e., in local coordinates)
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You can only visualize a geometry by rasterizing in a (local) coordinate chart
or drawing (conceptual) figures, or much better imagining it in your head!

& AT 4
7
%

blind by accident at 14 yo
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Manifold: Tangent spaces

* Tangentspaceatp: T M= R"

 Tangent vector atp: V(p)

* V(p)=Z; Vi(p)9i(p)

Local basis vectors

Intrinsic geometry view:
interpret a vector as a
directional derivative and
not as an arrow

© Frank Nielsen



An essential concept: Affine Connection V

e Define how to “parallel transport” a vector from one tangent plane
to another tangent plane by infinitesimally parallel shifting it along a
curve (thus generally depend on the curve)

e Use to define V-geodesics as autoparallel curve

V,=V(p) M

Also provide a way to differentiate V
a vector field with respect to another Y
vector field called the
covariant derivative

https://arxiv.org/abs/1808.08271
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Curvature of
a connection V

GEa

Cylinder is flat:
Parallel transport is

S

path-independent Sphere has constant curved curvature:

Parallel transport is path-dependent




A word about the torsion of a connection V

Torsion measures the speed of rotation of the binormal vector

11 . 144
" parallel transport “twists vectors.

B Torsion in geometry and in field theory 3

LY
4

Figure 1: On the geometrical interpretation of torsion, see [39]: Two vector
fields u and v are given. At a point P, we transport parallelly u and v along v
or u, respectively. They become -u.lll( and "'l.lz- If a torsion is present, they don’t
close, that is, a closure failure T'(u, v) emerges. This is a schematic view. Note
t.dn=0 7.dn=0.05 7.dn=0.1 ©.0h=0.15 that the points I? and @ are infinitesimally near to P. A proof can be found in

Schouten [88], p.127.

Failing to close a
“parallelogram

Figure 1. Helical channels with square cross section, constant curvature
k.dn = 1 and torsion t.dn spanning from 0 to 0.15.

Connections differing by torsions have same geodesics
Pregeodesics= geodesic shapes without parameterization
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Metric-compatible connection V
Preserves the “inner product” of vectors by parallel transport

Preserves the metric

- Hv U9
Hq (3]

q

You can measure
lengths or angles

consistently at any
tangent plane

(%)

U1

Vv \Y
(U V) o0y = < H u, H ’U> Vi
c(0 )
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The fundamental theorem of Riemannian geometry

There exists a unique torsion-free connection that is metric compatible which
is called the Levi-Civita connection; The LC metric connection is derived from g

compatible

Elie Joseph Cartan

Tullio Levi-Civita (1869-1951)

(1873-1941)
Riemannian geometry: take the Levi-civita metric connection
Differential geometry: take any affine connection (Elie Cartan)
nformation geometry: take a pair of “dual” connections

© Frank Nielsen



Rationale for information spaces

* |n traditional geometry, a space is an empty vacuum
* |n physics, a spacetime contains matter

(torsion in General Relativity of Einstein-Cartan)

* An information space is a space packed with entities/models:
e Space of matrices, symmetric matrices, positive-definite matrices
* Space of parametric densities, non-parametric densities, positive

densities A -
example: [ ; g € S? R . S > il
0 e —
11 [iite e e e e < (“_) (l)) ((‘)

0

Cone of positive-definite 2x2 matrices visualizedin v -1 x
©Frank3Ni|e;2en
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Rationale for Information Geometry (IG)

e What is the/a geometry of the space of Gaussian densities?
Distance, interpolation, closest Gaussian of a subfamily (projection)?
mm) Note that appropriate geometry may depend on applications

* |G discovered a dualistic geometry that can also be used in

other non-statistical contexts too! TN

/ \

1N
e Applications of the IG framework to information sciences (statistics,
information theory, signal processing, machine learning, etc.).

Mainly, because Information Sciences consider asymmetric distances

© Frank Nielsen



What is the geometry of the Gaussian manifold?

© Frank Nielsen

/distance yields this interpretation:

A B
1 i+ T E—— #g ____________ 1D
A B

O1 |------ S R K

More C D i :
similar? 151 [L2

H1 H2

e Desiderata: Dissimilarity shall be invariant to reparameterization:
Same distance for parameterizations {N(1., o)} or {N(1, 02)} m . :

No geometry of the sample space BT

Furthermore, invariant by “sufficient statistics” m z

Equidistant (Rao distance)

e Actually... Optimal Transport geometry of Gaussian manifold yields Euclidean
geometry © But OT does not distinguish normal family from any elliptical family &



dpaces £f Statlstical Parameters. . .
T S QUADRATIC
telling 4 Stanford Universi Lye .
Harold Hotelling
Oswald Veblen, ..
Econometrician
B cgiSor Of Hote”'ng Use Fisher information
dinensions renresenting ¢ e he
avenny distribution, a statisticslle for the Riemannian
iefined by means of the wvar innees and metriC tenSOr

Information and the Accuracy Attainable
in the Estimation of Statistical Parameters

1. ™4 Cramer-Rao lower bound CRLB
2. ™ Rao-Blackwellization
3. ™ Fisher-Rao distance

C. Radhakrishna Rao

‘fn-

Cramér-Rao Lower Bound and Information Geometry, 2013 ¢ ' ®* -9 C. R. Rao

https://arxiv.org/abs/1301.3578

© Frank Nielsen
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Population space/parameter space

Example in statistical hypothesis testing: estimate from observations and
then classify with respect to divergence to decide which hypothesis.

Geometry needed to build better
— Information Sciences:
Mg ) - Deal with model and data
* Mg, '| (via empirical distributions)
® me, - Deal with model and model

l.
- =

STATISTICAL
DECISIOM
* FUNCTIONS
et dB | | P

divergence

Wald’s view:

Sl A Abrakam Wald
0% T e ep——r————

© Frank Nielsen



Fisher information metric/matrix (FIM)

W Hiaory of Muathsraitacs and

0 9
8(8)=E¢l55log(py) Fglog(py)]

G 9 -
g;()=J 2% 108(pg(X))§ log(pg(x))pg(x)dx  SirRonald Fisher
FIM is positive semidefinite, positive-definite for regular models

Curvature = -E[lﬂlﬁﬁ"u]
in L(6) - (6 Bl (X ]6) 9 (X16)]0
N la L(6) 9i0) = B4 7, 1og P 10) 55 log P

I1X. On the Mathematical Foundations of Theoretical Statistics.

By R. A. Fisuer, M.A., Fellow of Gonville and Caius College, Cambridge, Chief

Less Sh
More Sharpness €55 SHAIpHEess Statistician, Rothamsted Experimental Station, Harpenden,

Less Vanance More Vanance
High Fisher Information Low Fisher Information Communicated by Dr. E. J. RusseLy, F.R.S.

© Frank Nielsen



Geometry of normal distributions: hyperbolic

Pseudo-sphere
(negative curvature -1/2)

Pattern recognition in nuclear fusion data by means of geometric methods in probabilistic spaces, 2017

© Frank Nielsen



Hyperbolic geometry for location-scale families
P = {_r_l—lp (xs_lfl)  (h,s1) € H}

H =R x R, : open half-space of 2D (/,s) location-scale parameters

Several models of hyperbolic geometry (Klein, Poincare, Beltrami, pseudosphere)

Fig. &

https://www.youtube.com/watch?v=i9IUzNxeH40

Visualizing hyperbolic Voronoi diagrams. Symposium on Computational Geometry 2014

© Frank Nielsen



https://www.youtube.com/watch?v=i9IUzNxeH4o
https://dblp.uni-trier.de/db/conf/compgeom/compgeom2014.html#NielsenN14

Cramer-Rao lower bound (CRLB + Frechet)

The variance of any unbiased estimator is lower bounded
by the inverse of the Fisher information

René Maurice Fréchet
(1878-1973)

\ Var(¢) f 1
. Noti ~
\\ AIS)./mptotl.cally ﬁgtl.on L ' V&I‘(Q) > ——
« Efficient Estimator erriciency: I(Q)

The covariance of any unbiased estimator is lower bounded
by the inverse of the Fisher information matrix

Cé —I_l(e) >0

(here, positive-definite matrices, Lowner ordering)

Harald Cramer



Examples of statistical models (regular/identifiable)

* N (1o0)
O=R
E=RxR" o
Negative p(x,u,0) ~ (o)
curvature \-/ Upper half-plane
) . L
. ! O
©0,0.1) 0 ={xy, ..., xn} £
° Sn E= {EeRﬂlEi>OZEi=1} 1(0,1)
Positive {Eenn+1|§i>oz§i=1} POOE! 1) = (8 Simplex
Curvature: \/
Multinomial > &1
ultinoulli (10.0) 0.1,0) 0

Discrete dist.

Categorial dist. Exponential family : p(x,£1,....E")=eCCO+EF,) = v(® (€L, 5+

© Frank Nielsen



Non-regular statistical models

* Not identifiable models happen often in practice...

Algebraic Geometry and

Statistical Learning
Theory

e Usually, hierarchical models: sumowaasae

R

e Gaussian mixture models (GMMs) m/ e
e Multi-layer perceptrons (MLP) 9}5%
<

Learning Machines Manifold

e Semi-definite matrix: Singular Semi-Riemannian manifolds

 Cramer-Rao lower bounds does not hold, need different theory for
model selection (BIC, MDL), natural gradient and plateau in learning,
etc.

Lightlike Neuromanifolds, Occam's Razor and Deep Learning, arXiv:1905.11027

© Frank Nielsen



Statistical curvature (1975)

Use of differential geometry to study
the information loss in estimation

The Annals of Statistics
1975, Vol. 3, No. 6, 1189-1242

B

Bradley Efron

DEFINING THE CURVATURE OF A STATISTICAL PROBLEM
(WITH APPLICATIONS TO SECOND ORDER EFFICIENCY)

By BRADLEY EFRrRON
The Annals of Statistics

Stanford University 1978, Vol. 6, No. 2, 362-376

Statisticians know that one-parameter exponential families have very

nice properties for estimation, testing, and other inference problems. Fun- THE GEOMETRY OF EXPONENTIAL FAMILIES
damentally this is because they can be considered to be ‘‘straight lines”
through the space of all possible probability distributions on the sample
space. We consider arbitrary one-parameter families 5 and try to quantify Stanford University
how nearly *‘exponential”” they are. A quantity called ““the statistical cur- =
vature of 5 is introduced. Statistical curvature is identically zero for ex-

ponential families, positive for nonexponential families. Our purpose is to

show that families with small curvature enjoy the good properties of ex-

ponential families. Large curvature indicates a breakdown of these prop-

erties. Statistical curvature turns out to be closely related to Fisher and

Rao’s theory of second order efficiency.

By BRADLEY EFRON

© Frank Nielsen



Dualistic structure of information geometry

VYY)
pLDL

8 kinds of geodesic triangles

e Two conjugate torsion-free affine connections coupled with the metric
e Dual parallel transport is metric-compatible
There is not necessarily a distance, 2k types of k-gons (eg, 8 triangles)

© Frank Nielsen



Dual parallel transport is metric-compatible

qu U1 *

© Frank Nielsen




Dually flat space: Pythagoras’ theorem

7 (P,Q) Lr 7(@,R)

(P, Q) Lr v*(Q. R)
P T p ®
v o Bregman manifold
'.' induced by a
! convex function
. v
\Y .- :‘I/ -
é -------------- R / R
Q Q
D(P:R)=D(P:Q)+ D(Q: R) D*(P:R)=D*(P:Q)+D*Q: R)

Two (affine) coordinate systems coupled by Legendre-Fenchel transformation
Two dually flat connections with respect to the metric tensor

Canonical distance = Bregman divergence induced by convex generator F
Bregman manifold (a type of Hessian manifold)

Generalize Euclidean space, very practical for computing!




From any dualistic structure...
.. 1o a 1-family of duality structures: a-geometries

-—_" T e

Notion of
Amari-Chentsov
cubic tensor

How to choose a depending on applications?



From a dualistic structure to a 1-family of
dually structures

e Let (M, g, V, V*) be a dualistic structure: A dual pair of connections coupled
to the metric so that dual parallel transport is metric-compatible

* We can build a 1-family of dualistic structures (M, g, 7~ %, 7%)

r— AL pQX
so that 2+ =0 = pLC

* No distance associated with the dualistic structure.

In particular, when a =0, (M, g, |70, |70) = (M, g) the Riemannian geometry.
Thus information geometry generalizes (Fisher-Rao) Riemannian geometry

© Frank Nielsen



Amari’s expected a-geometry -

e Given a parametric family of distributions, consider the Fisher e S
information matrix and a family of connections: a connections $ o

* Exponential e-mixture connection and m-mixture connection

85 (7%3,0,(P .0(P 1) ) =P )=E [ (G 55108 (P + 75 7 108(Py) 55108(p)) 55 l0g(py)]

* No associated distance in the alpha-expected geometry

Levi-Civita connection : VY = VLC

https://arxiv.org/abs/1808.08271
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How to get initial dual expected connections?

e Historically, built the e-connection (exponential, a=1) and
m-connection (mixture, a=-1) for statistical models

Log-likelihood l(pe)(x) = Inpe(x).
e-connection FE}L(E) — (V5 0;.00) = Eel(9:0;0) (9r0)].

m-connection g(Vgt_l)dj @A) = F(_l) = Eﬁ[(d-@jf -+ dgf djf) (dﬁbf)}

iik

Dual connections with respect to the Fisher information (Riemannian) metric

© Frank Nielsen



Example of dual e-/m-connections for the
univariate Gaussian 2D manifold

ue _ (1—0{)@1'024—05“2'1)1
(P1p2)s =9 ¢ _ L retan
@ (l-ajvetav ) HESSIAN STRUCTURES
p2 = (H2,v2 = 03)
V”m,
m o __ ﬂg]’ — (1 T O{)Ml + QL2

Misconception: The m-geodesic between two Gaussians of a Gaussian
manifold is a Gaussian (and not a mixture of Gaussian!)

nnnnnnnnnnnnn



Dualistic structure of the Gaussian manifold
V: e-connection

* " V*:m-connection

pe' = (1 — a)pr + aps
v = (1 —a)vy +avy + a(l — a)(py — u2)?

e _— (1—a)pyva+ap,v
(Plpz)f’x = fhe (1—a)ve+av

,Ue — V102
@ (1—a)ve+avy

(P1p2)a = {

po = (1 —a)u + aps
S =3, + (1 —a)mp —apopy — g,

(P1P2f)g” = {

pé =25 ((1— a)B7 p1 + X5 o)

(p1p2)gf — { Eg — ((]_ — 05)21_1 + 0522_1)_1

© Frank Nielsen



Dual connections from anydivergence! v, ., ,V, ,V*)

Dual connections from any smooth parametric distance,
called a (parameter) divergence D: D is not necessarily symmetric

: Jd 0
* a tensor metric g: gij(p§)=a&. a&sz(pﬁfpﬁz) |§1=§2=§

e g torsion-less affine connection V:

d o0 0
Fi(P £)= 98 98 9% D(pil'p22)|21=22=2

Dual divergences

D* =D
and dual connections (pgl’p‘sz) (pﬁz’p‘il)

Symmetric divergences yields the same connection:
The Levi-Civita connection

© Frank Nielsen



Many distances/divergences
in information sciences

Divergence= discrepancy, dissimilarity,
deviance between two probability
distributions

Also nowadays, smooth parametric
dissimilarities (contrast function)

Distance is often thought as
a metric distance:

(@) d(p,q)>0ifp+#gq;dp, p)=0;
() d(p,q) =d(g,p);
() d(p,q) <d(p,r)+d(r,q),

© Frank Nielsen

Taxonomy

of principal distances

Enclidean distance

Cadratic distance
dg =/ (P—q)"Qip—q

IemANNIAN metric tensor

{B. Ricmann 18261866,

Itakura-Saito divergence
Bpig) =3 (& —log & — |
{ Burg entropy)

7|
B. |.'-._F"._a.|.|.-'.-_a-.-=. ¥ | 1
Brzmﬂ:'ﬂﬂzﬁ:vrwun' 1951
. - g — 3 .=
it e 5 e =™+ - -+ i " . i
Dhual div. {Legendre) Oy [V F{p)| |V Fiq)) = De{g|p]

Generalized Pythagoras' theorem

| Generalized projection)

[Nock & Nielsen 3007)

\ Non-additive entropy
Taallix entropy (1998)
| Non-additive entropy |
T, T i
Lipt =22, w0 —1
Talplia) = pz(t - [ =)

D{P||Q

(EMD 19598)

~ Hamy
Euclidean geometry hﬂ (It

Manhattan distance

Non-Euclidean geometries

Fisher information (local entropy)
1§} = Ef| 3 lnp{ X|8))
(R. A Fisher 1590-1962)

Permi=able Bregman divergenc

h mover distance

muing distarnee i ool

i el Statistical geometry
Physics emtropy JRK ™

—k [plogp

da(p,q) = 4 '__.Il.n, — g ? [Pythagoms' dai{p. ) = E. - _ oy i g
thearem circa 5000 BC) [ty block-taxd cab) o tumnn'uwm\‘“ .......... *

: i M inkowsk distance | Li-norm) Information entropy LT

| dulp.g) = § _5 o e — it Mahalancbis metric {1536) Hip) = ‘_IrF'ih'-:P B
(H. Minkowski 1864-1909) de=Tp-arE'p-al [c. pa. 1948} T
Space-time geometry =
I-projection Life
Regakive entrop

Kullhack-Leibiler divergence
KLi{p{ig) = [ plog & = Exllog £
[refative entropy. 1951 )

Jeffrey divergence:
Jensen- Shannoo |

Bhattacharm distance | 1967)

fip.q) =—lny TivE-var

Chernolf divergence (1952
Calpilg) =—In [p*q"

Rényi divergence: { 1961 )
Ho= g

Raipiq) = == la [ F¢' "
dcditive entropy)

r‘l Csiszir’ f-divergence Ny
el - Byipilg) = [pfi CE—
KT AL Silvey 1966 Csidr 1967)
Depurtmes! of Muthesmtics fences | Dual div. .ot -

B {plig} = Bilallp Information geometries

gence | 1985

Quantum geometry

(umntum entropry
Hip) = —kTriplog p
[Von Newmann 1927)

Amari o-diven

G [t

4

Log Det’ divergrnce
=< P,Q "' > —logdet PQ " — dimP

Voo Neumdnn dovergence
DiP|Q) = TriP(lg P — kg Q) - P+ Q

Sony CSL




Divergences: Statistical distances

* In information theory, relative entropy called Kullback-Leibler divergence

Dk L(P||Q) ZF ) log Q)

Pl(x
Dy (P||Q) = / P(z) log QEJ;@.

e Can be extended to f-divergences

D/(PI Q)= ] (%) o) du(z).

* Properties: Distances can be scale-invariant (eg, Itakura-Saito),
homogeneous, projective (work on unnormalized probability densities),

etc.

© Frank Nielsen



Organize dissimilarities
in (exhaustive) classes

© Frank Nielsen

Dissimilarity measure

3

Divergence

v-Divergence DY

Projective divergence

scaled conformal divergence C'p 4(- : -;+)

double side(./

one-sided

v-divergence

D(Ap: Np') = Dip:p)

Hivarinen SM/RM
D(Ap:p') = D(p:p)

conformal divergence Cpg(- : -

scaled Bregman divergence Byp(-: -;-)

T _ _,.,-'-_,-o-"f
—— o
———, ——
— o
— e
—— e
S =
T _'_,_,_,-'-"'"-FF

total Bregman divergence tB(- : -)

D¥(P: Q)= D(v(P):v(}))

I7(P:Q)= [plx)f (i%) dv(x)
Bp(P:Q)=F(P)— F(Q)— (P - Q.VF(Q))

Bregman divergence Bp(-: -)

TE;.'(:P' : I:}'j — Be(P:Q)

Csiszar f-divergence I¢(-: -)

VIFIVEQ)?

Cpg(P:Q)=g(Q)D(P

- Q)

By (P:Q:W)=WBg (ﬁ : %)

Qo



Invariant divergence = f-divergences

* Lump or coarse-bin a separable distance, and ask for

information monotonicity | pi| p2| p3s| pa| ps| s | p7 | ps| P
D(QJI : 915) S D(Q : 9,) coarse graining

P1+DpP2| P3+pPs+Ps| Ps|Pr+Ps | PA

Theorem: The only monotone separable divergences are f-divergences
(except for the curious case of binary alphabets)
f-divergences are invariant by diffeormorphisms of the sample space

) — _ g (y)
Dy (qi,q5) /ng(y)f <q3(y)) dy

e (P@IT@
‘/ﬁ"( 7] f(pj(:w(xn—l) @l

- / pi(x)f (M) dx = D¢ (pi, pj)-

pj(x)




Statistical invariance /\ = l‘\

e Fisher-Rao distance is independent of parameterization (but FIM is covariant!)
Same Fisher-Rao distance for parameterizations {N(u, o)} or {N(u, 02)}

e Fisher information metric is the only invariant metric tensor (up to a scale factor)

* Metric tensor induced by any standard f-divergence coincides with the Fisher
information metric

* Dual connections induced by any f-divergence yield expected alpha-connections

© Frank Nielsen



Recommended textbooks + overview survey

I Shun-ichi Amari {vidiu Calin - Constantin Udeigte

]

=

. _ 7
Information Eﬂﬂfaml'?t”f_ ©  An elementary introduction

Geometry Prgbgtl:illﬁ;fnand \ to information geometry

and Its Statistics \
Applicatlons ‘ https://arxiv.org/abs/1808.08271

@Springer W ﬂd

2016 2014
Very nice up-to-date survey including More details on differential geometry

Applications by the pioneer S.-i. Amari with exercices

© Frank Nielsen



Prerequisite:
Information sciences + Differential geometry

* Tensors + Manifolds
e Statistics + Information theory

Solid Mechanics and Its Applications

SIWILEY
Introduction to
ELEMENTS OF MATHEMATICAL
Uwe Mihlich INFORMATION STATISTICS
THEORY . SEVENTH EDITION

Fundamentals of
Tensor Calculus for

Engineers with a
Primer on Smooth
Manifolds

THOMAS M. COVER
Joy A. THOMAS

el
%] Springer

© Frank Nielsen



e Introduction and overview of the dualistic structures (these slides)

e Background:
e Probability and statistics
* Information theory
e Differential geometry
e Distances

e Information-geometric manifolds
e Fisher-Rao Riemannian manifolds
 Manifolds with dual connections coupled to the metric
 Bregman manifolds
e Geometry of mixture families with applications

e Information geometry in action:
e Natural gradient descent methods and deep learning
e Clustering
e Bayesian hypothesis testing

e Advanced topics, limitations and perspectives



P § i | B

» What is new @FrnkNIsn
» Publications ResearchGate DBLP Slides [video]

g~ Information

o Introduction to HPC with MPI for Data Science, Sp:

o A Concise and Practical Introduction to Programmii

o Visual Computing; Geometry, Graphics, and Vision,
e Edited books:

o Geometric Structures of Information, Springer 2019

Thank you.

(ol o Computational Information Geometry For Image an
k""ﬁ“"l'“-‘ o Differential Geometrical Theory of Statistics, MDP] e E
o Lo o (ranmatrie Thanry af Tnfarmatinn Sarinoar 2014 "'_"""'I ”:: . l'I'-—I'I'I'I
https://franknielsen.github.io/ —_— ==
"-'E-.... f—=—r—— .
£ Springer

http://forum.cs-dc.org/category/72/geometric-science-of-information

|-

L Ll
E=E— -

Home Geometric Science of Information

SUBCATEGORIES

Register " . " -
VPOFn e G Bt e s i ) <3 Geometric Science of Information
4% Edition
& Jobs offers - Call for projects 148 148 e i /i / (AR TN . )
o T frameworks, fully extensible and works well ! \ : Toulouse, 271-291 A ugust 2019 o
Pierre de FERMAT 1
GSI FORGE 14 15 T e
Packages for dala analysis and modelling . . L::It::e' Leiand. Macinnes, oo Hesly, Jaines G SI 2 0 1 9
: : ; Geo-Selinfo 3 years 50 4th conference on Geometric Science of Information ~
g"‘ f'ar‘i;t.lrr‘!?rr.? -\Liggrrglﬁh;r?gﬁc?geigsh:ﬁ?-ggl:illsﬂ I;ISMII§ Il-lt?s?.-!’?glftgez_gw\gﬁ.t'mm g 6. Event Of CIMI Semester StatiStics w“h Geometrv and T°p°|°gv
I:El' * =y r-
27 019 - 019 E Toulouse (France)
Preprints - Books - Archivs - Journal special edition (Entropy... 12 12 T
Call for paper Entropy - new books - new papers - preprints Birthday: Modem Fourier Analysis and

P - Sy
re

e-room - visio-conference - seminar streaming - reservation

© Frank Nielsen

Geo-Sclnfo 1 venrs aoo
The CS-0C put at disposition of the


http://forum.cs-dc.org/category/72/geometric-science-of-information
https://franknielsen.github.io/

Genesis of an information-geometric structure

Information
Conjugate connections torsion-free, cubic tensor T geOmetI‘}’
(M,g.V,V¥)
tensor fields, covariant derivative, Tensor analvsis

Affine connection

(M, V)

curvature /tensor
geodesic, parallel transport

Tensor algebra

Riemannian manifold
length, angle, tensor space

(M, g)
charts (atlas) ,‘coordmate systems Analvysis
Differentiable manifold smooth functions, tangent space .
diffeomorphism
Topological manifold locally Euclidean homeomorphism TOp OlOgV
Topology 7 neighborhood,continuity, convergence
Set M
Matrices Neural networks

Probability distributions )
exponential manifold Positive definite cone ~ neuromanifolds

mixture manifold Structure matrix

location-scale manifold manifolds https://arxiv.org/abs/1808.08271

Toeplitz manifold

© Frank Nielsen


https://arxiv.org/abs/1808.08271

© Frank Nielsen

Background

e Probability and statistical inference
e Measures, random variables, Fisher information, exponential families

* Information theory and maximum entropy

e Entropy, relative entropy (Kullback-Leibler divergence), maximum entropy
principle

e Distances

* Metrics, divergences, properties, information monotonicity, parametric
families, f-divergences, Bregman divergences, Jensen divergences

e Geometry

e Algebraic structures (dual vector/covector spaces, tensors), affine space,
differential geometry (Riemannian, affine: uncoupling metric/connection)



. . (
Applications ?WHATIS...
an Information Projection?

Frank Nielsen
Communicated by Cesar E. Silva

Empirical distribution : pe(X) = %Zle (X — X(1))
MLE = m-projection from p. to the model submanifola

S Pe T
/nprojection

Ir A
'\:,_ Pn=n= %Zi_ (x

observed point

|
|
!

p* = pr(2]67)

e-flat MF/
Q p* = argmin KL(m : p)

T KL(m:p)=KL(p* : p) + KL(m : p*

—

Hidden layers ToMe: a tangent space with *“# a learning curve o o, o . .
o v Ouputlayer ® local inner product (6) Singularities in neuromanifolds

© Frank Nielsen




Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

Definition The total Bregman divergence o associated [ X ] f(@) | 57 (=, y) [ t-center [ Z1-norm BD center | Remark
- - . . . r— 2z
with a real valued strictly convex and differentiable function f R a? = 3 wi 3w total square loss (tSL)
defined on a convex set X betwee ] . ] ' - mlog ytrlos ) ()™ .
ofi n points x,y € X is defined | r-r_ rlogx e IL () ¥, @
y logy-1 Yi(mi/ (A=) ™ -
” fz) = fly) — -y, Vf(y)) o Tloes T T3 (ae /(=20 20w total logistic loss
) — y Y y Ry —logx y gy ! ——t S total Itakura-Saito distance
g 1+ ||V 2 : L VT i/ ”‘
VIHIVIW] R e Lo = wia .
.. R4 z||? llz—yl w;ixi i total squared Euclidean
(+,-) is inner product and |V f(y)||* = I=l YT Zi i q
Rd A (=) Alz—y) w;iz; -z, total Mahalanobis dist
(Vf(y) Vf(y)) genemlly. zt Az dl+4”Ay”3j > wiz >z otal Mahalanobis distance
> iz log =L
Al foizl zjlog z; \/1+ZJ" - yj(lilijg e [T, (w)™ >z total KL divergence (tKL)
Jj=1 -
r— 2 xr— 2 -
Cmxn [E[ ”le Hle > T total squared Frobenius
F F
£l 5
df
ol

AN
(x-y,Vily))

Y X

t-center: ¥ = argmin 5}(1‘, FE) = arg minz df(x,x;)

Robust to noise/outliers

1=1

|EEE TPAMI 34, 2012

© Erank Nielsen




Total Bregman divergence and its applications to DTI analysis

IEEE Transactions on medical imaging, 30(2), 475-483, 2010.

Definition The total Bregman divergence (TBD) ¢ _
associated with a real valued strictly convex and differentiable ?~3-| 8 | ]' . a.“ & Aa'j| ‘
function f defined on a convex set X between points x,y € X .| sl | ok
is defined as, \/ \// / /
o @@ -E-y V@),
df(I" y) - 5 ? ( )
\/1 ;s “Vf(y)” The isosurfaces of dp(P,I) =1, dr(P,I) =1, KLs(P,I) =7
and tK L(P,I) = r shown from left to right. The three axes are eigenvalues
(-,-) is inner product as in definition II.1, and ||V f(y)||* = of P.

(Vf(y), V(y)) generally.

seg:mgﬂ}f[?.tiaq _rt?_sults. from lc_f_t___t_o_ Ij'ght,_ using tK L, KLs, dR,_dM and LE Sue

[ plog gd:r

\/1 + [(1 + log q)2qdx
log(det(P~1Q)) + tr(Q=1P) —n

5 \/C + (Jog(det Q) n(ltlog?m) 10 (et Q)

tKL(P,Q) =tKL(APA,AQA), YA€ SL(n),

IKL(P,Q) =

V1+ [(29)2qdz )
1/1/det 2P) +1/1/det(2Q) — 2/+/det(P + Q)
)™ + 44/ (2m)"//det(3Q)

© Erank Nielsen



The origin of dual connections

e Aleksander P. Norden (1904-1993), relative geometry
(equiaffine torsion-free connection)
Russian book "Spaces with an affine connection" (1976)

e Rabindra Nath Sen (1896-1974), “Senian geometry”

 Nomizu and Sasaki’s Affine differential geometry (geometry of

immersions) Nomizu

Translations of
MATHEMATICAL

e Information geometry (Chentsov’s category approach and Amari) = & Ao

Statistical Decision

Rules and Optimal

* Wong’s optimal transport and c-divergences

© Frank Nielsen



Geometry and its language affordance

 What is geometry?
e Science of measurements
e Science of figures (ruler and compass construction)
e Axioms, consistency and deductive theorems (Euclidean/hyperbolic)
e Science of invariance (congruence of figures/Erlangen program)
* Etc.

e Geometry has its own human language for reasoning
 What is the distance between two points?
 What is the midpoint between two points?
 What is the closest point of a surface from a given point? (projection)
e Balls and space of balls binary operations (CSG construction)

© Frank Nielsen
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Background for Information Geometry

*Probability and statistics
eInformation theory

*Elements of differential geometry
*Distances, divergences and entropies

Frank Nielsen

@&t Sony CSL

An elementary introduction to information geometry
https://arxiv.org/abs/1808.08271

© Frank Nielsen
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Probability and statistics

Frank Nielsen

& Sony CSL
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Outline

Pierre de Fermat

e Classic probability theory

Jacob Bernoulli
Kolmogorov

* Modern theory of probability measures

e Statistical inference:
* method of moments,
e Maximum Likelihood Estimator (MLE),
e sufficient statistics,
e Fisher information (with curvature interpretation)

Sir Ronald Fisher

Barndorff-Nielsen

e Exponential families

© Frank Nielsen



Discrete random variables X ~ f(x)  opemou

* Bernoulli distribution (coin tossing), binomial distribution (tossing a coin n times),
multinomial distribution (throwing a dice n times), Poisson distributions, etc.

* Sample space and probability of events:

Pr(X=1)=p=1-Pr(X=0)=1-—¢q
e Probability mass function

(pmf) f(k;p) = {2_ 1—p iii _ éf flksp) =p*(1—p)" " forke {0,1}
e Cumulative distribution function (CDF) 0 ifk <0
1—-p if0<k<1
- 1 if k> 1
* Expectation EX]=Pr(X=1)-1+Pr(X=0)-0=p-1+¢q-0=np.
e Variance

Var[X] = E[X"] - E[X]* =p —p" = p(1 —p) = pq



Discrete random variable X ~ f(z)

Siméon Denis Poisson

e Poisson distribution with support0, 1, 2, 3, ... 0.40- L
0.35 ° A=1 .
* Probability mass function: 0301 T
— 0.25F A 0]
e 20{

f(k; \) = Pr(X = k) =

k!

e Cumulative distribution function

* Mean and variance: A = E(X) = Var(X)




© Fran

k

Continuous random variable X ~ f(x)

* Probability density function (PDF)
* Normal or Gaussian distribution

1 B (‘f—ﬂ)z

= (A 202

flz | p,0”)

X=0Z+p Z=(X-p)/o UB
T — 1 1.2
) p(z)

* A location-scale distribution:
p— e 2
(o)

2| pyo?) = =
flelma®) = 2o ( N

e CDF of standard normal distribution N(0O,1)

o(x) = L/ e /2 dt
vV 2w J -0

e Expectation and moments

E|X] = / cf(zx)dr. gxr - {gp(p_l)!!

Riemann
integral

if p is odd,
if p is even.

Nielsen



Continuous random variable X ~ f(z)

gmrma):§¢($‘“)= —

Lorentzian/Cauchy PDF:

Augustin-is Cauchy

. | . . [ )2 } N (1789-1857)
T3 T0,Y) = = N
07 T—x) 2 ™y (58 — 330)2 + ’Yz 0.6 —j:;g:jd
ﬂ-’y 1 + ( Y ) 0.5¢ —xy =0, y=2
CDF: ! R
1 T — X 1
F(x;xz9,7) = — arctan + —
s Y 2

Cauchy distributions do not have finite moments of
any order! No expectation (bcs of )

Location-scale family, standard Cauchy b(z) = 1

1422

1
s

— X <r <o
g

O | _I_( 0#)2?




* additive law of probability for possibly countably infinite pairwise mutuaIIy
exclusive events

The Pea
and the Sun
Paradox

* Interpreted as volumes o gveﬁtﬁé)dmm;"dents

.......

M(E) — Zz /_1,( Ez) S —

e But Banach-Tarsky's paradox kicks in: for an uncountably sample space there
exists a set S which can be partitioned into two disjoint congruent sets S1 and

such that _ u(S) = M(Sl) —|— [J,(SQ) = 2u(S)

~ 1 M
‘- )

"dﬂ.."




Measure theory: o-algebra (of events)

* Pb: Cannot consider the full power set for continuous sample spaces

e Let us define an algebra of measurable events: the o-algebra
1. Xe A,

2. Ae A= A° € A, and
3. A Be A= AUBe A.
A o-algebra A is an algebra that is closed under countably many unions:

4. Vie NJA, € A= U;enA; € A.

e o-algebra generated/induced by a set S: U(S)
=Smallest o-algebra with respect w set inclusion



Measure space (X, A, u)

A measure 0 is defined on a measurable space (X, A) as a map p : A — [0, 00] that is countably additive
for pairwise disjoint subsets A;’s:
2ENA E nu

1EN

e Borel sets B(Rd) =o-algebra generated by all open intervals
o(S) S:={(a,b) e R:a < b}

»  Counting measure: o-algebra is the power set 92X and the measure is
defined by cardinality 1e(A) = |A]

e |ebesgue measure: d
p(A) =112 (b — a;)

Volume for opsn boxes A={zeR? : Vield,a <z; <b;}
(X,B(R I)?lu’L)




Measurable function and simple functions

e Consider two measurable spaces: (X, A) (Y. B)

* Preimage: fU(B)={r e X: f(x e B}

e Measurable function: [ : (X, A) = (Y,B)
If and only if the preimages f~!(B) of B € B arein. A :forall B

 Indicator function: 1 ifweA,
Iy(w):=

0 otherwise.

e Simple function:

X(w) = Zi:l r;la;(w), where z; € [0,00), A; € Awith A;NA; = 0

© Frank Nielsen



Lebesgue integration

e Riemann integral (signed area under the curve) not enough!  henri Léon ebesgue
(compact, problem with limits, etc.) (1875-1941)

* Integral of a simple function: /X(w)p(dw) = u(X) = Z xip(Ay).

e Other notations: | Xdu(w) [ Xdp

* Integral of ?{osmv measurable functlons
w)p(dw) = sup{p(X™) : X* is simple, X* < X }.

* In general, for a measure. decompose into positive/negative measures:

— [ X@ndw) = [ X (@utdw) = [ X (@)n(de)



Random variables and expectations

e Arandom variable X s a real-valued measurable function:

X(w):(2,A4) — (R,B(R))
e Probability: Pr(w — A) — H’(A)

* Bonus: The expectation of a discrete or a continuous random variable
O writes similarly using probability measure theory

E[X)] / X (@) e (dw),

XQ] /Xz /JL dw .

© Frank Nielsen



Density and dominating measure

© Frank Nielsen

* For a measure space (X, A, ;) and a measurable function f, define
the measure (4 /fd}u_/lq ) f(2)p(da).

For example, the Gaussian density is formed from the Lebesgue density

| (2 — p)*
X.B(R, it . _ _ H
( ' ( /JL) f(I/J., J) T o !—Qﬂ' eXp( 20_2 )
* Absolute continuity: » < u VAeA (A =0= v(A)=0.

Y is dominated by u ‘
Let A =*3Y then p,v <A supp(l/) C Supp(ﬂ’)




Radon-Nikodym theorem and RN density

Theorem 1 (Radon-Nikodym) Let (X, A, 1) be a o-finite measure space. Assume v < p. Then there
erists f such that

V(A) = /A fdu.

Thus when v < pu, v has a density f wrt to p denoted by f = g—z.

Many properties:  Ifv <y <A, then

dv dv du
— = — — A-almost everywhere.
AN du dA Y
In particular, if y < vand v « y, then
du DT P

dv\ !
v-almost everywhere.

dv @

If v < Aand g is a u-integrable function, then

fd/ AN
gdu= [ gosdX

© Frank Nielsen



Statistical inference: Estimators

e Given n independent and identically distributed (iid) observations, estimate the
underlying distribution (probability density)

e |dea: Assume the density is parametric
* One of the oldest method is the method of moments:
Simply match the distribution moments with the sample moments

Consider the uniform distribution on the interval [a, b], U(a, b). If W ~ U(a, b) then we have
1

1
po = B[W?] = §(a,2 + ab + b*)

Solving these equations gives

azﬂli\/3(u2—li§)

b = 2u1 —a
Pafnuty Chebyshev
. . . : : (1821-1894)

e Infinitely many (point) estimators! Which one is best?

© Frank Nielsen



Maximum likelihood estimator (MLE)

Parametric family: F = {ps(z) | 6 € O}

* Likelihood function: Function of the parameter L£(0 | z) = py(z) = Py(X = )

L(O]x) = foz).

e Maximum likelihood estimate: H(po?ixy. ) = (Lo xr. . xn )
=In| (2o )" ﬂp(— 1 i{x ) ))
0 € {argmax L(0;z)} ( =
he® =lﬂ(<zmz>'“*>m(ﬂp(‘%z(xj—pf))
L) = [Tt o
%Z?zl log p(xi; 9) I(X, #) = log p(x; 0) - -32m) - Z(e?) - =5 Z(x,r w?

* Consistent method: converge in probability to the true value 5 P
emle — 9[}

© Frank Nielsen



Curvature = - :—;[hl L(6)]
In L(6) L6) 8l(z;0)\° 8%4(x; 0
In L(6) 1(6) - E ( (x )) _ g (z;0)

| ' 96 o6°

More Sharpness Less Sharpness
Less Vanance More Variance
Hioh Fisher Information Low Fisher Information

 Fl measures the amount of information that an observable random variable X
carries about an unknown parameter 0

(6) - E (%logf(X;ﬁ))Z o| = [ (%logf(x;ﬂ))gf(xﬁ) dx

e Fisher information interpreted as the curvature of the graph of the log-
likelihood: Near the MLE, high Fisher information indicates that the maximum
is sharp, low Fisher information indicates that the maximum is shallow (many
nearby values with a similar log-likelihood).




Cramer-Rao lower bound (CRLB): Univariate
case

e The variance of any unbiased estimator is lower bounded by the
inverse of the Fisher information:

A 1
0) > —
var(0) > 0
* Fisher information: i 0l(x; 0) 2]
1) -] (242:9)

Cramer-Rao lower bound and information geometry. Connected at Infinity II, 2013.



Cramer-Rao lower bound: Multivariate case

Lowner partial ordering on positive-semi-definite matrices: A-B A-B >0

A 1 _
CRLB Theorem: Var|d,] = —1(6p)
n
10 = Ey [a(zi (z )3(3 log po (2 )] Under regularityac;onditions:
v, ij — — lo
- / (a%. (:E)%logpa( )) po(z)da. 1O = [39 a7, )]
Equivalent representation of the FIM [1(0)]:; 86; vV Polz 86 \/’pg )dz.

Cramer-Rao lower bound and information geometry. Connected at Infinity II, 2013.
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Properties of the Maximum Likelihood Estimator (MLE)

A

e Consistency: On _>90

e Efficiency: Variance of estimator matches the Cramer-Rao lower bound (CRLB)

e Equivariance: MLE estimator of Gaussian variance o2 is equivariant to MLE
estimator of deviationo _____

f(6) = f(6)

e Asymptotic normality (convergence in distribution):

V(6 —60) — N(0,I71(6))

© Frank Nielsen



Some properties of the Fisher Information Matrix
9ij(§) = E¢|OciInp, -0 Inp,| = /A:' O¢i Inp, (1) 0cs Inpe(x) -p,(x) da.

N o 9ij(§) = —E¢[0:0¢0(§)] = —E¢[0e: 05 In p, .
e Positive semi-definite FIM
e Positive-definite FIM for regular models (=identifiable)

e FIM is invariant under reparametrizations of the sample space X.

e Covariant under reparameterization (later, a 2-covariant tensor metric...)

© Frank Nielsen



Regular versus non-regular models

Regular models: 1-to-1 correspondence of parameters with distributions

Hierarchical models are usually non-regulars (eg., mixtures, multilayer perceptron)

Stochastic Neural Network p(y;a.0) = \% exp (—g(y — f(2;6))?)
A
@ y=f(:0)+N(0,1) output
< f(w:0) = 225y plwi - @)

Multiple Layer Perceptron
(MLP)

hidden layer

/ :c\ input




Key concept: Sufficient statistics

e A statistic is a function of a random vector (e.g., mean, variance)

* A sufficient statistic collect and concentrate from a random sample all
necessary information for recovering/estimating the parameters.

Informally, a statistical lossless compression scheme...
* Definition: conditional distribution of X given t does not depend on 6

Pr(z|0) = Pr(x|t)

* Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density

can be decomposed as: p(m, A) — a,(.fL‘)b)\ (t(iﬁ))

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)



Example of sufficient statistics:
Fisher-Neyman factorization: p(a:'; )\) — CL(ZL‘)b)\ (t(iﬁ))

For Poisson distributions of intensity A:

n

AT ] >
—)\ . —TLA I;
p(T1,. .., Tp|A) = Ile T 1—%6 A
'L:

. y b(z :’B‘i?)‘)
a(x)

> Z?:l x; 1s a sufficient statistic for A.

© Frank Nielsen



Natural exponential families (NEF)

* Consider a positive measure [{
* An exponential family is a parametric family of densities that write as

p(x; 0) = exp(fx — F(0))

where F is real-analytic, strictly convex and differentiable:
B Log-Laplace
F(0) = o [ iyt — i
Natural parameter space @ p— {9 . f e}{_p( .’_I})d/,b(.’jC) < OO}

F: Log-normalizer (also known as partition function, cumulant function, etc.)

© Frank Nielsen



Exponential families (from Natural EFs to EFs)

e Consider a t(x)
e Consider an k(x)
e Consider an between t(x) and 0

(usual scalar/dot product)

po(z) = exp((0,t(x)) — F(0) + k(z))

B[t(X)] = VF(6)
Properties: COV[t(X)] — VzF(Q) — 1(9)

Exponential families have finite moments of any order

© Frank Nielsen



Many common distributions are exponential families in disguise

Probability measure

\

Parametric Non-parametric
Exponential families Non-exponential families
Univariate Multivariate
uniparameter Bi-parameter multi-parameter
BinD{IiEﬂ Beta 3 Gamma I’ Multinomial | | Dirichlet | | Weibull
Bernoulli Poisson

Exponential | | Rayleigh | | Gaussian

© Frank Nielsen



Maximum likelihood estimator for

exponential families

§ = argmaxy pr(ﬂ;; g).
i=1

Average log-likelihood: 1 (8;21,...,2,) = (0,> 0 t(z;)) — F(0) + S0, k(x;)
MLE equation VF(H) — Z:&:l t(x?,)

var(f) > I-1(9) 1(9) — V2F(9)

po(z) = exp((0,t(z)) — F(6) + k(x)) 100 =5 |55 tosn)

© Frank Nielsen



Regular EFs and steepness of exponential families

* An exponential family is regular when the natural parameter space is open
© = int(O)
e Closed convex hull of {t(x)}: C _ CO(S)

* Map 7(6) = Ey[t] = VF(6) is one-to-one
« Consider the expectation/moment parameter space:
e Familyis steepif H — lllt(C) H:{n®) : 0 €06}

 MLE exists and is unique for EFs when

t = Z?:l t(iBZ) cC

0 = (VF) L0 t(z;))

Example of non-steep family: Singly-truncated Gaussian family

© Frank Nielsen



Dual moment/expectation parameterization

* For a regular EF density, let n = VF(0)
e denote the dual parameterization

0:2=(x—x0)"VF(p)+ F(xq)

e Related to the Legendre-Fenchel convex conjugate:

p:z=(x—xp)'VF(zxp)+ F(zp)

F™(n) = supgee {QT’I] — F (9)} =

* Moreau biconjugate theorem: when F is proper, lower semi-continuous,
and convex function: (F*)* =F

Legendre transformation and information geometry, 2010.



Dual parameterization of exponential families

Original parameters
AEA

Exponential family
dual parameterization

Legendre transform
fcO (S*F)H(‘L’Ft) —» neH
n = VeF(0) 0 =V,F(n)

Natural parameters Expectation parameters

© Frank Nielsen



Legendre-Fenchel conjugate
* We have 7] — VF(H) and @ = VE™* (?7)

* The convex conjugate is defined by:

F*(n) = (VE)'(n)'n—F ((VF) *(n))

* Crouzeix identity for convex conjugates

VZF(Q)VZ F~ (’I]) =1 The identity matrix

Crouzeix, J.P. A Relationship Between The Second Derivatives of a Convex Function and of Its Conjugate.
Math. Program. 1977, 3, 364-365.

© Frank Nielsen



Convex conjugates at the heart of Bregman manifolds
* Young’s inequality states that
F(O)+F*(6) >0'n
e It yields the Fenchel-Young divergence:

Ap p (61 :m2) = F(61) + F*(n2) — 6] o

.... that is equivalent to a Bregman divergence:
BF(Ql . 92) — F(@l) — F(Qz) — (91 — QQ)TVF(QQ)

BF(Bl . 92) = AF,F* (91 . 772)

© Frank Nielsen



PDF expression

flz:p) = p*(1 — p)*—= for z € {0,1}

Kullback-Leibler divergence

DL (fillf2) = log ({22 — p: log ( 22

p1ll—p=2)

)

MLE

- L 1] .
'p - i1 Z‘d:]_ J'!

Source parameters

A=pel01]

Natural parameters

O=0cR"

Expectation parameters

H=necl01]

A=© E):Iog(ﬁ)
© A A=22
A—H H=p
H—-A A=ng
e—H H=VF(©)
H—-© © = VG(H)

Log normalizer

F(O) =log (1l +exp#h)

Gradient log normalizer

7 y _ _exp#
VF(O) =157

G

G(H) =log (1%) 1 —log (155) + C

1—n

Gradient G

VG(H) = log( " )

11—y

Sufficient statistics

tx)==z

Carrier measure

k(z) =0

Bernoulli family
Order 1

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
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Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)

© Frank Nielsen

PDF expression

fl2: p1,07%) = —pmbeumy exp (—'I—;‘éj—) forr e R

2 T

Kullback-Leibler divergence

O eop

(210«£+-&:+ﬁ—‘4ﬂ

)

MLE

=Lyt m o= EY (- )

Source pau‘anmters

A= (p,0%) eRxR'

Natural parameters

0= (0.02) cRxR"

Expectation parameters

H=(n,m) ¢RxR*

A—© = (& —
09— A A—(_%}_ﬁ)
A—H H = (p,0% + p?)
H- A A = (m.m — i)
® - H H = VF(O)
H-© © = VG(H)

Log normalizer

Gradient log normalizer

G

G(H) = —%]t}g {J;f —1mp)+C

Gradient G

Sufficient statistics

Carrier measure

Univariate Gaussian family

Order 2



Statistical exponential famili

© Frank Nielsen

PDF expression

flz: ) = —L\:“‘I’!{_'\} forr e N7

Kullback-Leibler divergence

Dxi(frllfQ) = Ag — Ap (1 +log (%}-))

MLE A=1vyn o
Source parameters A=) €R™
Natural parameters =0 R
Expectation parameters H=n €¢R™
A—-©O O =logh
e —A A =expf
A—H H=A\
H—- A A=nq
e—-H H=VF(O)
H—© 0 =VGH)
Log normalizer F(©) =expt
Gradient log normalizer VF(©®)=-expf

G

GH)=nlogyg—n+C

Gradient G

VG(H) = logn

Sufficient statistics

t(r)==x

Carrier measure

k(x) = —log(z!)

Poisson family
Order 1

es: A digest with flash cards. arXiv:0911.4863 (2009)



PDF expression

T 1

f(x:1,T) = —h=rrexp (_ﬁ) for r € RY

Kullback-Leibler divergence

Dxi(frllfe) =3 (Iog (%%g%) +tr (Z(‘EIZP))

+% ((J“Q - F‘PJ_E(_QI[,IIQ — up) — d)

MLE

p= .r_l¢ Zf:li“a = %ELHI: — p)(zi — lﬂ]r

Source parameters

A = (p.X) with g € R? and ¥ > 0

Natural parameters

e = (6.0)

Expectation parameters

A—© ©= (Tl 357
e—A A= (307193071
A—H H = (i1, —(Z + pp"))
H— A A= (n,—(H+m"))
© +H H=VF(O)
H—-© © = VG(H)

Log normalizer

F(©) = 1tr(©71087) — Llog det © + Slogn

Gradient log normalizer

VF(©) = (16710, -161 - L@ 19017

G

G(H) = —1log (1 +nT"H 'y) — Llogdet(—H) — £ log(2re)

Gradient G

VGH) = (—(H + i’ )", —.—;[H +mm")™h)

Sufficient statistics

t(x) = (x, —rrT)

Carrier measure

k(z) =0

Multivariate Gaussian family
Order

d(d+3)
2

Compound parameter:
Vector part
Matrix part

Inner product defined by:

(0,0 =056, +tr (6, 60u)

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
On the Jensen—Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019
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* Probability measure bypasses the Banach-Tarsky paradox by fixing a o-algebra
of measurable events, and unifies discrete/continuous random variables as
measurable functions

 Fisher information (FI) measures the sensitivity of the log-likelihood
(curvature), invariant to reparametrization of sample space, covariant to
reparameterization of parameter space

* Cramer-Rao bound provides a lower bound on the variance of unbiased
estimator (non-asymptotic) based on the inverse of Fl

 MLE has asymptotic normality for regular models
e Sufficient statistics is statistical lossless compression of random vectors

e Exponential families: Dual parameterizations via Legendre-Fenchel
conjugation, MLE in closed-form in dual moment parameterization



Information Theory

Frank Nielsen

& Sony CSL
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* Shannon entropy and differential entropy
* Relative entropy known as the Kullback-Leibler divergence
 Maximum entropy principle

MaxEnt distributions = exponential families

* Bounding the differential entropy of statistical mixtures
e Kullback-Leibler divergence of location-scale families

© Frank Nielsen



Shannon’s entropy

e Quantifies the uncertainty of a discrete random variable X

H(X) =3, pilog--=—>,_, pilogp;

e Can be derived axiomatically from Kinchin’s axioms

Theorem 2.1. Let the function S, : A, — R* satisfy the following Shannon-Khinchin axioms, forall n € N,
n>1:

[SA1] S, is continuous in A,,;

[SA2] S, takes its largest value for the uniform distribution, U, = (1/n,...,1/n) € A, ie. S,(P) < S,(Uy),

forany P € A;
[SAS] Sﬂ is expandabl'i‘! S}1+1(P1; P2,---, Pur 0) = Sn(Plr P2,---, pn) fOI' all (Pl ----- pn) € An;
[SA4] Let P = (pl;- . -;pn) € Ay, PQ = (r11, 12, - -, Tnm) € Apm, n,m € N, n,m > 1 such that Pi = Z?Izl Tij, and

Qi = (G1jk, - - -, Gmik) € A, where gix = rix/pr. Then,

Sum(PQ) = Su(P) + Si(QIP), where S,,(Q|P) = Z Pr - Sm(Qp)-
k

Then, the function S, is the Shannon entropy

© Frank Nielsen



Shannon’s entropy is a concave function

H[pl mJZ H(p)+H(p,)
H(p) 2

2

1]
] ey

 Always positive
e Bounded by log(n)
* Finite for fixed-size alphabets

H(p+)

0
P1 (p++ p2)2 112 Pz 1

The negentropy is called Shannon information (= a convex function)

© Frank Nielsen



Differential entropy is different from discrete entropy

hX) = — [, p(z) logp(z)dz

* Can be negative : e.g., Gaussian distributions %10g(27rea2)

* Can be infinite when the integral diverges h( X) = +o0

X ~ p(x) = 2282 for x > 2, with support X = (2, )

x log? x

 For Dirac distribution, the entropy is: X ~ p(a:) — 5(:13), h(X) = —0

NB: For Gaussian distributions, the entropy is independent of location

h(X) = ;log(2mes?), X ~ N(u,0)

© Frank Nielsen



e Random variable (=measurable function)
X~P<Ku
H(X) = — [ log §-dP

With Radon-Nikodym derivative with respect to to base measure [:

= — [y p(z)logp(z)du(z), p= 9
Unifies:
e discrete entropy (counting measure)
o differential entropy (Lebesgue measure)

© Frank Nielsen



Relative entropy: Kullback-Leibler divergence (KLD)
KL(P: Q) = [p(z)log ‘”)du(a:) PQ<p p=%, T

@) "

KL(P:Q)ZHX(P@)— H(P)

Cross-entropy: H*(P:Q) = — [plogqdu H(P)=H*(P:P)

KLD = Relative entropy with respect to a reference distribution P
Not a metric distance because (1) asymmetric and (2) failing the triangle inequality

KL(P : Q) > 0 (Gibb's inequality) and KL may be infinite:

KLD is an
oriented
distance!

p(x) = ﬁ = Cauchy distribution

q(x) = \/%_ exp(— Xz) = standard normal distribution

KL(p : g) = +oc diverges while KLL(q : p) < oo converges.

nnnnnnnnnnnnn



Entropy for discrete/continuous exponential families
exp( 7, ti(2)6; — F(6) + k() pla:6) = exp((6, 1(2)) — F(6)

without carrier term k(x)

Using natural parameter 0O:
H(P) = Hr(0,) = F(6,) — (6, VF(6,)) — Ep|k(z)]

Using expectation parameter n:
H(P) = —F*(n) — Ep|k(z)]

Rayleigh distribution Consider yet another
o 72) — & z? : B .o . . . .. . .
plxi0%) = g5 exp (_ﬁ) that belongs to the exponential - ypivariate exponential family: the Poisson distribution with
families for the log-lnormahzer F(0) = —log(—2#), natural probability mass function p(z; \) = A e}f‘(—}.] . The entropy

parameter § = —5—, sufficient statistic #(x) = 2, gradi- ! \ 00 \ Bl S; L) — o ] 1
ent F'(#) = —4 and carrier measure k(x) = logx. Let IS (1 —logA) — Elk(x)] Since k(x) = —logz! (see [4]),
X ~ Rayleigh(c?), we have: H(X) = 1 + In% + 3. we have: §
where 7 = 0.57721566... stands for the Euler-Mascheroni  —F'[k(z)] = Zk o Pr(z:iA)loghk! = e - > - log -
constant. This is the term related to the carrier measure

log = integrated over the distribution.

Entropies and cross-entropies of exponential families, IEEE ICIP 2010

© Frank Nielsen




Kullback-Leibler divergence for exponential families
Fenchel-Young divergence for exponential families

KL(po, : po,) = B(#2 : 01) = A(02 : 1) = A"(m1 : 62) = B™ (1 : 12)

Fenchel-Young divergence (on mixed parameters):

A(62 1) = F(02) + F*(m) — 631 > 0

Bregman divergence (on natural/expectation parameters):

B(6s : 01) = F(62) — F(61) — (02 — 1) VF(67)




Jaynes’ maximum entropy principle (MaxEnt)

e Jaynes's principle of maximum ignorance:
Underconstrained optimization problem

max, h(p) = ). p(z)log p(lw)
Zp(w)t?,(:c) =m;, Vie{l,...,D}

} (1922-1998)

p(x )>O Ve e {1,...,n

Zp

I\/IaX|m|zmg a concave function subject to linear constraints
(or equivalently convex mininimization optimization problem).

© Frank Nielsen



MaxEnt with Kullback-Leibler divergence
and with a prior constraint distribution g

min, KL(p: q) = ) p(z)log p(z)

q(z)

Y pla)ti(z) =m;, Vie{l,...,D}

£L

MaxEnt is KL

left-sided
minimization

p(x) >0, Veedl,...,n}

Maximum entropy distribution is the uniform prior:
q(z) = n

© Frank Nielsen



MaxEnt distributions (Boltzmann-Gibbs)

Solving the constrained optimization problem:

Use Lagrange multipliers 8 (but © not in closed form) Ludwig  Josiah Willard
Boltzmann Gibbs

Gibbs distribution, Maxwell-Boltzmann distribution in statistical mechanics:
1 ibbs distribution in statistica sics,
p(m) — M exp( <93 t("r) > )g(m) '(I';ittl)Sd jistri:;ution in ptr(;[b;bililtihe\(cc.

MaxEnt distributions are exponential families exp({(0,t(z)) — F(0) + k(x))

Free enery

Log-normalizer: F(Q) p— log Z(Q) log-partition

cumulant function

k
Prior g gives the carrier measure: Q(CU) — € (@)

© Frank Nielsen



Example: Fixed mean and fixed variance
MaxEnt distribution

e Find the MaxEnt distributions with support the full real line and the
first two moments prescribed

EX|=m1 E[X?] =m;
t(z) = (z,2%)
p(z) < exp(f1z + Oyx?)

Gaussian
family

f($ | “’0_2) — e 2°




© Frank Nielsen

MLE as a right-sided KLD minimization

Recall that MaxEnt is KL left-sided minimization: p(z)
min, KL(p : q) = 3, p(z) log

Empirical distribution:
pe(z) = = >, 85, () min  KL(pe(z) : |po(z)])
~ [ p@ogp.(e)de ~ [ p.(@)logpo(z)de

MILE is KL = min —H{pe) = By, logpo(z)]
right-sided 1
minimization n

1
— max — lo x;) = MLE
n; g po(z;)



Upper bounding the differential entropy of mixtures (1/2)

Key idea: compute the differential entropy of an exponential family with
given sufficient statistics in closed form. Since it is a MaxEnt distribution,
any other distribution with the same moment expectations has less entropy.

In particular, this observation applies to statistical mixtures.

H(X) :Lp(x] log p{lx]dxz —/Xp(x}logp{x)dx H(p(X, 9)) = —F*(’I](Q))
Absolute Monomial Exponential Family (AMEF): p;(x; 6) = exp (9|x|’ — F;(@))
1 1
with log-normalizer Fi(0) =log2 + logl (7) — log [ — < log(—0)

_ [°° Ju—1
[(u) = J, x“"*exp(—x)dx
[(n) =(n—1)! forne N
MaxEnt Upper Bounds for the Differential Entropy of Univariate Continuous Distributions,
|EEE SPL 2017, arxiv:1612.02954 https://www.lix.polytechnique.fr/~nielsen/MEUB/
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https://www.lix.polytechnique.fr/%7Enielsen/MEUB/

Upper bounding the differential entropy of mixtures (2/2)
pi(x; 0) = exp (G’IXI’ - FI(Q))
1

H(p(x;0)) = —F*(n(0))  Hy(n) = |og2+|ogr(7

Hi(60) = log2+ logl (%) — log I + %(1 — log(—0)).

1
) —Iogl+7(1+|ogl+|ogn)

Density of a Gaussian Mixture Model (GMM): X ~ Z:;:l ch(x; e, JC)

H(X) < Ui(X) v = mg(ze (im— (#c(l-”(‘i—i))”c\/;‘“(‘%(E)z))))

MaxEnt dlstrlbutlon is Laplaman distribution
- k
H(X) < Ua(X) = Iog 27re2 we((pe — fi)? + 02) =", Welic

c=1
' MaxEnt distribution is Gaussian distribution

© Frank Nielsen



A series of upper bounds for h(GMMs)

Zero-centered Gaussian Mixture Models:

1
/

k
(Z w,-af) = A/(X).

=1

H(X) < H(AI(X)) = by + — log z; + log 7/,

I

(T(2
Ex[X'] =22 =2
_r

Z]

)

1
_ _ 7
o). |-th power mean: &, = (Zle w;o! )

]

MaxEnt Upper Bounds for the Differential Entropy of Univariate Continuous Distributions,
IEEE SPL 2017, arxiv:1612.02954
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Computing non-central absolute geometric moments of
Gaussians and GMMs

Even /| A= E[|XI'] = E[X'] = % (1) (21 = 1)t 20?

1

4 p* + 6p?o? + 30*
6 1 + 15u%02 + 452 0* + 150°
8 u8 + 28ulc? + 210p*0* + 4204%0° + 10508
10 10 + 454852 + 6301°0* + 315014 0® + 47251%08 + 945451°
odd I | A =E[IX|'] = Gn, ),/ 2 exp(— £55) + Dy, o)erf(—)
1 erxp( —'u—)—l—,u.erf(\/_ )
3 (203 + p a)\/_exp( L) + (1 + 3po?)erf(—-)
5 (80° +9u203 + cr)\/i _&2.)_|_(p -+—104u o —|—15pa'4)erf(—v;%)
7 (4807 +87u%0” +20u%03 + 1%0) 2 exp(— )+
(n? +21u%0% +105430% + 1050 )erf(—Lo_)
9 (38402 + 9751207 + 345.%0° + 350803 + p a)fexp( :2 )+
(1® +36u7 0% + 378u” 0% + 1260u30° + 945a“)erf( =)

© Frank Nielsen



Computing the Kullback-Leibler divergence...

* In theory, Risch semi-algorithm reports whether a definite integral has a
closed-form or not. Notice that the KLD can also diverge.

e Symbolic calculations
dF) S

PR Py )

e For example: Cauchy location-scale families. pis(z) =

Theorem . The Kullback-Leibler divergence between Cauchy density p;, s, and py, s, 18

(51 + 52)2 + (51 — EQ)2
43152 .

KL(ph,Sl . pIEsSE) — log

27 (ng(Qﬂf — be + 2cd + V4ac — b2\/4df — €2) — log(2a)
Vdac — b?

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, arXiv:1905.10965

Ala,b,c;d,e, ) =

© Frank Nielsen



Kullback-Leibler divergence: Location-scale families

Fi= @) = 2o (52) s e Fo = {tnn@) = 0 (T2) (oo € B

S1 52 52

Location-scale group: H={(s) : le RxR4;}

Property (Location-scale Kullback-Leibler divergence). We have

KL(ph,sl : QEz,sz) = h” (P s gl 3_2) - h(p) = KL (}’J s qiy—1y 3_2) ;

s1 ’s1 851 ’s1

S
= h” (pﬂ ™ :q) — h(p) +logﬁ = KL(pt,-1, s, : q).

81 ’s9 2 39

Interesting properties for the KL minimization: KL(p; s, : @) := min KL(p1,s1 * Qlasss)

(l2,82)eH
= min KL(p: qi-1y s
(l2,s2)€H P:a S1JE ’;%)
= min KL(p:qs) :=KL(p: Q)
(I,s)eH

On the Kullback-Leibler divergence between location-scale densities, arXiv:1904.10428

© Frank Nielsen



H(Y)

Mutual information of RVs (MI) ™

* Consider two random variables X and Y.

* There are independent if and only if
p(X,Y) (ZL', y) — PX (513)pY (y) H(X,Y)

e Amount of mutual information quantified as the KL divergence
between the joint distribution and the product of distributions

I(X;Y) = KL (Px,y) || Px Pyr)

x,v)(Z,Y)
[(X;Y) = [, [xpxy(z, y)log( e

)py (y)

)dwdy

Ml is not a metric distance but a symmetric distance between random variables

© Frank Nielsen



Elements of differential geometry

{ h
- Jean-Louis Koszul Charles Ehresmann
e Cartan (1921-2018) (1905-1979)

1869-1951 Frank Nielsen

& Sony CSL
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Outline

* \Vector space and dual covector space

* Inner product space and metric tensor
(contravariant and covariant coordinates)

e Tensor fields

e Affine connection
e Riemannian metric connection

Solid Mechanics and Its Applications

Uwe Miihlich

Fundamentals of
Tensor Calculus for

Engineers with a
Primer on Smooth
Manifolds




Finite dimensional real vector spaces

A real vector space is a set X with a special element 0, and three operations :

e Addition: Given two elements x, y in X, one can form the sum x+y, which is also an element of X.
* Inverse: Given an element x in X, one can form the inverse -x, which is also an element of X.

e Scalar multiplication: Given an element x in X and a real number c, one can form the product cx, which is
also an element of X.

Operations must satisfy the following axioms:

e Additive axioms. For every x,y,z in X, we have
* X+Yy = y+X.
o (x+y)+z = x+(y+2).
e O+x=x+0=x.
e (-x)+x=x+(-x)=0.
e Multiplicative axioms. For every x in X and real numbers c,d, we have
* Ox=0
e Ix=x
e (cd)x = c(dx)

e Distributive axioms. For every x,y in X and real numbers c,d, we have
e c(x+y) =cx +cy.
e (c+d)x = cx +dx.

© Frank Nielsen
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Bases and dimension of a vector space V
e Aset of Dvectors B — {bh e bD} is linearly independent iff

e A basis is a set of maximal linearly independent vectors (wrt. set inclusion)

 The dimension of the vector space is the cardinality of any basis (finite
dimensional case) B={ei,...,eq}

e VVector v written in a basis B using coefficients/components:

vig = (v',...,0%) v= S vie; = vle,

Einstein
summation
convention




Dual vector space V*: Vector space of covectors

* Linear form: Linear mapping W V - R W . V - R

e Dual vector space V* = vector space of real-valued linear mappings
e Same dimension: dim(V) = dim(V*)
* Isomophism |/ ~ |/*

* Dual covector basis: We have w('v) — v"w(ei)
e Choose covector basis which reads vector components: gz (’U) —

w(v) = wie' (v), w; = w(e;) - e'(ej) =0

1

© Frank Nielsen



Pairing product of a covector with a vector
Basis in vector space B = {61, e ooy ed}
d

Basis in covector space B* = {31, ce. s € }

1 wynottionatdeion: (), ) 1= w(v)
covectorcomponents ;= (W), ;)
e’ (ej) = (e',e5) = &

© Frank Nielsen



Inner product space:
notion of lengths/angles/orthogonality of vectors

Definition (Inner product) A mapping

o VYx V>R
(a,b)—a-b

with the properties:
() a-b=h-a Beosd

(1) (ca+ pBb)-c=caca-c+ [b-c A .B = [A|.[B].cosb
() a#0=a-a>0

foralla,b,c € Vund o, 3 € R is called an inner product.

Orthogonality

(0] J_pz — <’l)1,’02> = ()



Norm and distance induced by an inner product

Definition (Norm) A norm |[|.|| on a vector space V is a mapping with the
properties:
(1) [lav]] = af|v||

(1) [la+ v[[ < [[af] + [[v]]
(iii) ||v]| = O impliesu = 0

force Randu,v € V.

Length of a vector v is its norm

Distance (metric) induced by a norm:

D(vi,v2) = ||v1 — v2]

© Frank Nielsen



Reciprocal basis is a basis of vectors

e Given an inner product <.,.>, we can define a reciprocal basis of V

e/ € V such that (ei, el) = 5?
primal and reciprocal basis are mutually orthogonal

e The coefficients of a vector v in the primal baS|s are called the
contravariant coefficients: L
v =1"¢;

* The coefficients of a vector v in the reciprocal basis are called the

covariant coefficients: ’L
vV = v;e

© Frank Nielsen



Geometric reading the covariant/contravariant
coefficients/components of a vector

2

contravariant ’U = <’U, €i>

covariant g, = <fU, ei>

", Abide rules of change of basis

In a Cartesian orthonormal coordinate system,
the contravariant components match
the covariant components

© Frank Nielsen



Primal and reciprocal basis are mutually orthogonal

© Frank Nielsen



Scalar product and duaI metrlc tensors
(u,v) = u'v; = u;v*

gij = <eiaej>7 G [g’lf]]
g’ =g" =(e',€).  G* =[g¥]
e Scalars are tensors of order O

*
* \Vectors are contravariant tensors of order 1 G >< G I
e Covectors are covariant tensors of order 1

© Frank Nielsen



Converting covariant €= contravariant components

Raising and
lowering indices

ol — g*’bjej VUV, =— gzg'U

e; = gij€’ vt = g,

© Frank Nielsen



Geometric tensors and tensor algebra

* Informally, tensor = multi-array of coefficients... g
e Got attention in the media in deep learning with TensorFlow
e But tensors are geometric objects interpreted as multilinear maps

A tensor of type (r,s) T . V* .« . .V* X V X .. V — R
%/_/ %,—/

r S
Components/coefficients 172.71 o ZJT with respect to a basis
1...2¢

nnnnnnnnnnnnn



Riemannian metric tensor g

* On a manifold, a smooth 2-covariant tensor field
* On each tangent space, define an inner product space |
extrinsicczembedded versus intrinsic visualization/interpretation

e Union of all tangent spaces is called the tangent bundle

e Bilinear positive-definite
e Eat two vectors... g(aU+V,W)=ag(U,W)+g(V,W)

Coordinate-free ¢

. symmetric Vs in (local) coordinates:
description

g(V,W) = g(W,V) 8,=8,(0,(p), 9;(p))=8;(p)

* nondegenerate
Vp, VVZ03 W, gp(V,W) +* 0



© Frank Nielsen

Affine connection V

e Define how to parallel transport a vector from one tangent
plane to another tangent plane by infinitesimally parallel shifting
it along a curve

* Use to define geodesics as autoparallel curves

Also covariant derivative...



How to define an affine connection

3
e Report d”*3 smooth functions, called Christoffel symbols
* |n a local coordinate chart with natural basis, we have:

Elwin Bruno Christoffel
8 k (1829-1900)

e Christoffel symbols are not tensors: they do not obey the
covariant/contravariant laws of change of basis

© Frank Nielsen



V-geodesics

e Geodesics are “straight lines”, auto-parallel lines
V:4=0

* We find geodesics by solving a second-order Ordinary Differential
Equations (ODE)

§(t) +TEA()5(t) =0, ' (t) =z’ ox(2)

© Frank Nielsen



Connection and covariant derivative

A connection is a map

V:TM XTM —TM

T pM = " From the product of the
tangent bundle with itself to
the tangent bundle

with defining
properties:

@V, Y+Z)=V,Y+V .Z @V

[X+Y)Z=VXZ+VYZ

OV Y=V, Y @V, ([)=X[f]+V,Y



Riemannian metric-compatible connection

e A connection is metric-compatible if for any smooth vectors fields X,Y,Z

* |In local coordinates, this amount to check that

3}«9@3 <v8k 81: 0; > + <8M Vak a])
* Metric-compatible connection enjoys parallel transport with the property:

\Y Vv
<'U,, v)c(ﬂ) — <Hc(0)—}c(t) u, Hc(O)%C(tJ U>C(t) Vt

PT
preserves
metri

© Frank Nielsen



Fundamental theorem of Riemannian geometry

* There exists a unique torsion-free affine connection compatible with

the metric called the Levi-Civita connection: LC

* The Christoffel symbols of the Levi-Civita connection are calculated
from the metric tensor in local coordinates :

Lerk = Lgi (9,gu + 0,91 — Brgij)

e Or in coordinate-free equation by the Koszul formula:
29(VxY,Z) = X(g(Y,Z)) +Y(9(X, Z)) — Z(9(X,Y)) + g(| X, Y], Z) — g([X, Z].Y) — g(]Y, Z], X)

© Frank Nielsen



Elie Cartan’s study of affine connections

ANNALES

SCIENTIFIQUES

L’ECOLE NORMALE SUPERIEURE

SUR
LES VARIETES A CONNEXION AFFINE

LA THEORIE DE LA RELATIVITE GENERALISEE
(PREMIERE PA RTIE)

(sviTe)

Pir E. CARTAN.

CHAPITRE V.

L’UNIYERS DE LA GRAVITATION NEWTONIENNE
ET L'UNIVERS DE LA GRAVITATION EINSTEINIENNE.

La forme invariante des lois de la gravitation newtonienne.

70. Nous avons vu au Chapitre 1 qu’il élait possible, et d’une infinité

de maniéres, de ramener la gravitation newtonienne i la Géométrie en
attmthiinnt A 1'MTniwrnes wen annnnvican ofBan anncenanhlsa Tiane andia

Cartan-Einstein manifold

E. Cartan, Sur les variétés a connexion affine, et la théorie de la relativité généralisée , Ann. Ec. Norm. Sup. 40

(1923)

© Frank Nielsen



Curvature of V

(ae

Cylinder is flat
Parallel transport is

S

independent of path Sphere has constant curvature
Parallel transport is path-dependent



Torsion of a connection V

Torsion measures the speed of rotation of the binormal vector
parallel transport “twists’ vectors.

N e For connections:

Torsion in geometry and in field theory 3

¥

Figure 1: On the geometrical interpretation of torsion, see [39]: Two vector

fields v and v are given. At a point PP, we transport parallelly « and v along v

or u, respectively. They become ug{ and vg. If a torsion is present, they don’t

1.dn=0.05 7.dn=0.1 T.dn=0.15 close, that is, a closure failure T'(u, v) emerges. This is a schematic view. Note
that the points I? and @ are infinitesimally near to . A proof can be found in
Schouten [88], p.127.

Figure 1. Helical channels with square cross section, constant curvature
k.dn = 1 and torsion z.dn spanning from 0 to 0.15.

Connections differing by torsions have same geodesics
Pregeodesics

© Frank Nielsen



Summary

e Algebraic structures: Vector and dual covector spaces with natural
pairing, inner product space and contravariant/covariant coordinates,
tensor space and dyadic product

* Manifold with an affine connection: tensor fields, parallel transport,
geodesics, curvature and torsion




Distances and entropies

0=

Frank Nielsen

& Sony CSL
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Distances

e Too many synonyms and ambiguities in the literature! ®

&) Springer

(two-point function, notion of distinguishability, discrepancy, divergence,
metric, relative entropy, measure of discrimination, coefficient of divergence,
etc.)

e Distance between points, densities, random variables, etc.
e Statistical divergence versus parameter divergence

* Principal distances and main classes of distances

* Generalized entropies and relative entropies

© Frank Nielsen



Metric distances and metric spaces (X,D)
A metric D is a (distance) function that satisfies the following axioms:
e M1. (Non-negativity) D(p1,pa) > 0
* M2. (Identity of the indiscernibles) D(p1,p2) = 0 < p1 = po

e M3. (Symmetry) D(pl,pz) — D(p27p1)

e M4. (Triangle inequality/subadditivity)

D(plaPQ) T D(p2ap3) Z D(p17p3)

© Frank Nielsen



Examples of metric spaces

e Euclidean distance DE’ p, \/ZZ 1 pz — Qz)2
e Manhattan/Taxi cab distance Ml (p C_I) — Z . lpz _ qz‘
Y 1=

e Minkowski metric distances
d 1
M, (p,q) = (25:1 D — qz"a)“ , a>1

r=1
104
.
.
.
.
LR
a8 \ /
00

an
o
5
104 -1 =104
-0 -0 05 00 05 19
X X
r= r=4 r = infinite
104 — 0 —— — 104
~ ™ / ~\
{ Y
051 as !' \ 084
f \ | |
=00 =an =00
\ o || o | )
i | |
\ / |
-as 4 \ / -asq | | 084
T — \._ ./
104 — -1 - — -1.04
<0 9% 00 05 10 -0 05 00 05 19 -0 45 00 0% 10
x X X

Non-metric (not convex) and metric balls (convex)

—

L1 is not geodesic



Inner product, induced norms and
induced distance

e Inner product (z, y)g

* Induced norm  ||z||¢ = +/(z, )
* Induced metric distance D¢ (p,q) = ||p — ql|¢

e Example with Euclidean distance an its dot/scalar product

(@, y)p = i1 =iy ) Di(p,q) = |p— gz = Ilp — dll:

 Example with Minkowski norms

l
|2]l0 = (3, |2:|%)" ™ M, (p,q) = |lp— qll

© Frank Nielsen



Distances and some notational conventions

* Typing distances: between strings, vectors, matrices (tensors), graphs,
probability densities, cumulative distribution functions, random
variables (mutual information), etc.

* : to indicate that the distance is oriented, asymmetric: D(p : q)
D(p:q) # D(q:p)
Stemmed from information theory D(qu) to avoid confusion with

joint variables H(X,Y)
* ; to indicate a symmetric but non-metric distance: D(p, q)

Example: Mutual information
e Bracket [] to indicate a statistical distance) [p : q]
e For a parametric family P, a statistical distance amount to a parameter

distance: Dp (91 : 92) — D[p91 :peg]

© Frank Nielsen



Signed distances (failing non-negativity)
012

q = ray(p, q) N o9

p = ray(q,p) N OS2

o la=plllp—ql
Ho(p, q) = log [=15=pI

Hilbert-cross ratio metric  Hy, (p, g) = log CR(p, p, ¢, §) = log 14-2lle—dl

(signed) g —4llllp—pl

Hq (p, Q) = log \CR(ﬁ,p, q, Q)‘

Clustering in Hilbert simplex geometry, arXiv:1704.00454 (2017)

© Frank Nielsen
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Pseudo-metrics: Failing the identity of the
indiscernibles

e For example, we would like that the distance of a substring s' to a
string s containing s' is zero but not the converse.

e Schubert distance: To give a geometric example, consider the distances between

subspaces, where a k-dimensional subspace S of R is represented
by a (d, k) matrix S that consists of the k orthonormal base
vectors arranged in column in S. The Schubert distance between
ki-dimensional subspace S; and k>-dimensional subspace S is

defined by

min{ky ko }
0s(S1.5)=4| Y 0i(51.%)2.

=1

where 6;(Sy,S,) = arccos /\,-(SlTSg) is the i-th principal angle and
Ai(X) denotes the i-th largest eigenvalue of matrix X. We have
d5(51.S,) = 0 whenever S; is a subspace of S, (an asymmetric

property).

Schubert varieties and distances between subspaces of different dimensions



Failing symmetry: E.g., Funk oriented dis;cgnce

Q q = ray(p,q) N OQ
Hilbert cross-ratio metric is the arithmetic s
symmetrization of Funk distances D
H, (pl p2) _ Fa(p1,p2)+F(p1,p2)
’ 2 Fo(p, q) = log 12=4

Reverse distance or dual distance (reference duality)

D'(p:q) =D*(p:q) =D(q:p)

Related to Finsler geometry that extends Riemannian geometry with a Finsler metric (norm)

Satisfies triangle
inequality but
fails symmetry

Medians and means in Finsler geometry, arXiv:1011.6076
A family of statistical symmetric divergences based on Jensen's inequality, arXiv:1009.4004
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Failing triangle inequality/subadditivity:

1zl = [Px+y[l < {Ix][+]lyll
e Example: Kullback-Leibler divergence between two pmfs:

KL(p:q) = ). pilog z—j

e Notice that the squared Euclidean distance fails the triangle inequality

Clustering in Hilbert simplex geometry, arXiv:1704.00454

© Frank Nielsen



Scale-invariant distances

e [takura-Saito divergence: Fumitada ltakura

. L P; p;
Dis(p:q) = i - — log — —
qd; d;
e Scale-invariance property:

Dis(Ap:Aq) = Dis(p:q), A>0

e Often used in music applications (spectrum)

© Frank Nielsen



Projective distances: E.g., Birkhoff’s distance

e Distance independent of both argument scaling factors

- Ca cone that induces a partialorder P g @< q—p € C

M (p:
Bo(p, q) = log mg:j)) = log Mo (p : 9)Mc(q : p)

Mc(p:q) =inf{BE€R :p =2¢ Bq}
mc(p:q) =sup{a € R : ag =<¢ p}
* For the positive orthant cone, we have Birkhoff’s projective distance:

IN P;q; N 3
0(p,q) =logmax; ; —  d(up,Xeq) =d(p,q), VA, A2 >0

J 1

On Holder projective divergences, Entropy 19 (3), 2017

© Frank Nielsen



Statistical distance: Total Variation (TV) metric
TV(P,Q) = supgcr |P(E) — Q(E)

* The TV measures the largest probability difference of an event E of
the o-algebra of the sample space.

* When P and Q admit Radon-Nikodym densities p and g wrt o,
respectively, we have

TV(p,q) = 5|lp(z) — gq(z)||dp(z)
TV(p,q) = 5llp — 4l

e Synonyms: city block distance, overlap distance, etc.

© Frank Nielsen



Kolmogorov metric distance

e A distance between distribution functions, less than TV:

K(Fx,Fy) = supycg |Fx(u) — Fy(u)|.

Related to Fo@) = 5D fwn (X
Kolmogorov—Smirnov test b, =sw|F,(2) - F(a)|

© Frank Nielsen



Classes of distances: Csiszar’s f-divergence

* Function f convex, strictly convex at 1, with f(1)=0

If(p:q) = [pf(5)due > f(1)

* Include the Kullback-Leibler divergence for f(u)=-log u

* Invariant divergence in information geometry (information monotone)

Name of the f-divergence Formula I;(P : Q) Generator f(u) with f(1) =0
Total variation (metric) = [ Ip(z) — g(z)|dv(z) Zlu—1]

Squared Hellinger f{\/m - \/M}gdv{;r) (Vu—1)*

Pearson Y5 Il [“'[ﬁrlﬂr—”gdp{;r} (u—1)*

Neyman Y5 Il E%ﬂ:ﬂicly{;r} %

Pearson-Vajda yp Il M?;:JIL[II}”kdv[I) (u—1)"

Pearson-Vajda || I %ﬁ—}tdu{rj lu — 1%

Kullback-Leibler [ p(z)log %d;f{r} —logu

reverse Kullback-Leibler Ja(x)log %E%du(;r} ulog u

a-divergence ﬁ-(l — fpl_'?{;r}ql "2 (z)dev(z)) ﬁ_{{l - ul__ig}
Jensen-Shannon = [(p(z)log Efflﬁ_f.-?{xj + g(x) log %)dy{r] —(u+1)log 2= + ulogu

On the chi square and higher-order chi distances for approximating f-divergences, |IEEE SPL 2013

© Frank Nielsen



Axioms for a statistical distance (Ali & Silvey, 1966)

First property. The coefficient d(P,, P,) should be defined for all pairs of measures
P, and P, on the same sample space.

Second property. Suppose that y = #(x) iS a measurable transtormation trom
(Z, #) onto a measure space (%,%). Then we should have

_1 1 Coarser sigma-algebra
d(Pl’ Pﬁ) > d(Pl t, Pyt ): More distinguishability of stochastic processes

Here P;t! denotes the induced measure on % corresponding to P,.

d(P{™, P{M)<d(P{,P§) for m<n. 1% Xas eves X)) = (X1, Xgs « o5 Xgp)-

Third property. d(P,, Pp) should take its minimum value when P, = P, and its

maximum value when P, 1 P,.

Fourth property. Let 6 be a real parameter and let {P,; 0€(a,b)} be a family
of equivalent (mutually absolutely continuous) distributions on the real line such
that the family of densities pg(x) with respect to a fixed measure p has monotone
likelihood ratio in x (see Lehmann, 1959, p. 68). Then if a<6,<0,<0;<b, we
should have

d(Py,, Ps,) <d(Pg,, Py,).

© Erank Nielsen



Classes of distances: Bregman divergence \ ==

q

* Bregman divergence between parameters for a strictly convex and

differentiable convex function F .
)

Bp (61 :05) :=F (61) — F(65) — (61 — 65) VF (6,)

e The canonical divergence of dually flat spaces
e Extend to other types (matrices, functions, etc)

Mining matrix data with Bregman matrix divergences for portfolio selection.”"Matrix Information Geometry.
Springer, Berlin, Heidelberg, 2013. 373-402.

© Frank Nielsen



Matrix Bregman divergences
For real symmetric matrices: o

Br(L:N)=F(L)— F(N) —tr ((L— N)VL(N))
where Fis a strictly convex and differentiable generator F' : Sym(d, d) — R

Matrix

» Squared Froebenius distance for FI(X) = || X|%
 von Neumann divergence for FI(X) = tr(Xlog X — X)
DN(X,:Y)=tr(XlogX — XlogY — X +7Y)
* Log-det divergence for F(X) = —logdet(X)
Di(X:Y) =tr (XY!) — logdet (XY 1) — n

Bregman—Schatten p-divergences...
Mining Matrix Data with Bregman Matrix Divergences for Portfolio Selection, 2013



Jensen difference/Jensen divergence (Burbea-Rao)

A
* Introduced by Burbea and Rao
 Vertical gap induced by Jensen inequality 5 Flo)] (P, =)
5 (9. F(9))
F(6,)+F(6:) 6146 5 oces |
— > 5 :
Jr(61,0) 5 F (= >0 | g,
p 3o "
. F .
Asymptotic scaled Jensen Ja (:91 '192) .
divergence amount to a Bregman or s (B1:62) a#10,1}
reverse Bregman divergence = { Br(6; : 65) a=1
kBF(QQ :91) a=20

The Burbea-Rao and Bhattacharyya centroids." IEEE Transactions on Information Theory 57.8 (2011): 5455-5466.
Bregman chord divergence: https://arxiv.org/abs/1810.09113

A family of statistical symmetric divergences based on Jensen's inequality, arXiv:1009.4004

© Frank Nielsen


https://arxiv.org/abs/1810.09113

Statistical divergences amount to parameter
divergences for exponential families:

Statistical distances Parameter divergences

Bhaty (p: q) = — log [ p(a)'=q(x)*dx e JE (6, : 6,) = (F(6,)F (6)) — F((6,6,)0)

limg 04 éBhata (p: q)l p(z) :g p(x; bp) limg 0+ a'] (p:q)
q(z) = p(a;6y)
= | p(z)log pE ;dw ‘_. Bp(0q : 0p) = F(0q) — F(0p) — (04 — QP)TVF(QQ)

Generic distributions Exponential families

p(z;0) = exp(f 'z — F(6))

The Burbea-Bao and Bhattacharyya centroids, IEEE Transactions on Information Theory 57(8), 2011



Bregman chord divergence: Free of gradient!

Ordinary Bregman divergence .
requires gradient calculatiori B (6 - b
BF(91 :92):F(91)—F(92)—(91 —92)TVF(92) \

Bregman chord divergence Br(fy
uses two extra scalars a and B-

(610205, F(0102)77°8

°
o1 (0162)a

é o« >
(0162)5 0o cob

N F((6102)5)—F((6:62),)
BY2 (61 : 6,) = F(61) — F((6:162)a) — E) - )

Using linear interpolation notation (61602), = (1 — a)61 + abs

No
gradient!

lim}g_m B}f—fﬁ (91 : 92) = B?; (91 : 92) and Br (91 1 09) ~c_0 B};.—E’l (91 : 92)

Subfamily of Bregman tangent divergences: B%,(Ql . 92) — F(Hl) - F((9192 )a) — a(gl _ 92)T VF ((91 0 )ﬂ)

| The Bregman chord divergence, arXiv:1810.09113



The Jensen chord divergence: Truncated skew Jensen divergences

Linear interpolation (LERP):

(Pg)r == (1= A)p+ Agq

p(p:g) = (F(p)F(q)), — (F((pg)a)F((pg)s))

Upper chord U

4 * vertical
TP (p 2 g) chord gap ((Pq)a (pQ)ﬁ))\ = (pQ)’y with v € (o, B)
Jp(p:q) T (p: q)
Ijlé((pq)a (pq)3) ILower chord L
y . —s . ‘
p (P9)a (pg)s 1
(pQ)'V

Aproperty: Jg " (p: q) = Ji(p: ) — T3 ((pa)a : (Pa)s)

(truncated skew Jensen dlvergence)

The chord gap divergence and a generalization of the Bhattacharyya distance, ICASSP 2018



© Fran
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e Distance measures the separation of (same type) entities

(vectors, probability measures, probability densities,

cumulative distribution functions, random variables, matrices, functions, etc.)

* A metric (distance) is a symmetric non-negative distance (dissimilarity) that
satisfies both the law of the indiscernibles and the triangle inequality

* A divergence originally meant a statistical distance (eg., probability metric),
and also means a smooth parametric distance in information geometry

e Statistical divergences between densities of a same parametric family
amount to parameter divergences

* Three classes of non-mutually exclusive parametric distances:

The , , and , that are non-
mutually exclusive

e But also Wasserstein distance in optimal transport (ground distance?), etc.

Nielsen



Information-geometric structures:

e Fisher-Rao geometry
e Dualistic information-geometric structures
* Bregman manifolds and information projections

* Mixture family manifolds and exponential family
manifolds

Frank Nielsen

-t Sony CSL
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Fisher-Rao
Riemannian geometry

Frank Nielsen

& Sony CSL
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Recalling the Fisher information metric...

W
 Fisher Information Metric (FIM): % covar:ant. to. <
reparameterlzatlon —
oy [ Ologp(e,0) dlogp(e,6) wijle
g.?k( )_ /}; 393 89&7 p(-’B, ) L.

 Infinitesimally, the KLD is related to the FIM via:

Dyt [P(60)||P(0)] = 5 3 AP A g;4(80) + O(AF).
ik

This is a squared Mahalanobis distance
This Taylor’ expansion holds for any standard f-divergence (f’’(1)=1)



Rao distance is Riemannian geodesic distance

» Infinitesimal length element :

ds® =) g;(0)d6idd; = o7 1(6)de

y independent to
% reparameterization of 0
» Geodesic and distance are hard to explicitly calculate :

dd d@
p(p(x:61). p(x:62)) = B’E’s’} / \/ ds (0) o ds

Riemannian

6(0)=6 geodesics locally
1 [ ] [ ] [}
6(1)=0> minimize

lengths

» Metric property of p, many tools [1] : Riemannian Log/Exp
tangent/manifold mapping



STATISTICAL DATA ANALYSIS AND INFERENCE edited by Yadolah DODGE, 1989

© Frank Nielsen



Fisher-Rao geometry: Standard simplex
(categorical distribution)

e Trinomial (trinoulli)

Fisher information metric:

0;; 1
9i;(P) = 37 + 15
Ap A

(Hotelling)-Fisher-Rao distance:

d
pruR (p. q) = 2arccos (Z )\;Xg)

1=0

Embedding to the sphere positive orthant

Pattern Learning and Recognition on Statistical Manifolds: An Information-Geometric Review, SIMBAD 2013
Clustering in Hilbert simplex geometry, arXiv:1704.00454

© Frank Nielsen



In practice, calculating Rao’s distance is difficult

i(t) db;(t) |
d(6',6%) _%lén/ JZZ% dt 2 dt.

i=1 j=1

1. Need to solve the Ordinary Differential Equation (ODE) for find the
geodesic:

R~ i d0; db)
0. k=1..... D,
di2 1221;,:1 Gdt dt o b

1 Zp d . 99, (8)  9g;:(0)
ko sz Q 1M Q’a;,- mk .. o
F?,j_§ ( -?891 T Sem )g (9)" ?’}.}‘Jk_]':'“*ﬂpi'

2. Need to integrate the infinitesimal length elements along the
geodesics...

© Frank Nielsen



Hotelling’s 1930 paper considered location-scale
families! fraces Bf Statletiosl Parametars

flaln.0) = ~1((x — u)/o)

ieTined by means of the variannes and
§ if veLl &7 i85 2 rl'] Harold

Hotelling
* 2D FIM

* Constant (non-positive) curvature, isometric to hyperbolic geometry of
curvature

1
32

B = [ (a’;p’(x) 1)2p(a':)da':

p(z)

© Frank Nielsen



Some common Fisher-Rao geodesic distances

Distribution Density Geodesic Distance

Binomial C)px(l —-p) 2./n | arcsin(/py) — arcsin(/p2)|
i —Aqx

Poisson e x]l 2 |\/)L—]_ «/)L_2|

Geometric 1—. /P2t |/ P1—./P2l
(1-=p)p* 2log S AIETD]
—fx gor .o—1
Gamma % | logb, — log 6|
Normal (fixed variance) I —%ﬁ 1 —pal
2ro o
oc—p)?
Normal (fixed mean) 21?m e~ Zﬂ‘; \/E| log o, — log 0|
General Normal —1\K{m—m)1+2(m—az)3
e ¢ 2/ 2tanh ™ = e Ty
. | —1
_ —5o—p T Ha—p) .
p-Variate Normal (X fixed) e ST (11 — 1) T () — )
-Variate Normal (u fixed —f—w'= a—p) I P 2
P (n ) . I EDILE v—@ i=l1 ng)L!-
(here, {A; } are the roots of |X, — AX,| = 0)
) . ‘_ .
Multinomial ! 2/ arccos(Chy /718

Anirban DasGupta, Probability for Statistics and Machine Learning
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Approximating geodesics for multivariate normal

via geodesic shooting

Algorithm 1 Shooting method for minimal geodesics on N ()

Given: Initial point Py = (po. Zo), final point P; = (p1, X).

Output: Minimal geodesic P (1) = (u(r), X(1)), t € [0, 1], such that P(1) = (1. X)).
Initialization: Choose initial velocities V(0) = (z(0), >(0)) (e.g., zeroes), initial values for € (1075), error = 106.

while error = € do

Numerically integrate the geodesic equations (13), (14) for given initial conditions (9, X, fto. 3) fromi=0tor=1.

Denote the solution by (u(r), X (1));
Set W(l) = (Wy(1), We(1)) = (puy — p(1), £y — Z(1));

Calculate error = |W(1)| p, = JF‘/},L(I}]r Z'I_IW”(I} + %U((Z'I_IW;:(I})Z);
Numerically integrate the parallel transport equations (18) and (19) for given trajectory (u(t), (1)) and final veloci-

ties W(1), backward in time from¢=1tor=0;

Numerically calculate Jacobi field J(1) from (22),
J{ 1) . exppu(V{0}+cz W{D))—exppu(V[(}))
- o

Determine proper update size s:
_ AWLJ() peyy
WGy,

if I| W(l)”p(l) = 0.05 then
s =0.05/[W(D) I pays1:

else
s =51;

end if

V(0) < V(0) +sW(0);

end while

, where « is sufficiently small value and we use

0.5

-05

05

el
1t
)

AN
(«éﬂ'!}))
)

05

m\\\\\%\
MW

L N N N

-05 0 05 1 15 2 25 3 35 4 45

(vi)

Minyeon Han - F.C. Park, DTl Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal

model." Statistics & Risk Modeling 9.1-2 (1991): 119-138.
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Approximating the smallest enclosing ball

e |terative algorithm that yields a core-set
e Extends to balls, etc. @
e Useful for k-center clustering.

1 Badoiu -Clarkson(S, €):
2 4 Compute a (1 + €)-approximation of the smallest enclosing ball >
3 < Return the circumcenter of a small enclosing ball in O(%} time >
4 C= 51 ;
fori=1to[%] do

5 4 The core-set is the collection of furthest points &
6 < Furthest point is F; = S; p

7 j = argmax!"_, ||CSi|;

8 C=C+ H_LLCSJ:

9 return C';

Approximating smallest enclosing balls with applications to machine learning, JCGA, 2009

© Frank Nielsen



Klein distance between current center and minimax center

" “expal_dat" u&l'lng 1:2 -

=
[y
ey

Riemannian minimum enclosing ball

a#Mb: point ¥(t) on the geodesic line segment [ab] wrt M.
Algorithm  GeoA

. . 0 At ]
c1 < choose randomly a point in P; w e

Hyperbolic geometry:

for i =2to/ do
// farthest point from ¢ 1-p'q

V(A -p"p)(1-q"q)

p(p, q) = arccosh
. n . Y-
si < arg max_, p(cj, pj);

// update the center: walk on the geodesic line Ty (T-p (p) #aT-p (9)) = P#aq
segment [c;, ps] r ) < (LI 2+ (l2lP + 2. + 1)
i 2||z|? + 2(z, 1
Cir1  Gi#M p HEEETE:
i+1
end Positive-definite matrices:
// Return the SEB approximation p(P,Q) = |[log(P~*Q)[lF = /X, log® \i
return Ball(c;, ; = p(c, P)) ; (P, Q) = Pz (P—%QP—%)tP%

On Approximating the Riemannian 1-Center, Comp. Geom. 2013
Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry, GSI, 2015

© Erank Nielsen
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f-divergence between isotropic Gaussians:
= monotic increasing function of Mahalanobis
Smallest enclosing ball same for all f-divergences...

First, we consider the problem of divergence between two n-dimensional normal
distributions with different mean vectors but the same variance matrix. Let these be
N(w;, Z), i = 1,2. Mahalanobis’s generalized distance is o2, where

o = (o= p1) Z7 (o — to)-
o is a metric and a generally accepted measure of distance between the two
distributions.

Now every coefficient in the class we are considering is an increasing function of .
This is easily demonstrated by considering the transformation

y=x—p) (g~ ty)/x
and so reducing the problem to that of the divergence of a N(«, 1) distribution from
a N(0,1). The family {N(x,1): a >0} of distributions of y has monotonic increasing
likelihood-ratio in y and it follows from Theorem 2 that if f is increasing and C
convex then f[E*{C(¢)}] is an increasing function of a.

From Ali and Silvey’66



Other differential metrics for parametric probability families

e Rao’s quadratic entropy Q fK T,y dP(:L')dP( )

e Conditionally negative definite kernel:

ZT E?K(iﬂi;wj)&ﬁ&j <0, forallzy,---,x, € &
ai+...+a, =0

Jensen-Shannon divergence: Dg (P : Py) = Q (P“LPZ) — —Q (Py) — —Q (Ps)

Theorem: Metric distance property of \/DQ P1 : Pz)

Rao, C.R. (1987). Differential metrics in probability spaces, in Differential Geometry in
Statistical Inference, S.-1. Amari et al. Eds., IMS Lecture Notes and Monographs Series
Rao, C. R. "Quadratic entropy and analysis of diversity." Sankhya A 72.1 (2010): 70-80.

© Frank Nielsen
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Summary: Hotelling-Fisher-Rao geometry

* By using the Fisher information matrix of a regular parametric model as
the Riemannian metric tensor (= information metric), we get a
Riemannian manifold for the probability model

* FIM properties: statistical invariance by a 1-to-1 transformation of the
sample space X

 Geodesic length invariant by reparameterization of the parameter space 0

* The Fisher-Rao distance is the Riemannian metric distance
- geodesic distance

e Difficult to calculate/approximate, even for the multivariate normal family:
a. Explicit geodesic calculation
b. Integration of infinitesimal length elements on the geodesics

Berkane, Maia, Kevin Oden, and Peter M. Bentler. "Geodesic estimation in elliptical distributions."
Journal of Multivariate Analysis 63.1 (1997): 35-46

k



Home » Additional Features, Featured Interview with Professor Calyampudi Radhakrishna Rao

Interview with Professor Calyampudi
Radhakrishna Rao

1 DECEMBER 2016 4635 VIEWS MO COMMENT

Frank Nielsen

C. R. Rao has contributed to facets of modern statistics such as differential-geometric methods in statistics,
score test, quadratic entropy, orthogonal arrays, multivariate analysis, and generalized inverse of a matrix
(singular or not) and its applications. Frank Nielson—a professor of computer science at Ecole
Polytechnique, Palaiseau, France, and a senior researcher at Sony Computer Science Laboratories, Inc.—

interviewed Rao this past year to learn more about his life and work. What follows is what he discovered.

Can you briefly tell us about your family and
education in India?
| was born on September 10, 1920, in a small town in Madras Presidency

(under British rule known as Hadagali). | am the eighth child out of 10 (four

girls and six boys) to my parents.

One of my sisters was a Telugu (my mother tongue) poet. Another sister was a
business woman selling cars imported from Britain. The seventh child was a

boy who had phenomenal memory. He received a gold medal on his anatomy

exam for remembering the names of all the bones and other organs of the

© Frank  Ley vomm omom Lo om ede v Bl m v vm B o]l o B ome s v o e oo Eemim ot o o I o o I o o P Bom od® e Bl oim o o n v B oo o w A i M


https://magazine.amstat.org/blog/2016/12/01/raointerview/

Dualistic structures
of
information geometry

i
- —

2 ¥
~

o N

Sony Computer Science Laboratories, Inc Shinto Eguchi

Frank Nielsen

Shun-ichi Amari

& Sony CSL

An elementary introduction to information geometry https://arxiv.org/abs/1808.08271

© Frank Nielsen


https://arxiv.org/abs/1808.08271

V:X(M)xX(M)— X(M)

e calculate differentials of a vector field Y with respect to another
vector field X: Namely, the covariant derivativeVxY := V(X,Y)

e Defined by prescribing a dimension cubic number of smooth
functions: The Christoffel symbols I‘k — I‘k (p)

* In local coordinates of a chart, we have V é — F 8k.

* The k-th component (VXY) of the covarlant derlvatlve of vector
field Y with respect to vector field X is given by

(VxY)F £ XH(V,Y)F = XZ( | Fijj)

oz’

© Frank Nielsen



Curvature of V

(ae

Cylinder is flat
Parallel transport is

S

independent of path Sphere has constant curvature
Parallel transport is path-dependent



Curvature/torsion of an affine connection V

1 ' 77
parallel transport “twists vectors.

e Curvature tensor (or Riemann-Christoffel RC curvature) /

R(X,Y)Z:=VxVyX — VyVxZ - Vixy Z
R(aj, 8k)8z é R'ljkz 6[ (in local coordinates)

e Connection is said flat when R=0

» Symmetric connection: VxY — VyX = | X|Y]

: . Tk _ Tk
In local coordinates: Fij — sz‘

e (1,2)-torsion tensor: T(X, Y)::ny — Vyx — [X, Y]

© Frank Nielsen



Conjugate connections or dual connections (V, V*)

e For any three smooth vectors fields X,Y,Z of manifold M, conjugate
affine torsion-free connection V* of V with respect to the metric
tensor g

X(Y,Z) = (VxY,Z)+ (Y,V%2), VX,Y,Zec X(M)
Xg(Y,Z2) =9g(VxY,Z)+g(Y,VxZ)

 NB: check that the right-hand-side is a scalar and that the left-hand-
side is a directional derivative of a real-valued function, that is also a
scalar. Unigue dual torsion-free affine connection V*

* Involution: (V*)* =V - (M, g, v, v*)

© Frank Nielsen



Dual V-geodesic and V*-geodesic

With respect to the metric tensor



Property: Dual parallel transport of vectors
preserves the metric

v 4
(u, ’U>c(0) — <Hc(0)%(t) bt Hﬂ(o)%(t) U>c(t)




Metric Levi-Civita connection from averaging
dual connections

v:VJrV* V:LCV fﬁ

\Y%
Hq ()

U1

© Frank Nielsen



Statistical manifolds: Cubic tensor (M g, C )

Apply also to non-statistical contexts!

Dualistic structure with metric tensor g and cubic tensor C

C(X,Y,Z):=(VxY — VLY, Z)

C’LJ’C —Fk I‘*f] (local coordinates)

Steffen Lauritzen

(187) In a local basis:

Ciji = C(8;,0;,0;) = (V5,05 — V3 8;, )

... totally symmetric (=components invariant by index permutation)

© Frank Nielsen



From a statlstlcal manifold to

——

g *i‘:\:.\\ o al family of structug?s
P q I‘% » ng, > Cij, L,
I‘z],a — F%’ | (;Cz'j,k,
| L% =5 Tk + 57T,

The a-connections ¢(VsY,Z) = g(t°VxY,2) + 2C(X,Y, 2),VX,Y,Z € X(M)

) (M, g,V ™%,V = (V7))
C = aC d (M,g,aC')

© Frank Nielsen



The fundamental theorem of information geometry

Theorem: If V has constant curvature k then its
conjugate connection V* has necessarily the same
constant curvature K

Case K=0 ‘

A manifold (M, g, V%, V®) is V*-flat if and only if it is V~*-flat.

Case K=0 '

A manifold (M, g, V,V*) is V-flat if and only if it is V*-flat




How to get initial dual connections?

e Historically, Amari’s defined the statistical expected exponential and
mixture connections, and then the expected a-connections

Linked to parametric family of densities/manifolds

* Then Eguchi showed how to define dual connections from any
smooth parameter distances called divergences (originally, called
contrast functions). From that, we get a 1-family of a-connections



Definition of a parameter divergence

Definition (Divergence) A divergence D : M x M — [0,00) on a manifold M with respect to
a local chart © C RP is a C3-function satisfying the following properties:

1. D(8:60") >0 for all 6,0 € © with equality holding iff § = 6’ (law of the indiscernibles),
2. 83D(9 . 9!)‘9:9! = 8JD(9 . 9")|g:gf =0 f{}?" all ’i:‘-:j S [D},
3. —0.;0.;D(0 : 0")|g=e is positive-definite.

2

O f(z,y) = 5 (x,9), 0. f(2,9) = 35 (2, 9), 0 f(2,4) = 525 5r F(@, ), ete.

Statistical divergence (deviance) like the Kullback-Leibler divergence
VErsus
Parameter divergence as a synonym for a contrast function

© Frank Nielsen



Statistical manifolds from divergences

e Reverse/dual parameter divergence (reference duality)

D*(0:6):

=D(6¢' : 0) (D*)* =D

e Statistical manifold structures:

(M,Pg,PV,P" V) (M,"g,”C)
Pgi=—8,;D(0:0)|g_g =" g, PCijk = P Tiji — PTijn

DI‘ijk:: —agj,kD(e . 9,)
D Fijk:: _8k,ijD(9 . 9,)

W) {(M,P4,°C") = (M,P,PV *,(PV ") = PV")}

© Frank Nielsen

0= > » Dy* _ D'y

6=6 -

aclR



Statistical manifolds from Bregman divergences

Bregman divergence (1967, on Operations research):

Bp(0:0):=F(0) — F(8') — (6 — &) VF(®)
(M, F) = (M,Pr g Brv, brv* = B V)

Dual Bregman divergence and Legendre Fenchel transformation F*

B:(8:60) = Brp(0 :0) = By (

Descrlbed later on,
_— VF 9 9 _— VF 9 In Bregman Hessian
?7 o , T manifolds




Expected a-geometry for a parametric model

P:=po(2)}oco mmm)y {(P,pg,»V 2V )} cr

e Use Fisher information metric (FIM)
e Define the expected a-connections:

 Amari-Chentsov cubic tensor szjjk ::Eg [87, laj lak l]
[(0; x):=log L(0; ) = log py(x)

1l — «

PT  (0):= By [0:0;10,1) + —5—Cign (0),

1 —
5 (a0 5% a1) (001

© Frank Nielsen



Exponential family and mixture family

Example 1 (FIM of an exponential family £) An exponential family [{1] £ is defined for a
sufficient statistic vector t(x) = (ti1(x),...,tp(x)), and an auziliary carrier measure k(x) by the
following canonical density:

D
&= {pg(ﬂ:) = exp (Z ti(x)8; — F(0) + k{:ﬂ)) such that 8 € 9} :
i=1

where F is the strictly convex cumulant function. Exponential families include the Gaussian family,

the Gamma and Beta families, the probability simplex A, etc. The FIM of an exponential family
15 given by:

Example 2 (FIM of a mixture family M) A mizture family is defined for D + 1 functions
Fy,...,Fp and C as:

D
M = {p.g(:t.‘) = Z B;F;(x) + C(x) such that 8 € 9} .

i=1

where the functions {F;(z)}; are linearly independent on the common support X and satisfying
[ Fi(z)du(x) = 0. Function C is such that [ C(x)du(z) = 1. Mizture families include statistical
mixtures with prescribed component distributions and the probability simplex A. The FIM of a
mizture family is given by:

Monte Carlo information geometry: The dually flat case, arXiv:1803.07225

© Frank Nielsen



Exponential e-connection and mixture m-connection:

An example of dually flat connections wrt. FIM

* For an exponential family, the e-connection is flat.
Then by using the fundamental theorem of
information geometry, we have the dual m-
connection flat too.

e For a mixture family, the m-connection is flat. Then
by using the fundamental theorem of information
geometry, we have the dual e-connection flat too.

© Frank Nielsen



Statistical invariance

e Which metric tensor to choose?
* Which dual connections to choose?

 How are statistical divergences related to geometric structures?



Statistical invariance: metric tensor

The Fisher information metric is the unique invariant metric tensor
under Markov embeddings (up to a scaling constant).

Sy

Embedding of §2 in 53 (m=2,n=3)

- L. Lorne Campbell. An extended Cencov characterization of the information metric. ~
Proceedings of the American Mathematical Society, 98(1):135-141, 1986.

- Hong Van Le. The uniqueness of the Fisher metric as information metric. Annals of the
Institute of Statistical Mathematics, 69(4):879-896, 2017.

© Frank Nielsen



Statistical invariance: Statistical divergences

* Information monotonicity of parameter divergences:

DO;:0;)<D(0:0)

Pir| P2| P3| P4| P5| P6 | P7 | P8
coarse graining
P1+p2 | P3+Pps+ps| Pe | P+ P8

Markov embeddings, Markov kernels, etc.

© Frank Nielsen

Invariant

PA divergence



Statistical invariance: Csiszar/Ali-Silvey f-divergences

© Frank Nielsen

» Separable divergence: A separable divergence is a divergence that can be
expressed as the sum of elementary scalar divergences

D(6y : 6,) =Y, d(6} : 6))

e Squared Euclidean distance is separable but not the Euclidean distance
(because of the square root)

* Theorem: The only invariant and decomposable divergences when D>2
are f-divergences defined for a convex functional generator f:

L0:0)=Y2 60 (5) > 1), f1)=0



Standard invariant f-divergences

© Frank Nielsen

o f strictly convex at 1 (for ensuring the law of the indiscernibles)
* Choose (for lower bound of f-divergence being 0)
e Choose to fix lambda in equivalent class of generators:

fr(u) = f(u) + Alu — 1)

e Expansion of
P If(p:p+dp) = f"(1)5dp" g(p)dp

e Choose to get standard f-divergence with infinitesimal
distance expressed using the Fisher information matrix tensor

* The a-connection for any standard f-divergence corresponds to the

expected a-connections for o — 2f”’ (]_) —|— 3




© Frank Nielsen

e Geometry of parametric families of distributions:
* Fisher Riemannian geometry (Levi-Civita connections)
e a-expected geometry (Conjugate/dual connections)
e Statistical invariance

e Expected a-geometry vs a-geometry from any
parameter divergence

e Dually flat geometry for +1/-1-geometry of
exponential families or mixture families



Bregman dually flat manifolds
and
V-information projections

Frank Nielsen

& Sony CSL

© Frank Nielsen



Distance, geodesic, orthogonality, unigueness of projection

Projection, orthogonality and Pythagoras’ theorem

""""""""" P
q ,
Pythagoras’ theorem
la —p*112 + lIp* — pII* = lIp — gII? p" = ming [lp — ql2
lp—qll = [lp —p*| p* Orthogonal projection

Guaranteed unique projection

© Frank Nielsen

Non-unique projection



Goal: Provide geometric interpretations of
MLE/MaxEnt of KL divergence minimizations
as information projections

MaxEnt (with prior q) Maximum Likelihood Estimate

. min  KL(pe () : @
min, KI(D): ¢) = 3, p(x) log 25

o) ~ [n@10gp. @)z~ [ p.(2) logps(w)aa
Y pla)ti(z) =m;, Vie{l,...,D} = min —H(p.) — E, [log py(z)]
p(z) >0, Vze{l,...,n} =max%25(m—mi)logpg($)

© Frank Nielsen
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Bregman manifolds in a nutshell

 From any smooth (C3) convex function F, we can build a dualistic
information-geometric structure called a dually flat manifold.

e Duality emanates from Legendre-Fenchel conjugation
* There are two global (affine) coordinate systems: primal 8 and dual n

* We can associate a canonical divergence to dually flat manifolds: Bregman
divergences or Fenchel-Young divergences (mixed coordinates)

* There are two dual Pythagoras theorems (and generalized laws of cosines)
(Give a sufficient case where dual information projections are unique)
* Very well-suited to computational geometry (Voronoi and proximity queries)

k Nielsen



Dually flat geometry from a convex function

Exponential family Mathematical programming

LP, SDP (CP)

cumulant function

barrier function

Linear systems

(ARMA time-series) Historically, the dualistic structure of
Dual Geometrv | strictly proper score information geometry was called

<+ Game theory by Lauritzen (1987) a statistical manifold.

imduced by a

convex function P But the structure can be used
Mixture family \ in non-statistical contexts.

novel domain

negative entropy

(only component weights vary)

Not necessarily related to statistical models, but can always associate a regular statistical model

Van Lé, HOng. "Statistical manifolds are statistical models." Journal of Geometry 84.1-2 (2006)

© Frank Nielsen



Dually flat manifold construction

* A global coordinate system (single chart) 6

* Metric tensor g is the Hessian of the potential function:

F 2
g = V*F(6)
e V-geodesic of the connection V are straight lines in the 6-coordinate system

* Bregman manifold is a special case of Hessian manifolds where the Hessian is
the Hessian of a global function

HESSIAN STRUCTURES

© Frank Nielsen



Dually flat manifold construction

Duality emanates from the Legendre-Fenchel convex duality:
* _ T
F™*(n) = supgep il n— F(0)}

 Dual Riemannian metric tensor g

* Expressed in the dual coordinate system n : Fg* — v2 | (rr])
* Coordinate-free notation: Fg* . g

o V*-geodesic of the connection V* are straight lines since

Fr*z’jk (7’]) — 0

© Frank Nielsen



Metric tensor using covariant/contravariant notations

2-covariant metric tensor in local coordinates: v
2 (ei,e7) = 5]
g:i(0) =V*F(O) .-~
e 1'; :
} xr
Dual metric tensor in local coordinates: \

g7 (n) = g*" (n) = €12F ()

Crouzeix’s identity of Hessians of convex conjugates:

V2F(O)V?F*(n) =1

© Frank Nielsen



a-geometry of Bregman manifolds

(]‘4797 ; _a7 "a) Ef' E,‘ E;T
- L ] * ™ *
Cz]k =71 17k | i ik

Amari-Chentsov cubic tensor: FCz]k — 82 8] 8]{3 F(e)

vi=v V1=V* 10_ LC

81

a _ 10
Get the a-connections: Fij,k — Fz‘j,k — Ecij,k
87
—a _ 10 | ..
Fz’j,k — Pz‘j,k "9 Ozy,k

© Frank Nielsen



Dual Pythagoras’ theorem

7*(P,Q) Lr v(Q, R) HP.Q) Lr v*(Q.R)
P T p '.
L-® L-— o
/L- -------- R / R
Q Q
D(P:R)=D(P:Q)+D(Q:R) D'(P:R)=D(P:Q)+D'(Q: R)
Bp(0(P) : 0(R)) = Bp(0(P): 8(Q)) + Bp(8(Q) : 0(R)) Bp-(n(P) : n(R)) = Bp-(n(P) : n(Q)) + Bp-(n(Q) : n(R))

Y (P,Q) L¥Q,R) & (n(P) —n(Q)) (0(Q) — O(R)) = (mi(P) —mi(Q))(0:(Q) — 0i(R)) =0
(P, Q) Lv*(Q,R) « (8(P) — 0(Q))" (n(Q) — n(R)) = (6:;(P) — 6:;(Q)) " (m(Q) — mi(R)) =0



Dual Riemann geodesic distances induced by a
separable Bregman divergence

yi = ¢'(x;)

Bregman divergence:

Y T
NG 0 | T Ba(r,2') = 2(z) - B(@') — (z - ') V(')
| Pacg /, Separable Bregman generator:
: X Yo'~ (y) — ¢(¢' ()
Primal coordinate system Dual coordinate system K .
— -~ " ®(z) :=> ;- #(zj) withgp : T — R
| () = v wet| | he) = (o) Riemannian metric tensor:
"
9ij(2) = ¢" (2:)dy;
" hs, Geodesics:
‘\. dg(x,x") = dg-(y,y') o Vi (t) — h—l ((1 . t)h(ﬂ%) + th(x;)), t € [0, 1]
h(x’
Fuclidean space ) Fuclidean space

Legendre conjugate: ¢*(y) = yo' ! (y)

py(z,2') = pg (¥,4') = pgr (V®(z), VO(2'))
— (¢ (v))

Geometry and clustering with metrics derived from separable Bregman divergences, arXiv:1810.10770

Riemannian distance (metric):

= /3K, (hlz;) — A=)’

where |h(z) := [ /¢"(z)

po(z, ")



Uniqueness of projections in dually flat spaces

Theorem (Uniqueness of projections) The V-projection Pg of P on S is unique if S is
V*-flat and minimizes the divergence D(0(P) : 6(Q)):

V-projection: Ps = argmin D(6(P) : 0(Q)).

QeS

The dual V*-projection Pg is unique if M C S is V-flat and minimizes the divergence D(0(Q) :
0(P)):

V*-projection: Pg = argmin D(6(Q) : 8(P)).

QesS

© Frank Nielsen



Geometry of KLD for exponential families or
for mixture families is dually flat

e-projection g7 is unique it M C S is m-flat and minimizes
the m-divergence KL([q|: p) (left-sided argument):

e-projection: |qg. = argminKL([q]: p)
q

m-projection g’ is unique if M C S is e-flat and minimizes
the e-divergence KL(p :|q|) (right-sided argument):

m-projection: | g, = argmin KL(p:|q])
q

I-projection, rI-projection, KL—projection

© Frank Nielsen



MLE for an exponential family as an
information projection

Exponential Family Manifold (EFM) is e-flat
Observed point

EMmpiri istribution p,

m~projection, min KL{(p.(x) :|ps(x)

llllllllllllll
]

observed point
{Py =p(x|#)}s  Exponential Family Manifold

P Space of probability distributions




MaxEnt as an information projection

e MaxEnt linear constraints define a m-flat

prior g

e-projection

KL(p : q}_-":
| KL(p" : q)

affine subspace
induced by

; constraints

i s E .atlx) =n

- KL(p: p(z:0)

oKL P\

------ - p* = minp ]{L{p . E}'} m-~fat
m-geodesic

Pythagorean theorem:

KL(p:q) = KL(p: p*) + KL(p* : q)

Pythagoras’ theorem (Fisher orthogonality) Ym (pa p*) L v Ve (p*aQ)

© Frank Nielsen



Simplifying a mixture model to a single component

KL right-sided minimization problem for simplifying a mixture of EFs

xponential family manifold

Best single distribution is expressed in

n-coordinates as the center of mass p = pr(z|0) m-geqgdesic

m = _; wipr(x|6;)

e-geodesic mixture

p* = pp(z]0*)
e-flat Mp

n = Zz W; 1)

p* = argmin KL(m : p)
KL(TH . p) — KL(p* : p) —|— KL(TH . p*)

Learning mixtures by simplifying kernel density estimators, 2012
Model centroids for the simplification of kernel density estimators, ICASSP 2012

© Frank Nielsen



Information projection: Closest independent distribution
P(x.,Y) (z,y) = px(z)py (¥)

* Independence of random variables X and Y: KL between joint (X,Y) and
product of marginals

KL[p(z,y) : p(z,y)] = [p(z,y)log E y)) dzdy

e-geodesic of two independent distributions is
family of independent distributions

M,:independent
distributions

m-projection of p(x, y) to
Manifold of independent distributions

© Frank Nielsen



Sanov’s theorem (large deviation theory)

Empirical distribution from iid observations is MILE of categorical distributions

A

N
1 N;
D] = — 0 x(t)} = —
P NE] @} =~

% e-projection

Large Deviation Theorem The probability that p is included in A is given asymp-
totically by

Prob{p € A} =exp{—N D, |p} : p|}.

where

Py =argminDg; [q : p] .
geA

When A is a closed set having a boundary. p% is given by e-projecting p to the
boundary of A.




MLE on a curved exponential family

S

D (7 || n(u))

p (z;u) = exp {0" (u)z; — ¥(0(u))}

iU
. observed N
7 point. ~ _ B 1 Z
— I = — TIt.
\ . ) T’ 3: » N
u: estimate t=1

pw=u and o°=u".
“ : f () m-geodesic
= P(0(u)) + () — 0" (u)h m-projection

1 ,
p(7) — N log pn (x‘w ;‘u) :



Divergence between two submanifolds
Alternating minimization algorithm

Q* \
Q t+1
t

S
D(K : S) =minpcg ges D(P: Q) = D(P* : Q)
D(Pi1:Qt) > D(P: Q1) > D (P : Qi)
Unique when S is flat and K is dually flat.

nnnnnnnnnnnnn



Bregman blseCtorS Primal coordinates #  Dual coordinates n

natural parameters  expectation parameters

Right-sided bisector: — Hyperplane =
Hp(p,q) ={r € X' | Br(z||p) = Br(x||q)}.
Hp : (VF(p) = VF(q))z + (F(p) — Flq) + (¢. VF(q)) — (p,VF(p))) =0
Left-sided bisector: — Hypersurface =
TIT = EEEE e
Hp(p,q) ={zx € X | Br(p|lz) = Br(q||x)}. .
Hyp - (VF(x).q = p) + F(p) = Flq) = 0 e =
(hyperplane in the “gradient space” V.X' = dual coordinate system) . :

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010

© Frank Nielsen



Bregman Voronoi diagrams from lower envelopes

A subclass of affine diagrams which have all cells non-empty.

Extend Euclidean Voronoi to Voronoi diagrams in dually flat spaces.
Minimization diagram Of the n functions

D;(z) = Br(z||p;) = F(z) — F(pi) — (x — pi, VF(pi))-

= minimization of » linear functions: H;(z) = (p; — )TV F(q;) — F(p;).

d
The sided Bregman Voronoi diagrams of n d-dimensional points have complexity (—)(nL_&F_lJ)
d+1

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010

© Frank Nielsen



Bregman Voronoi diagrams from power diagrams
Equivalence: B(VF(p;).r;) with
r? = (VF(p;), VE(pi)) + 2(F(pi) — (pi. VF (i)

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010



Space of Bregman spheres

F:x+w— 1= (x,F(x)), hypersurface in R4

H,: Tangent hyperplane at p, - = H,(x) = (x — p, VF(p)) + F(p)
Bregman sphere ¢ — ¢ with supporting hyperplane
H,:>2={(r—¢,VF(c)) + F(e)+r. (// to H. and shifted vertically by r)
c=FnNH,.

Conversely, the intersection of any hyperplane H with F projects onto X
as a Bregman sphere:

H:z={(x,a)+b—o:Ballp(c=(VF) Ya),r = (a,¢) — F(c) + b)

1 1 1
InSphere(r;pg, ..., Pq) = Do Pd T
F(po) F(pa) F(x)

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010

© Frank Nielsen




Fast Proximity queries for Bregman divergences (incl. KL)

Fast Nearest Neighbour Queries for Bregman divergences Space partition induced by
Bregman vantage point trees

S By

B, \\ . '/.I' *\_/ / , B_?,
.. .5 Check whether two Bregman spheres | -, /f-”\ /B\
- w Intersect or not easily R~ IV A
. (radical hyperplane, space of spheres) B " Bl A AN AR
SN
~R
RN

Bregman ball trees

C++ source code https://www.lix.polytechnigue.fr/~nielsen/BregmanProximity/

Bregman vantage point trees for efficient nearest Neighbor Queries, ICME 2009

Tailored Bregman ball trees for effective nearest neighbors, EuroCG 2009 E.g., Extended Kullback-Leibler

© Erank Nielsen


https://www.lix.polytechnique.fr/%7Enielsen/BregmanProximity/

Dualistic structure of the Gaussian manifold
V: e-connection

* " V*:m-connection

pe' = (1 — a)pr + aps
v = (1 —a)vy +avy + a(l — a)(py — u2)?

e _— (1—a)pyva+ap,v
(Plpz)f’x = fhe (1—a)ve+av

,Ue — V102
@ (1—a)ve+avy

(P1p2)a = {

po = (1 —a)u + aps
S =3, + (1 —a)mp —apopy — g,

(P1P2f)g” = {

pé =25 ((1— a)B7 p1 + X5 o)

(p1p2)gf — { Eg — ((]_ — 05)21_1 + 0522_1)_1

© Frank Nielsen



Distances
and
information geometry
f

fmlte statistical mixtures

Frank Nielsen

& Sony CSL
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\ . ‘. . K k=8 k=32 k=128 t
Finite statistical mixtures | =8 Y LN

e Semi-parametric models, universal estimators of smooth densities

e Gaussian mixture models (GMMs), Exponential family mixture models
(EFMMs), etc.

n . _ 2\ 1 (z — ﬂ)Q
f(:]j) — Zwt g(ﬂ:; l"t”i: 0—3) W|th g(z’.a H, o ) - /—271_0_2 exp (_ 20_2 )
1=1

e But non-identifiable/non-regular !!! (not 1-to-1 parameter/density)

e Usually learn GMMs by Expectation-Maximization (EM, local optimum)
e But also can learn mixtures by simplifying a Kernel Density Estimator
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Learning a mixture by simplifying a kernel density estimator
‘2’ | Original histogram

B raw KDE (14400 components)
simplified mixture (8 components)

Galperin’s model centroid (HG)

0 - i e ™ oy ™ ™ . i I‘f‘l .=‘.‘l ‘l‘. .l‘.‘ ,L. i ;‘.-‘ X - = wlp,rl + w2p/2
2 1 (x — p)?
f(z) = sz‘ g(@; pi,o7)  glas p,o®) = exp | ——5—
— Vo 20
1=
Usual centroids based on Kullback-Leibler sided/symmetrized Minkowski model
. 1 de n zp inkowski mode wapl
argmin, » . w; KLD(c, z;) KLD(fp, fq) = 5 log (det Eq) N\ ot .
argmin, » . w; KLD(x;,c) + %tr(Eq_lEp) _\.\_\._.__ptl_ < ._,.:j_ Klein disk
AN c g
: oy . 1 B d \
ar.g mine 21 w‘S.KL(x'“ c) . . + 5(#(1 - HP)TEq 1(ﬂq - Pvp) 9 "\ /
or Fisher-Rao distance (hyperbolic distance) /
FRD(fp, fy) = , , , ©
(52 00) = (5 00| + (75 90) = (52 90) Simple model centroid algorithm:
\/iln Hp Hq Hp Hq
(55, 0p) — (L%, 09)| = |(55, ) — (L5, 04))

Embed Klein points to points of the Minkowski hyperboloid

Problem: Centroid = center of mass c, scaled back to ¢’ of the hyperboloid
No closed-form FR/SKL centroids!!! Map back ¢” to Klein disk

N Model centroids for the simplification of Kernel Density estimators. ICASSP 2012



Log-likelihood of the simplified models and computation time

-70000

-80000 +

-90000 Ff

-100000

-110000 | [/

-120000 |

-130000 //

-140000

-150000

Dataset: intensity histogram of Lena image

KL with right-sided centroids
Full k-means or only one iteration

= — —
EM ———
KL —w— A
f Model -
{ one step Model —s—
|'Il.‘d.
['f
|'II 'f'
Jj
| .'l
.'IIJI[
|jl
/!
[
;..'
if
fh
i
2 s 10 12 14 16 24 28 32

=le}

BO

70 |

60 |

50

a0

30 }

20

10

EM ——
Model
KL <=
one step Model” —s—
*

While achieving same log-likelihood, model centroid is the fastest method,

significantly faster than EM.

© Frank Nielsen
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Model centroids for the simplification of Kernel Density estimators. ICASSP 2012



Distances and geometry of statistical mixtures

 Many common statistical distances are not in closed-form when dealing with
statistical mixtures (eg., KLD between GMMs not even analytic!).

 Need approximation algorithms to calculate mixture distances

e Or design novel principled statistical distances that admit closed forms or
approximate probabilistically/deterministically statistical distances

(e.g., Cauchy-Schwarz divergence, Jensen-Renyi divergence , etc.)

e Geometry of mixtures family in information geometry is dually flat:
Intractable Bregman manifold and tractable Monte Carlo Bregman manifold

Guaranteed Bounds on Information-Theoretic Measures of Univariate Mixtures Using Piecewise Log-Sum-Exp
Inequalities. Entropy 18(12) (2016)

© Frank Nielsen



Batch Iearning of mixtures and lightspeed distance calculations

Kullback-Leibler i p(x)
=S wiprlzm) m( ZL“IPF z:1) divergence KL(pllq)—f (z) log 2 o)
=1
m(z;) = H(p,q) — H(p)
KLnc m||m = Zlﬂ m/(z;) Monte-Carlo stochastic estimation (iid sampling from m)
e Hungarian best bipartite matchmg KL (mm') = argminKL (w]o()

of components (Goldberger) + 3 wiKL (pr () o () )

* Variational approximation of KL for mixtures:f ;. ) - Y w10 e )
v I E Z r —KL(.DF( In:) llpF(-ln’))

Definition A co-mixture of exponential families (a

comix) with K’ components is a set of S statistical mix- Extend Expectation-Maximization algorithms
ture models of the form: for batch learning of co-mixtures
[ 1 1 K 1 c
my(zw) . wl) = 2K wMpp(zim) (co-EM, adapt Bregman soft clustering)

< m.g(;r:;w?] mg)) Zild{ }P( 7))

Precompute the matrix: D;; = KL (pr (-|m:) |lpr (]1n5)).

| ms(@;w;” . wg) = Ty @ pr(a;m:)
Comix: Joint estimation and lightspeed comparison of mixture models. ICASSP 2016
Bag-of-components: an online algorithm for batch learning of mixture models, GSI 2015

© Frank Nielsen



1.0 - . 1.0

Experiments on co-mixturess

=
o
T
=
e

! 1 mean average precision (mAP) over all
/4\‘%‘ the possible queries (by successively

| W taking each mixture as the query

1 and looking at the retrieved mixtures

=
o=

=
.

Retrieval precision

2+ = u ] = i . . .

02 — EMKiye 02 — Klvar in a short list of size 10)
— EM <+ KLyar *—# KLGoldberger

0.0 : T 0.0 . ) \ :

100.0 1000.0 10000.0 100000.0 4 3 16 32 64 128

Number of random variates Number of comix components

Fig. Left: mAP of KLMC between EM mixtures wrt the sample size and result from variational KL. Right: mAP
wrt the number of components of variational Kullback-Leibler and Goldberger between co-EM mixtures.

k | co- Speed-up be- Speed-up between] Speed-up between | Goldberger
EM tween co-EM KLyi;y on comixj] KL, on comix and | on comix
and EM8 and KL,,, on EM8 § KLyc100 on EMS
4 | 5ls x1.5 x 180 x 20 0.00015s
8 | 99s x0.77 x 84 X 5.8 0.00030s
16 | 48s x1.6 %28 x 1.6 0.00059s
32 | 150s x0.49 x9.1 x 0.41 0.0012s
64 | 450s x0.17 x2.5 x 0.10 0.0024s
128 | 600s x0.12 x0.80 x0.026 0.0049s

Table  Absolute times for computation on comix and speed-up when compared to the times of the equivalent
R, computation on individual mixtures. Times for co-EM are compared with the total time for all the individual EM.



Chain Rule Optimal Transport (CROT) distance

mi(z) = 3.

k
m1 = Zill

", aipi(z) ma(z) = Zz—l thl( ) Pij = Di
k B _
j2—1 Wi i Pi.j mg = Z Zj ~1 Wi G5 j di.; — 45

k1 ko

Solve the Linear Program: w;(p.q) =YY wijo(pi, ;)

with the following constraints: :
. ) @ @2 mi =) ;i Qipi
Wi4 :_} 0, Vi € [k]_] s ] c [kg] 2 components
k2
E : Wiy = Qg Vi € [kl} w1 | W2 | W13 | W2 | W22 | W23 my = Zle Z?:l w; ;P
=1 1 o o > > > 6 redundant components
k1 Simple my =30y Y Wi P
) bipartite
E ng. pm— Bj . V‘} E [k?] . matching q g2 qs3 q1 q2 qs3 My = Z?:l E?:l W; jqi j
=1 w11 | W12 | W13 Wz | W22 | W33 ma = 2?21 Zle Wi ;45

Equivalent optimal transport problem:

Hs(mq : mgy) =

© Frank Nielsen

6 redundant components

min w;:0(pisq;)- .
WeU(a, B)ZZ Y (pg q‘?) B B2 B3 m2=2j:16in

=1 j=1 3 components

On The Chain Rule Optimal Transport Distance. CoRR abs/1812.08113 (2018)




Chain Rule Optimal Transport (CROT) distance

For any joint convex distance d(m1 : m2)
the CROT distance Hjs(m1, m2)upper bound between mixtures

k1 ko
d(myp:mg) = 9 Zﬂipi:-z/ﬁjf}j
1=1 71=1
ke ks by ks f-divergences
Sl P 3 3 (incl. KL)
i=1 j=1 =1 =1
ki ks are joint convex
< Z Zwija(pi,j L qij)
=1 73=1
ki ko
< Y Y wiid(pi : q5) = Hs(my,ma).
i=1 j=1 But also the p-powered Wasserstein distances,

Etc.
On The Chain Rule Optimal Transport Distance. arXiv:1812.08113 (2018)

© Frank Nielsen



1.0
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0.0 1

GMMS

95
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25

VvV IS0.1
4= = CEUB S CROT = O
- CGQLB —— MC = Sinkhorn
_ f
T

10!
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1.0 1

0.5 7

0.0 1

GMM4
0.6 1
0.4 -
0.2 -
0.0 : : il :
—5.0 —2.5 0.0 2.5
vV JIS50.5
e
1 I Ll 0 L
10! 102 103

Chain Rule Optimal Transport (CROT) distance

10 7 = CELB - CGALB e MC
- CEUB == CROT m— Sinkhorn
Fast
0.5 - = — Sinkhorn
— alculations
001 | |
101 102 103
Vv JI50.9
| =50 — W sawn|  JSu:ar=1KL(: (a)e) + SKL(1: (pa)a)
. p
KL(p: (pg)a) < /plog Aoy S —log(1—a)
VISa(p:q) £Ca = \/—%log(l —a) — %loga.
100 102 10

On The Chain Rule Optimal Transport Distance. CoRR abs/1812.08113 (2018)



Statistical mixtures versus mixture families

* In statistics, finite statistical mixtures are irregular models

(non-identifiable)

m(x;w) Z w;pi(x),

* Information geometry primarily considers regular models

* In information geometry, mixture families are regular parametric
models M:={m(z;w), we A}_,} fa(il?) = pg(fl?) —po(:lf) c(z) = po(x)

k—1 k—1
M — {m(i’?]) :Znipi($)+ (1 —an‘) po(x),n ER{T—:}} M = { m(x;n) = Zntfz c(z), ne€E HO}
i=1 =1

e Statistical mixtures with prescribed distinct component
distributions form mixture families

© Frank Nielsen



A mixture family of order 1 (=2 fixed components)

0.5

T
Mixture 1 —
Mixture 2

045 | p1(x)

04

0.35

}— T Ny
pO(X’ U3 > // %

0.25 |-

02 -

0.15 -

0.1 -

0.05 -




A mixture family of order 2 (=3 fixed components)

0.5 | T i T |
M1 —
M2
0.45 - Gaussian(-2,1) =—
Cauchy(2,1) ———
04 Laplace(0,1) |

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Figure : Example of a mixture family of order D = 2 (k = 3): po(z) ~ Gaussian(—2,1) (red), pi(z) ~
Laplace(0, 1) (blue) and ps(z) ~ Cauchy(2,1) (green). The two mixtures are m;(z) = m(x;n;) (black) with
m = (0.3,0.5) and ma(z) = m(z;n) (gray) with n = (0.1,0.4).

© Frank Nielsen



A mixture family is a Bregman (Hessian) manifold

 Two global coordinate systems related by Legendre-Fenchel transformation
 Two flat connections that are coupled to the metric tensor (Hessian of a potential function)
e Primal/dual geodesics are straight lines in the primal/dual coordinate system

Manifold (M, F)

Primal structure

Dual structure

Affine coordinate system
Conversion 6 < 7

0(-)
0(n) = VE™(n)

n(-)
n(#) = VF(0)

Potential function

F(0) = (0,VE(0)) — F*(VE(0))

F*(n) ={(n,VF*(n)) — F(VF~*(n))

Metric tensor g

G(0) = VZF(0)

G*(n) = V°F*(n)

Geodesic (A € [0,1])

gi; = 0:;0; F(0)
V(P Q) = {(PQ)r = (1 — N)b(P) + A6(Q) }»

g’ =90 F (n)
7 (P,Q) ={(PQ)5 = (1 = M)n(P) + An(Q)}»

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019

© Frank Nielsen




Two prominent examples of Bregman manifolds

Exponential Family Mixture Family

Density p(z;0) = exp((6,2) — F(0)) |  m(x;n) = >iy mifilz) + ()

fi(x) = pi(x) — po(x)

Family /Manifold M ={p(z;0) : 0 €0O6°} M ={m(z;n) : n€ H°}

Convex function (= ax + b) F: cumulant F*: negative entropy

Dual coordinates moment 7 = E[t(z)] 6 = h*(po : m) — h*(p; : m)

Fisher Information g = (g;;)i; 9:;(0) = 0;,0,F(0) 9:;(n) = [, ! *ng 3;}():1:) dp(x)
g = Var[t(X)]

gij(n) = —0;0;h(n)

Christoffel symbol Tijr = 50:0;00F () ik = —5 [ G qp ()

Entropy —F™(n) —F*(n)

Kullback-Leibler divergence Br (62 : 61) Bp«(n1 : m2)

= Bp-«(n1 : 12) = Bp (62 : 61)

© Frank Nielsen



A mixture family is a dually flat manifold

* The canonical divergence of any dually flat manifold is a Bregman divergence

The KL between two mixtures with prescribed components amounts to a
Bregman divergence

e Strictly convex and differential convex generator:

* However, G not in closed-form, event not analytic!

A Bregman divergence is always finite, and so is the KL between two
members of the same mixture family (but not on the closure).

© Frank Nielsen



Computational tractability of Bregman manifolds

Algorithm F(0) | n(@)=VF(@0) | 6(n)=VF*(n) | F*(n)
Right-sided Bregman clustering v v X
Left-sided Bregman clustering X X v v
Symmetrized Bregman centroid v v v v
Mixed Bregman clustering v v v v
Maximum Likelihood Estimator for EFs || x X v X
Bregman soft clustering (= EM) X v v v
Type F VF* Example
Type 1 || closed-form closed-form Gaussian (exponential) family
Type 2 || closed-form not closed-form | Beta (exponential) family
Type 3 || comp. intractable | not closed-form | Ising family [49]
Type 4 || not closed-form not closed-form | Polynomial exponential family [39]
Type 5 || not analytic not analytic mixture family

© Frank Nielsen



Random Bregman manifolds: Monte Carlo

e |f any time we want to compute integral-based generators or Bregman divergences,
we used stochastic Monte-Carlo estimators, we get inconsistencies and faulty algorithms

C— 1 - €I;
KLm (p : q) — E Z lﬂg p( i _ This can be negative

1 Q(-T@, (because “positive” measures)

e Solution: use the same variates for all integral-based evaluations

e |t turns out that this scheme is similar to defining a random Bregman generator
that is with high probability a proper Bregman generator. Geometric algorithms run inside
that randomized manifold are consistent by construction

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019

© Frank Nielsen



Random 1D mixture manifolds

gisa
proposal

Monte Carlo Mixture Family Generator 1D: distribution

Gs(n) = %Z q(;) m(zi;n) logm(zi;n),

éfs(??) — % Z q(z:) (p1(zi) — po(z:))(1 + logm(zi;n)),
1=1 z

1 . l - 1 (p ( %) _pU( t))z

Gst) = o Zl q(zi)  m(zsn)

1

Theorem: With high-probability, Gs(n) is a Bregman generator

© Frank Nielsen



I
ideal

FT J—
s 100 ---- ]
1000 — — -
12 L 10000 —— _
13} -
14 i

2.1 | 1 | 1 | 1 1 I I

Figure 2: A series Gg(n) of Bregman Monte Carlo Mixture Family generators (for m = |S| €
{10, 100, 1000, 10000}) approximating the untractable ideal negentropy generator G(n) = —h(m(z;7n)) (red)
of a mixture family with prescribed Gaussian distributions m(z:n) = (1 — n)p(z:0,3) + np(z;2,1) for the
proposal distribution ¢(z) = m(z; 3).
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-0.8 1 T 1 T 1 T I T L
ideal

2 —

0w

-22 ] 1 ] 1 ] 1 | 1 1

Figure : The Monte Carlo Mixture Family Generator G19 (MCMFG) considered as a random variable:
Here, we show five realizations (i.e., S1,...,85) of the randomized generator for m = 5. The ideal generator
is plot in thick red.
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Application to clustering Gaussian mixtures
(with prescrlbed Gaussmn components)

0.25

0.2

0.15

01

0.05

-4

2 0

2 4

Figure 6: Clustering a set of n = 8 statistical mixtures of order D = 2 with K = 2 clusters: Each mixture
is represented by a 2D point on the mixture family manifold. The Kullback-Leibler divergence is equivalent
to an integral-based Bregman divergence that is computationally untractable: The Bregman generator is
stochastically approximated by Monte Carlo sampling.

© Frank Nielsen



Random d-dimensional mixture manifolds
) ii

i;m) 1 i
)" (zi:m) logm(zi; ).

IPGs(n) =

i pz(i‘t) — po(z1)) (s (x1) — po(z1))

1
m = q(z m(z1:1)

Theorem (Monte HCarln Mixture Family Function is a Bregman generator) The Monte Carlo
multivariate function Gs(n) is always conver and twice continuously differentiable, and strictly convex almost
surely.

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019
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Random Exponential Family Manifolds

£ = {p(x;0) = exp(t(x)0 — F(6) + k(z)) : 6 € O} F(®) = log [ exp(t(@)6 + o)du(o))

m

F(#) ~ FL(9) :=log (; > !

- exp(t(x;)0 + k(:re))) W
i=1 q(x;) %M
Fi(0) = Fs(0),

Fs(0) = log (1 + ) exp((t(z:) — t(x1))0 + k(z:) — k(z1) — log g(x;) + log Q(mlJ))

1=2

= log (1 — Zexp(aiﬁ + bi)) .

1=2

= Iseg (a2 + b2, ..., amb + bm),

Log-sum-exp modified function to ensure always strict convexity




Polynomial Exponential Families #% =e®(%#=) - F)

aligned pixel-based (SSD) PEF (D = 4) with S,

< ~ N
'\\. P A iy l). [ "' _-‘“\"'\ {‘\- BE A T T
> "

e Estimate a PEF with score matching/summed area table jiaisay
e Use projective gamma-divergence (Monte-Carlo) 1

1

1
———— log I,(p,p) — —log I,(p,q) +

1
D(p.q) = S log I5(q. q);

where

I(p.q) = f __p(e)a(e)ds.

When v — 0, D,(p,q) — KL(p,q).

I1,(60p,0q) = exp (F(0p +v0,) — F(6,) —vF(6y)) -

Iy(p.q) = fex p(z)q(z) dx ~ % ZQ(:E...;)"

Patch matching with polynomial exponential families and projective divergences.
International Conference on Similarity Search and Applications (SISAP). 2016
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Random/Monte Carlo Bregman Voronoi diagrams
p1 = Laplace(0,1), po = N(—1,1), pg = Cauchy(—0.5,1),

@ mixtures
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Some statistical distances with closed-form
expressions for statistical mixtures

e Cauchy-Schwarz divergence: CS(P: Q)= —log J p(x)q(x)dz

\/fp(.r)Qd:ch(:t:Pda::
* For mixtures of exponential families with conic natural parameter
wpace: fm(if m'(z)dz = Zf:l Zle w;w’; [ pp(x;0;)pp(x;0;)de
| pr(@;0)pp(;0))de = (FO+0)-(FO)+F(©)) /-E{t(a:),&#—ﬁ_;}—F(9i+9;)d$,
¢ f: .
T m(z)m’ (z)dz = vk Zj _, wiw!,eF Ot8)—(F@)+F @) Y;/zecr;::tural parameter space

Closed-form information-theoretic divergences for statistical mixtures, ICPR 2012.



Examples of conic exponential families (CEFs)

| m_(;;)m’(x)dg; = Yr 2‘;’:1 ww,eAF (0007, Ap(0;,0,) = F(8; +0)) — (F(6;) + F(6))).

Bernoulli. p(z;)\) = A\*(1 — \)!'=* (with A € Zero-centered Laplacian. p(z;0) = %e_%[, Gaussian. p(z; pu, ) =
(0,1)),0 =log 25,0 =R, F(0) =log(1+¢?). §=—1 0 = (—00,0), F(8) = log(=2).
1 exp [~ Z )2z — p)
14 A A ( ) =1 1 (2m)d/2|5|1/2 2 ’
+ 55 ian(0i,0;) = log —————
ABernoulli (/\é? /\j) _ log 1-Xi—X; Laplacian\%is U g 2(0_1_ T Uj)

6 = (0,.0y) = (=" p,271), 0 = R x .S'jir+
where S_‘i . denotes the cone of positive definite
matrices of dimension d X d,

_ s
(1 + l—i‘g)(l + 1—_%)

Wishart p(z;n,S) =

IXI"_g_l o~ Ftr(STIX)

1 1 d
F(0) = 5959;4193 -5 log |0ar| + 5 log 2.

. with S > 0 the scale matrix

ned 1
22 |S[2Ta(3)
and n > d — 1 the number of degrees of freedom,
where I'; 1s the multivariate Gamma function

. 1
Fd(l') = g1/ H;‘izl I (1' + (1 - j)/Z)- AGaussian((huia Ei)'! (,Uja EJ)J - § (
0 = (0,0n) = (=5=,87") with T -1 Tv—1 Ts—1
© = R; x S{, the cone of positive defi- pii g pig — (pg X pi + g X5 p)
nite matrices. F(f) = w log2 + (05 + =71+ Ej_l|

45 log |0ar| +log Ta(Bs + “5). — dlog2m )

© Frank Nielsen
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Some applications of information geometry:

e Natural gradient and deep learning

e Bayesian hypothesis testing
geometry of the error exponent

* Clustering
partition-based, soft mixtures and hierarchical

Frank Nielsen
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ply|x,©)= > plylhi1,60) - p(ha| by, 05)p(hy | x,6;),

“t Natural gradient and
mirror descent

= |1 " =
/8T ;
TeMe: a tangent space with
a local inner product ¢(8)

AN
S -
> a lt‘?ll‘lllllg curve
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Steepest gradient descent method

e |terative optimization algorithm
e Start from an initial parameter value 90
e Update iteratively the current parameter using a learning rate a (step
size) and the gradient of the energy function:
9,5_|_1 — 975 — oV E(Qt)
T e First-order optimization method
°

_//-I—)
L

Y ™
i
D
Similarly, maximization with hill climbing, steepest ascent

e Zig-zag local minimum convergence -
Stopping criterion

S
4 .hl‘!tﬁ‘i.';“&‘g
e
YK ':‘:’:‘:“t s
TADA 90055
[ 94 0%
e

o




Steepest descent in a Riemannian space

* The steepest descent direction of E(B) in a Riemannian space is given
by ~
~-VE(0) = -G 1 (0)VE(H)

gradient \
Learning rate

Computing the inverse of the Fisher information matrix is tricky

Amari, Shun-Ichi. "Natural gradient works efficiently in learning." Neural computation 10.2 (1998): 251-276.

© Frank Nielsen



Pros and cons of natural gradient

* Pros: @

e [nvariant (intrinsic) gradient (at infinitesimal scale/ODE)
* Not trapped in plateaus
* Achieve Fisher efficiency in online learning

e Cons:

* Too expensive to compute (no closed-form FIM; need matrix inversion;
numerical stability)

e Degenerate for irreqular models (e.g., hierarchical models, Deep learning)
 Need to adapt step size



In a dually flat space, natural gradient is
ordinary gradient for the dual coordinates

In a dually flat space (Hessian manifold), we have

Iy(0) = VgF(Q) = Vo VyF(0) = Vyn

Natural gradient veLe (9) s — Ie_l (9) V9L9 (9)

= (Von) "VenV, Ly, (1)
— V’? Lrn (77) Ordinary gradient
‘ Used in variational inference (V1)

nnnnnnnnnnnnn



Mirror descent in non-Euclidean space
975_|_1 — 975 — OéVE(Ht)

Can be rewritten as

. /| 2
T}41 = argmin {f(:r:k) + (g, T — Tk) + — ||z — x| }
reC 2“&?

Replace squared loss with any Bregman divergence:

Tp,1 = argmin {f(:t:k) + (gr,x — T ) + ﬁBF(m : :{:k)}

xeC
Thus mirror descent for the Bregman divergence on the primal parameter
amounts to natural gradient for the dual parameter

Garvesh Raskutti, Sayan Mukherjee: The Information Geometry of Mirror Descent. IEEE Trans. Information Theory 61(3):
1451-1457 (2015)

Frank Nielsen



Relative Fisher Information Matrix (RFIM) and
Relative Natural Gradient (RNG) for deep Iearmng

Aylx8)= Zﬁ p(y | hi1.60) p(ha | . 02)p(hy | x.61). al ol
palis KK 9 8(©) = Exvp(xa), y~ply | x.0) 90 0O
EEELS: 1S 22
OCNONOFOFO N Py 1x:0) | 5O HeT
& - = learni
hr-1 Q Q Q O Q Ejﬁ?alfil;?;g;?g (?ng:p ‘(ng:{.h # a learning curve
e NoNeFoFe d J
0, Relative Fisher IM: g" (0]6;) = Eohio.6) [%In p(h|6, 9;)39 Inp(h|86, 9;)}
T Iy o) I3 T4 I
t 1 t t t Madel: ply |8, x) = oh b pihl|é?l.1_i plhs |8 hlj
Mamifold MB
Dynamic =~ e ey
geometry ¥ i (RN s i (N 5o
Metric a| I(8)

The RFIMs of single neuron models, a linear layer, a non-linear layer, a soft-max
layer, two consecutive layers all have simple RFIM closed form solutions

Relative Fisher Information and Natural Gradient for Learning Large Modular Models (ICML'17)

© Frank Nielsen



Neuromanifolds, Occam’s Razor and Deep Learning

Question: Why do DNNs generalize well with huge number of free parameters?

Problem: Generalization error of DNNs is experimentally
not U-shaped but a double descent risk curve (arxiv 1812.11118)

Occam’s razor for Deep Neural Networks (DNNs):
(uniform width M, L layers, N #observations, d: dimension of screen dlstrlbutlons in lightlike neuromanifold)
(©: parameters of the DNN, @ estimated parameters 5

- d d [ |
0= —log P(X|6) + S log N + 5 / 57(\) log AdA ﬁ_ﬁ
[] 103-;

~ d d 1025
O~ —log P(X[0) + S log N — ZyLM |

p

10t 3
] —— MDL (M=64.0)
] —— MDL (M=32.0)
10° 4 BIC

1 1

0 10000 20000 30000 40000 50000

pr Spectrum density of the Fisher Information Matrix (FIM) 0

Estimated generalisation gap (in log scale) against

I(@) — E 810gp(X | @) 8103 P(X ‘ 9) the number of free parameters.
- 00 00T https://arxiv.org/abs/1905.11027
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https://arxiv.org/abs/1905.11027

* Natural gradient in a dually flat manifold is equivalent
to ordinary gradient with respect to the dual
parameter

* Mirror descent extends gradient descent

e Random Matrix Theory (RMT) for the FIM
e Other alternatives: Energetic natural gradient, etc.

© Frank Nielsen
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An information-geometric characterization of Chernoff information, IEEE Signal Processing Letters (2013)

Hypothesis Testing, Information Divergence and Computational Geometry. GSI 2013

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
Computational Information Geometry for Binary Classification of High-Dimensional Random Tensors, Entropy (2018)

© Frank Nielsen



Recalling Bayes’ rule
Using probability’s chain rule:

P(X,Y) = P(X)P(Y|X) = P(Y)P(X|Y)

Get Bayes'’ rule:

P(B|A)P(A) reverend

P(A|B) = —Fp5— o

Interpreted as:

 P(A|B): conditional probability = likelihood of event A occurring given that B is true.

e P(B|A): conditional probability = likelihood of event B occurring given that A is true.

e P(A) and P(B) are the probabilities of observing A and B independently of each other
= marginal probability of A and B



Setting for the Bayesian binary hypothesis testing

e Given an iid sample set, decide whether it emanates from the
distribution of the null hypothesis HO or the alternative hypothesis H1
-> unavoidable probability of error

PDF of Y under . . PDF of Y under
HliN(—l,O'Q) HOZN(I,O'Z)

P(choose H{|Hy) P(choose Hy|Hy)
Among the many decision rules, the best rule is
provably the Maximum A Posteriori (MAP) rule:

© Frank Nielsen



Probability of error

(Bayes’ error for diagonal cost matrix)

e Confusion matrix
* Cost design matrix, where errors uniformly account (diagonal matrix)
* Probability of error:

P..... =P ( choose H; |Hg) P(Hy)+ P ( choose Hu\Hl) P (H,)

e A priori probabilities of classes: wO=P(HO) and w1=P(H1)

* Theorem: MAP rule minimizes the probability of error
among all decision rules:  MAP(x) = argmax;csy 1 w;pi(x)

Class conditional probabilities

© Frank Nielsen



Probability of error with equal priors (wl=w2=1/2)

Perror = [, 5 p(x) min (Pr (Hy|z) ,Pr (Hs|x)) dv(z)

Pr(H;)Pr(X=x|H;) _ wip; (z)
Pr(X=2) p()

From Bayes’ rule: Pr (I—I3 ‘_X — ;1;) —

It follows that we have:
Ferror = % fwe&’ min (p1(z), p2(z)) dv(z)

This is also called histogram intersection similarity in computer vision

© Frank Nielsen



Bounding the probability of error

\’* Trick: min(a, b) < min, a*b'=* | for a,b > 0, upper bound P,:
1 -
‘ Pe = —/ min(p1(x), p2(x))dv(x)
2 xeX
1 . N o
= 24800 /xex P ()R (x)dv ()

Define Chernoff information :

For alpha=1/2, we get the Bhattacharyya distance, skewed Bhattacharyya distance: B.(p,q) = —In /p‘“ (z)q"' ~*(z)dx
I

Then it comes that P, < w wl= e=C(PLP2) < o=C(P1.P2)

© Frank Nielsen



Chernoff information: A statistical distance

° T m _ m _ m
For m iid samples correct — 1— Perrnr =1- Pe

e Asymptotic regime when m->00

1
a = ——log P
m

Herman Chernoff
(1923, 95 yo)
© photo 2015

* Best error exponent:

P. < W{**Wzl—ﬁ*e—c(Pth) < e~ C(P1,P2)

C(P1, P2) = —log min / P (x)pa % (x)dv(x) > 0,
a€(0,1) xeX

Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,”
Ann. Math. Statist., vol. 23, pp. 493-507, 1952 ) l 1t
D) = —log| int [ L@@ ) |

0<t<l

© Frank Nielsen



Hypothesis testing: Exponential family manifold

The manifold of an exponential family is dually flat

By using the bijection between log-likelihood and Bregman divergence:

log py,(x) = =B(t(x) : mi) + F7(t(x)) + k(x), ni = VF(i)

The map rule induces an additive Bregman Voronoi diagram

MAP(x) = argmaX;cry  nwipi(x)

= argmin B*(t(x) : n;) — log w;
i€e{l,....n}

© Frank Nielsen



Geometry of the best error exponent

calPoy o) = [ 95, (0Pl () = expl~ I (61 - ).
Jensen divergence:

S0y : 62) = aF (61) + (1 — a)F(62) — F(652)),

Theorem: At best exponent, the Chernoff information amounts
to an equivalent Bregman divergence:

C(Py, : Py,) = B(6y: 6% )) = B(6: 6137))

© Frank Nielsen



Visualizing that maximizing skew Jensen divergence
vields a Bregman divergence

* _ (@, -
o= g )

J}__a*)(p : q) = BF(P: m&,*) — BF(q ; ma*)

m, = ap+ (1 — a)qg : a-mixing of p and gq.




Bayesian hypothesis testing:
Geometric characterization of the best error exponent

P* = Py, = Go(P1, P2) N Bip(P1, P,)

Dually flat Exponential Family Manifold (EFM)

n-coordinate system

m-bisector

0(91 292) =B(91 :9;2)
This characterization yields to an exact closed-form solution in 1D EFs,
and a simple geodesic bisection search for arbitrary dimension

An Information-Geometric Characterization of Chernoff Information, IEEE SPL, 2013
) k(a|rXiv:1102.2684)




Multiple hypothesis testing

e Minimum pairwise Chernoff information distance

C(Pl, cens Pn) = min_ C(P,‘, PJ)
INES

pm < e—mC(P,-*,PJ,-*)’ (f.*,j*) = arg min C(P,‘,, PJ)

e — " - -
NE

* In the (additive) Bregman Voronoi diagram, check only the natural
neighbors (with Voronoi cells sharing a common facet)

1,
l
0.076 0.199
- e .
Q 0132 Ry
0.21 5
S )y Gos
Ry Qs Q1
8}
0.02 Q0325 R
Rs
Ry

ypothesis testing, information divergence and computational geometry, GSI 2013

© Frank Nielsen



Multiple hypothesis testing on EFM

n-coordinate system

Bregman Voronoi diagram is affine in the
eta (moment/expectation) coordinate system

Natural neighbors

X Chernoff distribution between
natural neighbours

Hypothesis testing, information divergence and computational geometry, GSI 2013

© Frank Nielsen



Link between the Probability of error and the
Total Variation (TV) distance:

a+b 1
2 z‘b_a‘ﬂ

" Parror = & [, min (py (2), p2 () dv(a)

Use the trick min(a, b) =
\ K @)

Pe = 5 — TV(W1py, wap,).

P, = % (1 —=TV(p;,p,)). (same weights here)

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means.
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Computing Total Variation can be difficult...

Pe between two multivariate Gaussians with same positive semi-definite covariance matrix

TV(pi,p ——erf( )—erf( +—erf — erf . Pe—___Ef _”(2)( — )|l
l 2) rIlV/_ U?,V/_ ﬂ'l‘l\/i ﬂ"g\/ﬁ 2 2\/_
1 b b b o p(z) +q(x)
“la—b] = 22 _ min(a, b) = max(a, b) — 22, TV(p.q) = / ( 5 — min(p(z), q(z)) | du(z),
2 44 2 X
o, v 1- [ ming().g()dut) = [ max(p(z). 4(x))du(z) -
BTN o2t Iy 1| L8 = X X
EARE i % 0151
BRI BT ) e
e lf !ii! it li’\ ;\i!ﬁi!:i 105] — B2
T iy |
0.0 .EIZZ“JU - 0.0 e fI;‘fJZ I CG‘?ILB S
0 20 -10 0 10 10t 10° 10t 10t
TV
; 1.00 .
0.2 a 0.75 1 e
0.4 1 i
504 +—
0.1 i :
W e 0.25 1 +
0.0 fomsitr bl 0.0 e e [P I
-2.5 0.0 2.5 -5.0 =25 0.0 2.5 10t 102 10* 10t

Guaranteed Deterministic Bounds on the total variation Distance between univariate mixtures, MLSP 2019
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From geometric mean to other abstract means

- 1 |

Remembgr thg trick: Pe = 3 / min(py (x), pa(x))dv(x)

Geometric weighted mean xEX

is greater than the minimum < 1 i f pi(x)py~*(x)dr(x).
2 QE(Url) xeX

Internness property of any mean abstract M:
min(a,b) < M(a,b) < max(a,b)

Consider quasi arithmetic means for a strictly monotone function f
(with well-defined inverse function)

My(a,b;a) = f~ (af(a) + (1 — a)f(b))

© Frank Nielsen



Abstract weighted means: f-means (quasi-arithmetic)

inf{x,y} < M(x,y) <sup{x,y}, Vx,yel.

Ma (x,y):=h"" ((1 = a)h(x) + ah(y))

Weighted arithmetic mean: Ax(x,y) = (1 —a)x +ay,
Weighted geometric mean: Ga(x,y) = x17%y~

. : . _
Weighted harmonic mean: Hy(x,y) = (A=ajytaz

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)



Chernoff information with quasi-arithmetic means

My(a,b;a) = f~ (af(a) + (1 — a)f(b))

Definition 2. The Chernoff-type information for a strictly monot-
onous function f is defined by:

Cr(P1,P2) = — logd(pl ,D3)

~ max — log [ My (p, (¥),p,(x); 1)dx > 0.

oe(0,1]

Andrey Nikolaevich Kolmogorov, Sur la notion de la moyenne (1930)
Mitio Nagumo, Uber eine Klasse der Mittelwerte (1930)

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic
means. PRL (2014)



Geometric means and exponential families

we consider the geometric mean obtained for f(x) =logx. Since
p;(x) =exp(x'0, — F(0;)) and p,(x) =exp(x'0, — F(6,)) belong to
the exponential families, we get:

Mf(W1P1 (x), WP, (X); oc) — p*logwip; (x)+(1-2) 10gW2P2(X), (50)
= WiW} i (x)p} (). (61)
f-1 (ma(x; 0, 92)) — ef (b +(1-0)02)~aF(01)~(1-a)F(0)

X p(x; 001 + (1 —o)07),
= e ¥ ) p(x: 0y + (1 — a0)65)

v

05 1 since natural parameter

space is convex
Thus P

P, < w?w;‘“e‘lf)(‘?lﬂz) / p(x; 00, + (1 — )0, )dx.
P, < minw?wl e Jr (¢1.02).
2ef0,1] |2

© Frank Nielsen



Harmonic mean for Cauchy distributions

e Cauchy family is a location-scale family p(x;s) = l 5

T X2 + §2

=

_ f-1 _
e Choose harmonic mean with generator f(x) J (X) =
Pe< [ Ma (3P0, 3P0t .

L]

1 P1(X)P2(X)
<3/ Tonwr @
P 1 f (x§I+s2} (xgisil)
S2) Ao+ 72@-
1 515
) / @) TmE )
gl/ 515>
2 ) m(((1—0)s1 + oS2)x2 + (1 — o0)s183 + 0525%)
o 1 515> fl S,
T2 ((1 —a)sy +083)s, ) T X2+ S2

S~

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
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Probability of error for Cauchy hypothesis

5 —% (arctan (\/I) — arctan ( 1/ /’»))a

—1 2 arctan (\/1), i=2

T S

1 S¢S
Pe-<.~§ 122

(1—0)51 52 +0t5, 52

(1 —o)s1 + Csz)\/ (1—0t)s1+057

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)



Hypothesis Testing: Pearson type VIl distributions

P0G .. 4) = T O B (1 (e "2 - )

2

Consider the o-weighted f-mean with f(x) = x 7, for prescribed
/>4 (and f1(x) =x7%).

-l — A
Pe < 3 @(EiE+ (1 - [ZaH) ‘IS [ pxs e

N ——
=1

1 .
= o (@[E1f + (1 - 0)[Zaff) [

since X, € ©.

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)



New Bregman divergences from abstract means

A function is (M,N)-convex (comparative convexity) if and only if
F(M(p,q)) < N(F(p),F(q)), Vp,ge X

A mean is regular if it is:

1. homogeneous

2. symmetric,

3. continuous

4. increasing in each variable.

e prg) = 0

n o+1
. . ) — wx
Example of non-regular means: Lehmer mean (also Bajraktarevic mean)  Ls(zy,..., T3 Wiy, wy,) = Zi;l ;;5
=1 "

Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity, IEEE SPL 2017
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(M,N)-Bregman divergences from comparative convexity

(M,N) Bregman divergences obtained in the scaled limit case of Jensen divergence:

Quasi-arithmetic Bregman divergences obtained Mf (p, q) — f—l (f(p) _; f(Q))

o . ~_ TWEWP) —7(F(q)  p) —p(q) )
By (p:q) = (F(q)) p'(q) ) iype :yy(g;) —_ :W_(‘Tx: 0= T
BE"(p: q) = k- (F(q) : F(p)) — kplq : P)F'(q) ¢ Wz) =logz | wlog 3

H y(z) = % x? (% — %)
For example, the power mean Bregman divergences: P50 #0 | ys(x) = 2° %E_‘”—f
F*(p) = F*(q) p°* —¢”
By (p:q) = - F’
roo(piq) 5,F51(g) 5o ()

Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity, IEEE SPL 2017
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Generalizing Jensen-Shannon divergences
1 +
Plpa) = _(KL(p pzq)+KL(q pzq))’
29
- 1 1 du.
2/(;9 Dgp+q+qogp+q) g

1S(p; ) = h (P;ﬂ?) h(ﬂ);rh(q)_

Jensen-Shannon divergence is the total divergence to the average divergence
Always bounded by log 2, and the square root of JSD is a metric

On the Jensen—-Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019
https://www.mdpi.com/1099-4300/21/5/485
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https://www.mdpi.com/1099-4300/21/5/485

Symmetrizing the KL divergence

Jeffreys divergence:

J(p;q):=KL(p:q) +KL(g: p) = /(P —q)log gdﬂ = J(q;p)-

Resistor average divergence:

1 1( 1, 1 )
R(p;q) 2\KL(p:q) KL(g:p)/)’
R(p;q) 2(KL(p:q) +KL(g:p)) _ 2](piq)
’ KL(p : q)KL(q: p) KL(p:q)KL(g: p)

© Frank Nielsen



Jensen-Bregman divergence as a Jensen divergence

o0y = (e (0:05%) e (0:257)),
_ EO)+EE) . (9+9’) (00,

2 2

JBE(0:6) = (1—wa)Bp(0:(00")n) +aBr (6":(66"),)),
= (F(0)F(6"))a — F ((60')a) =: JE(6: 6'),

Skew Jensen-Bregman Voronoi diagrams, 2011



M-statistical mixture W
M, (p(x),q(x Need to normalize
(p9)a (x):= égd((;:qq() ) % M-mixtures

M . —
Z(p:q)= /t E;t, My (p(t),q(t))du(t)




When does M-Jensen-Shannon divergence are
bounded?

ISD i Zy' ()
The M-JSD is upper bounded by log when M > A.

1—a

A further generalization of the Jensen-Shannon divergence:

On the Jensen—-Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019



Closed-form formula for exponential families

KL (Pe : (P, PBZ)E) = KL (PG 1 P(elﬂz)a)
= Bp((6162)q : 0).

IS (P, = po,) == (1—a)KL(pg, : (po,pe,)s) + aKL(pe, : (po,pe,)s),
= (1 — &)BF((9192)a : 91) -+ &Bp((ﬂlﬂz)a : 92).

IS (pe, < pe,) = (1—a)KL((pe,pe,)S : pe,) + aKL((po,Pe,)S : pe,),
= (1 —a)Bp(01:(6162)a) +aBp(62: (6162)a) = JBE(67 : 62),
= (1—a)F(61) +aF(62) — F((6162)a),
= Jp(61:67).

On the Jensen—-Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019



Case study of multivariate Gaussians

1 12
KL(P(uy5))  Plunsy) = 2{tr(>: 1):1)—|—ATZ 'A, +1log IEll d}
IS (P  Puzs) = (1= 0KL(P(u ) ¢ Pz,) + KL(P(o 5y © Pz,
= (1 —a)Bp((6162)a : 1) + aBp((6162)n : 65),
1 I
= 5 tr(Z_l((l—rx)Zl -I-aiZ:a))-l-lOg 21|1|_¢|22|a+

(1= @) (e — 1) "o (ha — pr) + &(pta — p2) "o (e — p2) —d)

1-a KL(P(ya,m Pns)) T OKL(P 5t Pns))r
Br(61 : (60162)s) + &Bp(65 : (6162).),
= Jr(61 :6,),

1 3 Y l—az 0
= 5(( g I+ o] My — T s+ log. 1I|Zw|| 2 )

Gy )
IH (p(ﬂlrzl) : p(#zpza))

-1

o = (E15)F = ((1-w)E{" +a2; ) = (mm2)h = Za (1 - Q)71 +aZ; iz



Case study of Cauchy family: Harmonic mean

1 X
Cr:={ py(¥) = o Pt (;) - ?t(’yzrr—l— 2) TS b= (O,oo)}

Hy (P (x) 2 Py (x))

H/ioy _
(P’Ylp’rz)% (x) _ Zf('}’lr'}"}l) o p(’h’?z)a
ZH (v1,72):= ny2 — \/ T'r2
« (11,72) (7172)a(7172)1-4 (r172)a(7271)a
H ) . 1 . H . H
ST (p:q) = 2(KL(p.(pq)%)-I-KL(Q-(F"?)%))f
1
IS8 (pyy 1 pey) = 5 (KL (P'n 5 PW) + KL (F”rz : P’leﬂ))

(371 +72)(372+71)
8v/1172(11 +72)

log



Kullback-Leibler divergence between Cauchy densities

Differential entropy h(p;s) = h™(prs : p1.s) = log 4ms.

* log(dx?
A(a,b,c;d,e.f)zf og(dz +H+‘f) dz,

ne T+ br+c

Relies on this definite integral

, 27 (log(Qa. f — be + 2¢d + VAae —B2\/2df — 2) — 1ag(2a))
with A(a,b,c;d,e, f) =

Vvdac — b2

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions https://arxiv.org/pdf/1905.10965.pdf

© Frank Nielsen



https://arxiv.org/pdf/1905.10965.pdf

Kullback-Leibler divergence between location-scale densities

Property: The f-divergence between location-scale densities reduces to
the f-divergence between a standard density and another location-scale density

Ii(Prysy ¢ Qasy) = Iy (P L qly—1y _2) =1y (ps;-sg sy :q>

.5‘1 3 .‘3‘1 32 "'32
Proof bv change of variable Lpes ) = pzl (@) QEz 82 :c) Location-scale group
’ ’ plsl
_ z—l
Yy =5 _q H={(ls) : le RxRy,}
_ - d
dox = Sldy. y 51 gp s1dy
r=s1y+h -tz
= [ py)f L e )1
_b—h
z—lp _ siytli—lo _ Y775
so S — 52 = Iy (P!qizgl_%)-

31

On the Kullback—Leibler divergence between location—scale densities, 2019 https://arxiv.org/abs/1904.10428

© Frank Nielsen
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Information geometry
of clustering:
Hard, Soft and Hierarchical

Frank Nielsen
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© Frank Nielsen



Finding structures (clusters) in datasets

-2 -

© Frank Nielsen

Hard membership
Flat clustering (partitions)
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Hierarchical clustering
Dendrograms
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Soft membership
Mixture models
Gaussian mixture models

Exploratory data science



Rationale

e Extend squared Euclidean distance-based clustering to arbitrary Bregman
divergence: k-means, expectation-maximization (isotropic GMMs),
hierarchical clustering, etc.

Dr(p,q) = F(p) — F(q) — (VF(q),p — q)

e Use duality of “regular” Bregman divergences with regular exponential
families to learn mixtures of exponential families

log pr(2;0) = —Bp«(t(z) : ) + F7(t(z)) + k()

e Use conformal Bregman divergences (total Bregman divergences) to get
robust clustering



Bregman k-mean clustering

* NP-complete when k>1 and d>1
* Local, global and probabilistic heuristics to find good k-means clustering

e Easy dynamic programming (DP) when d=1: Interval clustering

e Speed calculation of mean/variance of clusters using Look-Up-Tables
(summed area tables)

e Can perform model selection and also give constraints on cluster sizes

Optimal Interval Clustering: Application to Bregman Clustering and Statistical Mixture Learning. IEEE Signal Process. Lett. 21(10) (2014)
kmt’lcps://arxiv.org/abs/1403.2485

© Fr.
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Bregman clustering (d>1)

Algorithm 1 Bregman Hard Clustering
Input: Set X = {x;}"_, C 5 C RY, probability measure v over X, Bregman divergence dy : S x ri(§) — R,

number of clusters k.
Output: M, local minimizer of Lo(M) =35 _; T c x, Vido (Xi, pn) where M = {p;}5_,, hard partitioning

{X.}5_, of X.
Method:
Initialize { uh}ﬁ:l with ey, € r1(S) (one possible initialization is to choose g, € ri(S) at random)
repeat
{The Assignment Step }

Set Xj, — 0, 1 <h<k
fori=1tondo
Xp — X U{x;}
where h = hf(xf-) = argmin dy(X;, p )
h!
end for

{The Re-estimation Step }
for h=1tokdo
T — Yxex, Vi
i ,%h 2x;ex;, ViXi
end for
until convergence
return MT — {u, o

Bregman centroids are centers of mass, independent of the generator
Compared to squared Euclidean k-means, only the assignment step changes

© Frank Nielsen




k-MLE: Inferring statistical mixtures a la k-Means

arxiv:1203.5181

Bijection between regular Bregman divergences
and regular (dual) exponential families

log pp(x;0) = —Bp-(t(x) : ) + F*(t(x)) + k(z)
Maximum log-likelihood estimate (exp. Family)

. Exponential Family < Dual Bregman divergence
= dual Bregman centroid _ pr(zl0) By
- 1 Spherical Gaussian <  Squared Euclidean divergence
maxgpeN I(Q: L1y ey xn) - E Z((t(:ﬁl)a 9) - F(Q) + k(x%)) Multinomial & Kullback-Leibler divergence
1 n 1 Poisson & I-divergence
= min,epy  — E Br«(t(x;) : Geometric & Itakura-Saito divergence
"€ n o ( ( 1) 77) Wishart < log-det/Burg matrix divergence

Classification Expectation-Maximization (CEM) yields a dual Bregman k-means for mixtures

of exponential families (however, k-MLE is not consistent)
Online k-MLE for Mixture Modeling with Exponential Families, GSI 2015

On learning statistical mixtures maximizing the complete likelihood, AIP 2014
Hartigan's Method for k-MLE: Mixture Modeling with Wishart Distributions and Its Application to Motion Retrieval, GTI 2014
A New Implementation of k-MLE for Mixture Modeling of Wishart Distributions, GSI 2013
Fast Learning of Gamma Mixture Models with k-MLE, SIMBAD 2013
k-MLE: A fast algorithm for learning statistical mixture models, ICASSP 2012
© Frank Nielcan k-MLE for mixtures of generalized Gaussians, ICPR 2012



MLE as a Bregman centroid for exponential families

0 = arg maprF z;0) = VF~! (Z t(i’z))

Maximizing the average log-likelihood [ = %log L, we have:

maxgen  L(0;x1,...,2n) = %Z((t(mz)j 0) — F(0) + k(x;))

mMaxgcN %Zl —Bp=(t(xz;) : n) + F*(t(x;)) + k(x;)

. IS
= milpem Z Bp«(t(x;) : n)



K-MLE: Classification Expectation-Maximization (CEM)

e 0. Initialization: Vi € {1,...,k}, let w; = ¢ and 7; = t(x;)
(Proper initialization is further discussed later on).

e 1. Assignment: Vi € {1,...,n},z; = argmin;'-;lBF*(t(:ri) : 1) — log w;.
Let Vi € {1,....,k} C; = {z|z; = i} be the cluster partition: X = U*_,C;.
(some clusters may become empty depending on the weight distribution)

e 2. Update the n-parameters: Vi € {1,....k},n; = ﬁ > zec; HT).

(By convention, n; = ) if |C;| = 0) Goto step 1 unless local convergence of the complete
likelihood is reached.

e 3. Update the mixture weights: Vi € {1,....k}, w; = %|Cﬂ.
Goto step 1 unless local convergence of the complete likelihood is reached.

Additive Bregman Voronoi diagrams
Biased, not consistent

On learning statistical mixtures maximizing the complete likelihood, AIP 2014

© Erank Nielsen



Bregman soft-clustering: Generalize
expectation-maximization (EM) algorithm

Algorithm 2 Standard EM for Mixture Density Estimation

Input: Set X = {x;} | C R4, number of clusters .

Output: I'": local maximizer of Ly(T') =

partitioning {{p(h|x;)};_, }2,.
Method:

1 (Sh_1 TPy, (xi) where T = {6j,m;}}_;, soft

Initialize {Gh,nk}ﬁzl with some 8, € ©, and w;, > 0, E’E;l w,=1

repeat
{The Expectation Step (E-step)}
fori=1tondo
for h=1tokdo

. TP (y.0,)(Xi)
plhin) — =t ms
end for
end for

{The Maximization Step (M-step)}
for h=1tok do
My 5 2iy p(h|x;)

0 — argmax Y log(pay.e)(xi) p(h|x;)

end for
until convergence
return T = {0, 7, }5_,

© Erank Nielsen

Algorithm 3 Bregman Soft Clustering
Input: Set X = {x;}7_, C.§ C R?, Bregman divergence d; : S x ri(5) + R, number of clusters .
Output: I'", local maximizer of [T, (X5 _, b () exp(—do(x:, ps))) where I' = { g, 7, }5_ | soft
partitioning {{p(h[x;) }_, }1-,
Method:
Initialize { e, }5_, with some g1, € 1i($), 7, > 0, and 35_, 5 = 1
repeat
{The Expectation Step (E-step)}
fori=1tondo
forh=1tokdo

7 T exp(—dy(X;,184))
p(hlxi) - Yy My exp(—de (xi. 1ty )
end for

end for
{The Maximization Step (M-step)}
forh=1tokdo

M — 5 iy p(hx:)
i plhxi)x;
SRR AT
end for
until convergence

return T = {F’h:nh}g=l




K-means++ probabilistic seeding

k-means+-+: Pick uniformly at random at first seed ¢, and
then iteratively choose the (k — 1) remaining seeds according
to the following probability distribution:

Pr(cj = pi) =




K-means++ probabilistic seeding

n
Ep(A,C) = ; Z min;cq . D(pi: ;)
i=1

Theorem (Generalized k-means++ performance ). Let K1 and K> be two constants such that K, defines the
quasi-triangular inequality property:

D(x:z) <k (D(x:y)+D(y:z)), Vx,yz
and K> handles the symmetry inequality:
D(x:y) < kD(y:x), Vx,y

Then the generalized k-means++ seeding guarantees with high probability a configuration C of cluster centers such
that:
Ep(A,C) <2x7(1 + 1) (2 4+ logk)ES (A, k).

Total Jensen divergences: Definition, properties and clustering. ICASSP 2015

© Erank Nielsen
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Left-sided or right-sided centroids (£-means) ?

Left/right Bregman centroids=Right/left entropic centroids (KL of exp. fam.)
Left-sided/right-sided centroids: different (statistical) properties:

® Right-sided entropic centroid . zero-avoiding (cover support of pdfs.)

® Left-sided entropic centroid : zero-forcing (captures highest mode).

Left-side Kullback-Leibler centroid

(zerg-forcing) Irﬂll'l A
|'
\ {I lll\

a®| |
. |
. |
| ]

s
w B |

» b ) . .

) » . | Symmetrized centroid
Right-sided Kullback-Leibler centroid
zero-avolding



Hierarchical clustering (Ward criterion)

Cluster Dendrogram

1. Start with m clusters: C; := {z;} for each i.

14

2. While at least two clusters remain:

(a) Choose {C;,C;} with minimal A(C;, C;).
(b) Remove {C;,C,}, add in C; U C}.

Height

0 2 4 6 8 10

|Ci||C| 2
Aw 13 ) = 1) — ' y
(C Cj) |C‘3| + |Oj| ”T(C ) T(CJ)”2 g

hclust (*, "ward.D2")

where 7(C') denotes the mean of cluster C. . .
Potential inversions...

Telgarsky, Matus, and Sanjoy Dasgupta. "Agglomerative Bregman Clustering." (2012).

© Erank Nielsen



Extending to Bregman divergences

By(z,y) = f(z) — fly) = (Vf(y),z—y).

Consider more general directional derivatives P

Bf(x,y) := f(z) = f(y) + ['(y;y — ).

Bf(rl?y) Bf(l'?ay)

-
-
.t

Subgradient derivatives N

Proposition 3.8. Let a proper convex relatively dif-

Bregman ferentiable f and two finite subsets C1,Co of X with
Ward 7(C;) € ri(dom(f)) be given. Then
Criterion A (C1,Cy) = Z ICS|B#(7(C;), 7(Cy UCY)).

je{1,2}

;----J-
* A

A\




Another generalization of Bregman divergences
Df(z,9) == f(z) + " (9) —(9.2).  gecaf(y)

‘f(x)

By(z,y) := max{Dy(z,g) : g € 0f(y)}.

Divergences
D{z|a)
D{z|b)

N

Tangents
fly)+(x-y)a
fy)+(x-y)b

|
7 IEANS

Gordon, Approximate Solutions to Markov Decision Processes. CMU PhD, 1999.



Clustering with mixed a-Divergences

Mya(p:x:q) =

© Frank Nielsen

K-means (hard/flat clustering)

Algorithm 1: Mixed a-seeding; MAS(H, k, ), a)

Input: Weighted histogram set #, integer k > 1, real A € [0, 1],

real o € R;
Let C < h; with uniform probability ;
for i =2.3,...,k do
Pick at random histogram h € ‘H with probability:

WhM)u,a(Ch ch: Ch)
ZyE"H wyMya(cy 1y i cy)

mu(h) =

//where (cp, cp) = argming, ,yee Mao(z 1 h: 2);
| C+CU{(h h)};

Output: Set of initial cluster centers C;

Input: Weighted histogram set #, integer k > 0, real A € [0,1],

real o € R;
Let C = {(fi, i)}, + MAS(H, k., ), o);
repeat
//Assignment
fori=1,2, ...k do
|_ Ai—{heH:i=argminjM, ,(lj - h:r)};
// Centroid relocation
fori=1,2,....k do

2
la\T-@a
ri < (ZheA; W,'h 2 ) ;
2
lto \ Tra
f,' — (ZhEA; W‘h 2 ) N
until convergence;
Output: Partition of H in k clusters following C;

On Clustering Histograms with k-Means by Using Mixed a-Divergences. Entropy 16(6): 3273-3301 (2014)

14+«

=1
3 d
Ja(ﬁ:ﬁ)z — 2 (l-I-ZHl;Q(ﬁ}a:))
i=1
Bpl—-p 1-3
Hﬁ(a,b):ab ;—a b’

Heinz means interpolate
the arithmetic and the
geometric means

a+b

Vab= Hy(a,b) < Ha(a, b) < Ho(a,b) = —

ADo(p i x) + (1= A)Da(x: q) with Da(p:g) =) 1 —40:2 (1 ;ﬂ'p,— + = g — (pf)l‘T“(qf)”T“)

EM (soft/generative clustering)

Input: Histogram set H with [H| = m, integer k > 0, real
A & Ainit € [0,1], real o € R;

Let C = {(fi, i)}, + MAS(H. k. A, a);

repeat

/ /Expectation

fori=1,2 ... mdo

for j=1.2.....k do

. - oxp(=Ms allichir)
| plih) = w22 ey

/ /Maximization
for j=1.2. ...k do

mj = éE.—pUIhf):
2
Lia\ Tm
i + (mipﬁlh;}hf ) ?
2

i (s Sptinn = )
f;ﬂ.lpha - Lambda
a+—a-—1n Zf:l p Iy pU|h;]%M;,l_ﬂ[‘5— Dhi i)
if Aimit % 0,1 then
A= A—1p (Zle 2_i=1 PULh)Da(l; - hi)—
St S pUlhi) Da(hi - 1))

/ [for some small 1y, 1p2; ensure that A € [0, 1].

until convergence;
Output: Soft clustering of H according to k densities p(j|.)
following C;



Hierarchical mixtures of exponential families

0.18

Hierarchical clustering with Bregman sided and symmetrized divergences | | | | | =
' — e Agglomerative method:
G !_earn!ng & SlmzllflylnGgMM @ Find the two closest subsets S; and S; |
AussiaMmbGUGEInadel s 5) @ Merge the subsets S; and S; -

0.08-

© Go back to 1. until one single set remains

0.06 -

0.04 -

| Criterion | Formula |

Minimum distance | D,,in(A, B) = min{d(a,b) [a € A, b € B}

Maximum distance | Dyax(A, B) = max{d(a,b) | a € A, b€ B} ok -

Average distance D.v(A,B) = ﬁ Yaca 2berdla,b)
=+=" Baboon

Lena

= © = Shanty ||
= B = Colormap

Simplification and hierarchical representations of mixtures of exponential families. Signal Processing 90(12): 3197-

© Frank Nielsen



Conformal divergences
D'(p:q)=p(p,q)D(p: q)

Dry[§: €] :=kK(§)Br|€: ]

Consider the right-sided centroid: Amount to reweight the points according to a positive conformal factor.
Related to conformal geometry

Total Bregman divergences, total Jensen divergences, etc.

On Conformal Divergences and Their Population Minimizers. IEEE Trans. Information Theory 62(1) (2016)

Total Jensen divergences: Definition, properties and clustering. ICASSP 2015: 2016-2020
Shape Retrieval Using Hierarchical Total Bregman Soft Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(12): 2407-

2419 (2012)
Total Bregman Divergence and Its Applications to DTI Analysis. |IEEE Trans. Med. Imaging 30(2): 475-483 (2011)

© Frank Nielsen



https://dblp.uni-trier.de/db/conf/icassp/icassp2015.html#NielsenN15
https://dblp.uni-trier.de/db/journals/pami/pami34.html#LiuVAN12
https://dblp.uni-trier.de/db/journals/tmi/tmi30.html#VemuriLAN11

Conformal distances in machine learning: SVM

e Conformal kernel K(x, X) = D(x)D(X)K(x, X)),

* Conformal Riemannian metric

2;(x) = D(x)°g;i(x) + Di(x)D;(x) + 2D;(x) D(x)Ki(x, x),

Wu, Si, and Shun-ichi Amari. "Conformal Transformation of Kernel Functions: A Data-dependent
Way to Improve Support Vector Machine Classifiers." Neural Processing Letters 15.1 (2002): 59-67.

© Frank Nielsen



Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

Definition The total Bregman divergence 6 associated [ X [ (@) 3;(z,9) [ t-center [ £1-norm BD center | Remark
. . . . . T— z
with a real valued strictly convex and differentiable function f R z? = 3 wi 3w total square loss (tSL)
defined on a convex set X betw ' . ' ' - Plos j4rios | ()™ i
ofi een points x,y € X is defined | r-r_ zlogz e A T 1. (z:) Y,
. £ log £—1 > (i /(1—i)) ¥ isti
as, f(x) B f( ) B ($ B vf( )) [0, 1] —logx y\/ﬁ P ey 3w total logistic loss
5 _ Y Y, Y Ry _logz y gy ! . T .oz total Itakura-Saito distance
AN 1LV 2 ’ L Y e '
VIHIVIW] R e Lo = wia .
.. R4 z||? llz—yl w;ixi i total squared Euclidean
(-,-) is inner product and |V f(y)||* = Il YA . > !
Rd A (z—y) A—y) wiz; 2z total Mahalanobis dist
(Vf(y) Vf(y)) genemlly. xt Az d1+4”‘49”3j > wiz >z otal Mahalanobis distance
e _rilog =L
Al Z?:l zjlogx; \/I+Zi’ - y:(lil_:g e clT;(zi)™ >z total KL divergence (tKL)
Jj=1 .
z—yl2 z—y? -
cmxn ||:c||§? % [Tm > T total squared Frobenius
F F

© Erank Nielsen

Robust to noise/outliers

T

1=1

|EEE TPAMI 34, 2012




Total Bregman divergence and its applications to DTI analysis

IEEE Transactions on medical imaging, 30(2), 475-483, 2010.

Definition The total Bregman divergence (TBD) ¢ _
associated with a real valued strictly convex and differentiable ?~3-| 8 | ]' . a.“ & Aa'j| ‘
function f defined on a convex set X between points x,y € X .| sl | ok
is defined as, \/ \// / /
o @@ -E-y V@),
df(I" y) - 5 ? ( )
\/1 ;s “Vf(y)” The isosurfaces of dp(P,I) =1, dr(P,I) =1, KLs(P,I) =7
and tK L(P,I) = r shown from left to right. The three axes are eigenvalues
(-,-) is inner product as in definition II.1, and ||V f(y)||* = of P.

(Vf(y), V(y)) generally.

seg:mgﬂ}f[?.tiaq _rt?_sults. from lc_f_t___t_o_ Ij'ght,_ using tK L, KLs, dR,_dM and LE Sue

[ plog gd:r

\/1 + [(1 + log q)2qdx
log(det(P~1Q)) + tr(Q=1P) —n

5 \/C + (Jog(det Q) n(ltlog?m) 10 (et Q)

tKL(P,Q) =tKL(APA,AQA), YA€ SL(n),

IKL(P,Q) =

V1+ [(29)2qdz )
1/1/det 2P) +1/1/det(2Q) — 2/+/det(P + Q)
)™ + 44/ (2m)"//det(3Q)

© Erank Nielsen



Total Bregman divergence

——tBD(x, y)

- YTl ) -
TBD(p: q)= PP~ D~V -(p~9)

. Invariant to axis rotation
I+ Veig)]




Total Jensen divergence

Invariant to axis rotation

tB(p : q) pe(q)B(p:q), ps(q)= \/

1+ (VF(q), VF(q))

1
pJ(pa Q)Ja(p - q)a pJ(pa q) — 1+ (F(p)—F(q))?

(P—q,p—q)

tJo(p: q)




Clustering categorical distributions

'
L ]
-~
H _\\—-\\
1 . .
sampling - m
e 9 ... ... [ ] - T T —_‘———____h
ELI w; Mult(p;) ‘,/_ . D"
O O o - frpa_'_______
inference Hy oy
== T O
Categorical data ]
Hy
&« O 0O
PrHR Pic PHe

PL1

0.60 (¥
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k = 5 clusters
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Euclidean distance

CS divergence

L 0.4
L 0.24 03
- 0.16 - 0.2
- 0.08 - 0.1
0 L 0.00 Lo

Hellinger distance

Hilbert distance

020 - 1.6
- 0.15 12
- 0.10 L 0.8
- 0.05 - 0.4
0 -~ 0.00 ~ 0.0

(-1.5)-divergence
0.8

- 0.6
- 0.4
- 0.2
- 0.0

0

(-1.0)-divergence
0.8

- 0.6
- 0.4
- 0.2
0.0

Riemannian distance

KL divergence

L1 distance

~ 0.00

- 0.60
- 045
- 0.30
- 0.15

(-0.5)-divergence
0.8

~ 0.00

- 0.45

- 0.30
- 0.15

N

- 0.6
- 0.4
- 0.2

0.45
0.30
0.15
0.00

(-2.0)-divergence
0.6

0.6
0.4
0.2
0.0

(+0.0)-divergence
0.8

0.6
0.4
0.2
0.0

(+0.5)-divergence (+1.0)-divergence (+1.5)-divergence (+2.0)-divergence
0.8 0.8 0.8 0.8

- 0.6 - 0.6

- 0.4 - 0.4

- 0.2 - 0.2

- 0.0 0.0
]

- 0.6
- 0.4
- 0.2

0.0

Reference point (3/7,3/7,1/7)

0.6
0.4
0.2
0.0



Hilbert log cross-ratio metric

( A’ M||AM’| /
|0g |A"M"||AM| ) M # M?

0 M= M.

puc(M, M') = «

\




Isometry of Hilbert simplex geometry with a normed vector

space (A, puc) = (V| - |lxu)
» Vi={veRItt : Y. v/ =0} c RIF]

» Map p=(A\%..... M) e A9 to v(x) = (V0.....v¥) e V9.

f 1 f / . '
v =1 dlog A —'z;log;)vf zlog)\—d—HZI()g)v’.
JFI J
\i exp(vf)
> jexp(v/)

» Norm || - [|yu in V¢ defined by the shape of its unit ball
By ={veVd . |v—v|<1Vi#j}

» Polytopal norm-induced distance:
pv(v.v)=|lv—V|xa=inf{r : vV er(Byv&{v})}.

» Norm does not satisfy parallelogram law (no inner product)

© Frank Nielsen
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Visualizing the isometry: (A, puc

‘NH

After isometry

[ ]
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K-center clustering in metric spaces

Algorithm : A 2-approximation of the k-center clustering for any metric
distance p.

Data: A set A; a number k of clusters; a metric distance p.
Result: A 2-approximation of the k-center clustering

1 begin

2 c; + ARandomPointOf(A );
3 C+ {El }:

4 fori=2.--- . kdo
5 L ¢; 4= argmax 4 P(p,C):
6 C « CU{ci}:

7 Output C:

Guaranteed performance: 2-factor for any metric

© Frank Nielsen



Smallest enclosing ball in the Hilbert simplex geometry

After isometry After isometry

3.2

24

1.6

0.8

- 0.0 2
2 -2 2 -2

3 points on the border
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Klein distance between current center and minimax center

" “axpal_dat" u&irng 1:2

=]

Riemannian minimum enclosing ball -

0.1 f

a#Mb: point y(t) on the geodesic line segment [ab] wrt M.

006

Algorithm  GeoA 004 f

00z t

0

c1 < choose randomly a point in P;

for i =2to/do
// farthest point from ¢

Hyperbolic geometry:

1-p'q
V(A -p"p)(1-q"q)

p(p, q) = arccosh
. n . Y-
si < arg max_, p(cj, pj);

// update the center: walk on the geodesic line Ty (T-p (p) #aT-p (9)) = P#aq
segment [c;, ps] r ) < (LI 2+ (l2lP + 2. + 1)
P 2||z||? + 2(z, 1
Cir1  Gi#M p HEEETE:
i+1
end Positive-definite matrices:
// Return the SEB approximation p(P,Q) = |[log(P~*Q)[lF = /X, log® \i
return Ball(c;, ; = p(c, P)) ; (P, Q) = Pz (P—%QP—%)tP%

On Approximating the Riemannian 1-Center, Comp. Geom. 2013
Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry, GSI, 2015
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Approximating the smallest enclosing ball
in Hilbert simplex geometry

Algorithm 4: Geodesic walk for approximating the Hilbert minimax center,
generalizing [11]

Data: A set of points py,--- . p, € A¢. The maximum number T of iterations.
Result: ¢ ~ argmin, max; pyc(p;.c)
1 begin

2 ¢y < ARandomPointOf({py,---, p,}):
3 forr=1.---.7T do

4 L p < argmax , puc(pi,¢i—1):

5

Cr — Cr— l#ff'?‘—l-l

6 Output ¢7;

© Frank Nielsen



Some enclosing balls in the simplex

Riemannian center IG center
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Experiments: K-means

I

(

PFHR

PI1G PHG PEUC PLi

50

0.5
0.9

0.624+0.22
0.294+0.17

0.60+0.22 0.71 =0.23 0.45+0.20 0.54+0.22
0.274+0.16 0.39+0.19 0.17+0.13 0.25+0.15

-
n
n

0.5
0.9

0.7040.25

0.42£0.25 0.354+0.20

0.69+0.26 0.74+0.25 0.37+£0.29 0.70+0.26
0.404+0.19 0.03+£0.08 0.44+0.26

100

O

0.5
0.9

0.634+0.22
0.29+0.15

0.61+0.22 0.71 =0.22 0.46+0.19 0.56+0.20
0.26+0.14 0.38 =0.20 0.18+0.12 0.24+0.14

]
n
N

0.5
0.9

0.71£0.26
0.414+0.26

0.69+£0.27 0.75=0.25 0.31£0.28 0.70+:0.27
0.33+0.20 0.384+0.18 0.02+0.06 0.43 +0.26

n
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30

£

0.5
0.9

0.64+0.15
0.31+0.12

0.61+£0.14 0.70 =0.14 0.48+0.14 0.57+0.15
0.20+0.12 0.41 =0.15 0.20+0.09 0.26+0.10

]
n
LN

0.5
0.9

0.744+0.17
0.444+0.17

0.72+£0.17 0.77 =0.16 0.41£0.20 0.74+0.17
0.37+0.16 044+0.15 0.044+0.06 0.47+0.17

100

QO

0.5
0.9

0.624+0.14
0.30+0.10

0.61£0.14 0.71 =0.14 046 £0.13 0.54+0.14
0.27+0.11 0.40+0.13 0.194+0.08 0.25+0.09

]
n
n

0.5
0.9

0.734+0.18
0.43+0.16

0.70+0.18 0.75+0.16 0.37+£0.20 0.73+0.17
0.35+0.14 0414+0.12 0.03+£0.06 0.46 £0.18
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Experiments: K-center

kln|d]|o PFHR PIG PHG PLEUC PL1

0.5] 0.87+£0.19 0.85+0.19 0.92+0.16 0.72+0.22 0.80+0.20
9 109 0.54+0.21 051£021 0.70x0.23 0.36+0.17 044+£0.19

0.5[ 0.93+0.16 092+0.18 0.95+0.14 0.89+0.18 0.90+0.19
255109 0.76 +0.24 0724026 0.8214+0.24 0.50+0.28 0.76+0.25

0.5] 0.88+0.17 0.86+0.18 0.93=+0.14 0.70+0.20 0.80+0.20
9 [0.9] 0.53+£0.20 049+0.19 0.704+0.22 0.33+0.14 0.41=£0.18

: 100 0.5 0.93+£0.16 0.92+0.17 0.95+0.13 0.88+0.19 0.93+£0.16
255109 0.81+0.22 0.754+£0.24 0.831+0.22 0.47+0.28 0.79+0.22
0.5 0.82+£0.13 081+0.13 0.89x0.12 0.674+0.13 0.75+0.13
9 10.9] 0.50+0.13  047+0.13 0.661£0.15034+0.11 040+0.12

50 0.5]0.92+0.11 0.91 +0.12 0.93 =0.11 0.87+0.13 0.92 =0.12
T 125510.9] 0.77+£0.15  071+£0.17 0.8540.17 0.54+0.19 0.74+0.16
0.5 0.83+0.12 0.81£0.13 0.89+0.11 0.67+£0.11 0.76+0.13
5 9 (0.9 048+0.12 046+0.12 0.66+0.15 0.33+0.09 0.39+0.10
; 100 0.5{0.93 =0.10 0.92+0.11 0.94+0.09 0.80+0.11 0.924+0.11

255(0.9] 0.81+£0.14 0.74+0.15 0.84+40.16 0.524+0.19 0.79+0.14

generator |
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Aitchison distance in the simplex

 Non-separable (g=geometric mean)

Da(zi,z;) = [Zk ! (log( o(x }) log( fk)))z}

* Invariant by permutation, by scaling, by subcompositional dominance

-> Compositional Data (CoDa) Analysis

© Frank Nielsen



Clustering correlation matrices (elliptope)

Covariance matrices with unit diagonal, correlation coefficients

C?={Cyxgq : C>0;C;i=1.Yi}




Some distances between correlation matrices

* Hilbert log cross-ratio distance

IG - GG - Gff

pac(Cr. &) = |log -
|G — GG — G

e L1-norm
e L2-norm

* Log-det divergence pLp(Ci. G) = tr(G C2_1) — log |4 C2_1| —d.

© Frank Nielsen
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Experiments of clustering in the elliptope

V12 PHG PEUC PL1 PLD

4 10 | 0.62x+0.22 057+0.21 0.56+0.22 0.58+0.22
4 30 |0.854+0.18 0.80+0.20 0.81+0.19 0.82+40.20
4 50 0.894+0.17 087+0.17 0.86+0.18 0.88+0.18
5 10| 0.50+£0.21 0.49+0.21 0.48+0.20 0.47+0.21
5 30| 0.77 £0.20 0.75+0.21 0.75+0.21 0.75+0.21
5 501]0.84L£0.19 0.82+0.19 0.82+0.20 0.841+0.18




Information geometry:
Advanced topics, limitations and
perspectives

Frank Nielsen

& Sony CSL
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a-representations of the FIM

We introduced the
FIM in two ways 1(9) - = (Iij(ﬁ'))a Iz‘j(g) = Ep(:r;ﬂ) [('l;l(:zr; 9)8jl(17§9)]

formerly I;;(0) := 4/8“/19(3:; 0)0;\/p(x; 0)dv(z)
a-likelihood function (¥ (z;0) := k, (p(z; 6))
a-Embeddin L = 1
: ka(u): { 1—0-’u t 1f0{7é1
a-representation of the FIM: log u, ifa = 1.

1Y (8) = [ 81 (x;0)9;1) (z; 0)dv()

Corresponds to a basis choice in the tangent space (a-base)

© Frank Nielsen



a-representations of the FIM

o-Embedding I?’(ja) (9) p— f azl(a) (;E; 9)83l(—&) ({E; Q)dy(aj)
e O-representation (square root) : i(0) =4 /8 Vp(x;0)0;+/p(x;0)dv(x)
* 1-representation (log): 11--(9) = Ep2.0)[0il (2;0)0;1(; 0)]
e Under mild regularity conditions:
19(6) = — <% [p(z;6) 7 8,8;1 (z;6)dv(z)

* Coefficients of the connection: Fizk = f@iﬁjl(a) Ol dy(z)

The a-representations of the Fisher Information Matrix, 2017
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(p, T)-representations of the FIM

Smooth convex function and convex conjugates: f*(¢t) =¢(f )" (t) — f ((f’)‘l(t))

T-representation 7(p) = f’(p(p)) — (( )) 1( (p))
p-representation  p(p) = (f') " (r(p)) = (f*)'(r(p))

(p, T)-FIM 9:i(0) = { f”( (p(clo)) 222D ap(g(;e))}

(P, T)-c-connections (o) (g) = &, {122 1 (p(p((16))) Aige + f”(p(p(CIG)))Bz'jk}

C|9)) p(p(c]0)) dp(p(<l6)) & p(p(¢10)) p(p(<]6))
Aije (6, 0) = o0 o> DiklG0) = =

Zhang Jun. "On monotone embedding in information geometry." Entropy 17.7 (2015
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Libraries for Mixture of Exponential Families

* JMEF in Java
http://vincentfpgarcia.github.io/iMEF/

. Hioa?

_——_— ‘What are exponential families?

An exponential family is a generic set of probability distributions that admit the following canonical distribution:
pr(9) = exp((0,t(x)) — F(8) + k()

Exponential families are characterized by the leg normalizer function F, and include the following well-known
distributions: Gaussian (generic. :sotroprc Gaussran, dmgona{ Gaussian, rectified Gaussian or Wald distributions,

Presentation .PDF lognormal), Poisson, Bernoulli, bi l, multi (incl. chi-squared), Beta, exponential,
' Wishart, Dirichlet, Rayleigh, probability simplex, negatfve binomial distribution, Weibull, von Mises, Parsto
distributions, skew logistic, etc. All corresponding foermula of the canonical decomposition are given in the

‘quga documentation.

L]
. - {MEF Mixtures of exponential families provide a generic framework for handling Gaussian mixture models (GMMs also called
y I n y O n - Tutorials MoGs for mixture of Gaussians), mixture of Poisson distributions, and Laplaclan mixture models as well.

- Documentation

http://www-connex.lip6.fr/~schwander/pyMEF/

pyMEF 0.1 documentation » next | modules | index

Table Of Contents pyMEF: a Python library for mixtures of exponential families

Description

pyMEF is a Python framework allowing to manipulate, learn, simplify and compare mixtures of exponential families. It is designed to ease
the use of various exponential families in mixture models.

See also |MEF for a Java implementation of the same kind of library and libmef for a faster C implementation.

What are exponential families?

An exponential family is a generic set of probability distributions that admit the following canonical distribution:

pr(x:8) =exp ({H(x)|8) — F(8) + k(z))
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http://vincentfpgarcia.github.io/jMEF/
http://www-connex.lip6.fr/%7Eschwander/pyMEF/
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* The f-divergence between 1-to-1 smooth transformations of variables
vields the same parametric divergence, and the same information
geometry

Eg., KL and f-divergences between normal or log-normal have same
formula (via y=log x%

* Fisher-Rao distance between elliptical distributions with fixed dispersion
matrix is proportional to Mahalanobis distance

e Optimal transport formula is the same for elliptical distributions and
coincide with the formula for Gaussian measures. Two difficulties when
using OT: (1) choosing the ground distance, and (2) bad convergence rates
of empirical estimators.



Topics to be covered in an extended lecture series

 Deformed exponential families

e Kernel exponential families and deep exponential families
 Non-parametric information geometry

 Wong’s logarithmic-divergence and relationship |G with OT via c-divergence
e Quantum information geometry

 Many applications!

* Etc.
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