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The goal of this talk is to…
• Present the main ideas behind the dualistic structures of 

information geometry

• Avoid common misconceptions and pitfalls

• Decouple and explain the interplay of geometric structures 
with distances (dissimilarities/divergences/diversities)

• Minimize the use of equations to introduce the key concepts
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A (too) brief history of geometry
• Science for Earth measurements

• Pythagoras’s theorem (c570-495 BC)
• Euclid’s axiomatization and deduction (c300 BC)

Euclidean geometry

• Figures, congruences, construction with compass/rulers

• Lobachevskian hyperbolic geometry is consistent (c1800)
• Riemannian geometry (c1850): infinitely many consistent 

differential geometries
• Klein’s Erlangen program: classification (action of a group)
• Etc.

Big bang!
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Geometry is an incredibly creative science!
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Analytic versus synthetic geometry

• Descartes (c1600) introduced the Cartesian coordinates 
and calculus in geometry 
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Pythagoras’ / Pythagorean theorem 
• Yields formula of Euclidean distance in Cartesian coordinate system Circa 500 BC

Pythagoras’ theorem allegedly know  in Babylonian mathematics (2000-1600 BC)

At the heart
of the 

Euclidean distance
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Pythagoras’ theorem generalizes to the 
law of cosines for arbitrary triangles

We shall see that for Bregman manifolds in information geometry … 
… we have dual Pythagorean theorems with generalized law of cosines
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A modern view of Pythagoras’ theorem: 
A triangle PQR is rectangle if and only if 
straight lines perpendicular at Q induce distance identity

Squared Euclidean distance
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Riemannian differential geometry
• Gauss pioneered the study of 3D surfaces and curvature

• Introduce a positive-definite matrix G
• Define a geometric object called a metric tensor
• An infinitesimal Pythagoras theorem

Length of a curve by integration

Gauss

Riemann

Infinitesimal length element:
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Riemannian geometry: Infinitesimal Pythagorean theorem

Infinitesimal length element ds
Riemannian distance is (locally) length of shortest path 
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Riemannian geometry: A revolution that changed 
our perception of the universe and data science

General relativity of spacetime

Spacetime+Matter
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Visualized extrinsically as smooth surfaces of the ambient 
Euclidean space: Whitney embedding theorem

Riemannian manifolds: Extrinsic vs intrinsic views

Intrinsic geometry

Isometric
embedding:

Intrinsic geometry versus isometric Whitney embedding (in dim 2D)

Manifold learning/reconstruction
from data points (Swiss roll)

Hassler Whitney
(1907-1989)

Extrinsic geometry
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Conformal versus non-conformal metric tensor field:
Hyperbolic geometry

Upper Poincare plane
(conformal)

Poincare disk
(conformal)

Klein disk
(non-conformal)

Conformal: metric tensor a scalar-value function of the Euclidean metric tensor
In conformal geometry, we can measure angles without distortions

Conformal
Conformal Not conformal

Metric tensor scaled by positive function:
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Smooth manifold

n

Φuv

Φu

Φv

Φu (U    V)

U V

Φu(U)
Φv(V)

M
p

∩

UV mapping in computer graphics

Global geometric objects
vs 

Local descriptions
in local chart coordinates

Atlas
Coordinate charts

Locally Euclidean
(homeomorph)
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Visualizing (shortest) paths in a chart: 
(i.e., in local coordinates)

You can only visualize a geometry by rasterizing in a (local) coordinate chart
or drawing (conceptual) figures, or much better imagining it in your head!

Lev Semenovich Pontryagin (1908–1988)
blind by accident at 14 yo
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Manifold: Tangent spaces

TpM

• Tangent vector at p : V(p)

V(p)

• Tangent space at p :  TpM ≅  n

• V(p)=Σi Vi(p)𝜕𝜕i(p)

Intrinsic geometry view: 
interpret a vector as a

directional derivative and
not as an arrow 

Local basis vectors
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An essential concept: Affine Connection 𝛻𝛻
• Define how to “parallel transport” a vector from one tangent plane 

to another tangent plane by infinitesimally parallel shifting it along a 
curve (thus generally depend on the curve)

• Use to define 𝛻𝛻-geodesics as autoparallel curves

γ

Vp=V(p)

q
V(q)

γ̇𝛻𝛻Also provide a way to differentiate
a vector field with respect to another
vector field called the
covariant derivative

https://arxiv.org/abs/1808.08271

https://arxiv.org/abs/1808.08271
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Curvature of 
a connection 𝛁𝛁

Cylinder is flat:
Parallel transport is 
path-independent Sphere has constant curved curvature:

Parallel transport is path-dependent
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A word about the torsion of 𝐚𝐚 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝜵𝜵
Torsion measures the speed of rotation of the binormal vector

Connections differing by torsions have same geodesics
Pregeodesics= geodesic shapes without parameterization

parallel transport “twists” vectors.

Failing to close a 
“parallelogram”
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Metric-compatible connection 𝛻𝛻
Preserves the “inner product” of vectors by parallel transport

Preserves the metric 

You can measure 
lengths or angles

consistently at any 
tangent plane
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The fundamental theorem of Riemannian geometry
There exists a unique torsion-free connection that is metric compatible which 
is called the Levi-Civita connection; The LC metric connection is derived from g

Riemannian geometry: take the Levi-civita metric connection
Differential geometry: take any affine connection (Elie Cartan)
Information geometry: take a pair of “dual” connections

Tullio Levi-Civita
(1873-1941)

Elie Joseph Cartan
(1869-1951)

𝜵𝜵Metric-
compatible
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Rationale for information spaces
• In traditional geometry, a space is an empty vacuum
• In physics, a spacetime contains matter

(torsion in General Relativity of Einstein-Cartan)

• An information space is a space packed with entities/models:
• Space of matrices, symmetric matrices, positive-definite matrices
• Space of parametric densities, non-parametric densities, positive 

densities
• Etc.

Cone of positive-definite 2x2 matrices visualized in 
3D

https://arxiv.org/abs/1604.01592

https://arxiv.org/abs/1604.01592
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Rationale for Information Geometry (IG)
• What is the/a geometry of the space of Gaussian densities?

Distance, interpolation, closest Gaussian of a subfamily (projection)?
Note that appropriate geometry may depend on applications

• IG discovered a dualistic geometry that can also be used in 
other non-statistical contexts too!

• Applications of the IG framework to information sciences (statistics, 
information theory, signal processing, machine learning, etc.).
Mainly, because Information Sciences consider asymmetric distances
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What is the geometry of the Gaussian manifold?
• Euclidean geometry/distance yields this interpretation:

• Desiderata: Dissimilarity shall be invariant to reparameterization:
Same distance for parameterizations {N(μ, σ)} or {N(μ, σ2)}
No geometry of the sample space 
Furthermore, invariant by “sufficient statistics”

• Actually… Optimal Transport geometry of Gaussian manifold yields Euclidean 
geometry  But OT does not distinguish normal family from any elliptical family ☹

More 
similar?

Equidistant (Rao distance)
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Fisher-Riemannian geometry (1930/1945)

Harold Hotelling
Econometrician

C. R. Rao
Statistician

Use Fisher information
for the Riemannian

metric tensor

1930

19451. 👑👑 Cramer-Rao lower bound CRLB
2. 👑👑 Rao-Blackwellization
3. 👑👑 Fisher-Rao distance 

Oswald Veblen,
Advisor of Hotelling

Cramér-Rao Lower Bound and Information Geometry, 2013
https://arxiv.org/abs/1301.3578

https://arxiv.org/abs/1301.3578
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Population space/parameter space
Example in statistical hypothesis testing: estimate from observations and 
then classify with respect to divergence to decide which hypothesis.

divergence

Geometry needed to build better
Information Sciences:
- Deal with model and data

(via empirical distributions)
- Deal with model and model

Wald’s view: All statistical problems are decision problems…
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Fisher information metric/matrix (FIM)

gij(ξ)=∫ 𝜕𝜕
𝜕𝜕ξi log(pξ(x)) 𝜕𝜕

𝜕𝜕ξj log(pξ(x))pξ(x)dx

g(ξ)=Eξ[
𝜕𝜕

𝜕𝜕ξi log(pξ)
𝜕𝜕

𝜕𝜕ξj log(pξ)]

FIM is positive-semidefinite, positive-definite for regular models

Sir Ronald Fisher

1922
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Pattern recognition in nuclear fusion data by means of geometric methods in probabilistic spaces, 2017

Pseudo-sphere
(negative curvature -1/2)

Geometry of normal distributions: hyperbolic
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Hyperbolic geometry for location-scale families

Several models of hyperbolic geometry (Klein, Poincare, Beltrami, pseudosphere)

https://www.youtube.com/watch?v=i9IUzNxeH4o

Visualizing hyperbolic Voronoi diagrams. Symposium on Computational Geometry 2014

https://www.youtube.com/watch?v=i9IUzNxeH4o
https://dblp.uni-trier.de/db/conf/compgeom/compgeom2014.html#NielsenN14
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Cramer-Rao lower bound (CRLB + Frechet)
The variance of any unbiased estimator is lower bounded 

by the inverse of the Fisher information

C. R. Rao

Harald Cramer

The covariance of any unbiased estimator is lower bounded 
by the inverse of the Fisher information matrix

(here, positive-definite matrices, Lowner ordering)

Notion of 
efficiency!

René Maurice Fréchet
(1878-1973)
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Φ

S2

(0,0,1)

(0,1,0)(1,0,0) Φ

O =

p(x,μ,σ) ↦(μ,σ) 

O = x1, … , xn

Exponential family : p(x,ξ1,…,ξn)=eC x +ξiFi
x − ψ(ξ) ↦(ξ1,…,ξn+1) 

0
μ

σ

𝜉𝜉1

𝜉𝜉2

(0,1)

(1,0)0

• 𝒩𝒩 (μ, σ)

• Sn

ξ ∈ 𝑛𝑛 + 1 |ξ𝑖𝑖 > 0 � ξ𝑖𝑖 = 1

ξ ∈ n |ξi > 0 � ξi = 1

p(x,ξ1,…,ξn+1) ↦(ξ1,…,ξn)  

Examples of statistical models  (regular/identifiable) 

Negative
curvature

Positive
Curvature:

Multinomial
Multinoulli

Discrete dist.
Categorial dist.

Upper half-plane

Simplex
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Non-regular statistical models
• Not identifiable models happen often in practice…

• Usually, hierarchical models:
• Gaussian mixture models (GMMs)
• Multi-layer perceptrons (MLP)

• Semi-definite matrix: Singular Semi-Riemannian manifolds

• Cramer-Rao lower bounds does not hold, need different theory for 
model selection (BIC, MDL), natural gradient and plateau in learning, 
etc.

Lightlike Neuromanifolds, Occam's Razor and Deep Learning, arXiv:1905.11027
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Statistical curvature (1975)
Use of differential geometry to study 
the information loss  in estimation

Bradley Efron
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Dualistic structure of information geometry

• Two conjugate torsion-free affine connections coupled with the metric
• Dual parallel transport is metric-compatible
There is not necessarily a distance, 2^k types of k-gons (eg, 8 triangles)

8 kinds of geodesic triangles
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Dual parallel transport is metric-compatible
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Dually flat space: Pythagoras’ theorem

Two (affine) coordinate systems coupled by Legendre-Fenchel transformation
Two dually flat connections with respect to the metric tensor
Canonical distance = Bregman divergence induced by convex generator F
Bregman manifold (a type of Hessian manifold)

Generalize Euclidean space, very practical for computing!

Bregman manifold 
induced by a

convex function
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From any dualistic structure…
… to a 1-family of duality structures: α-geometries

How to choose α depending on applications?

Notion of
Amari-Chentsov

cubic tensor
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From a dualistic structure to a 1-family of 
dually structures
• Let (M, g, 𝜵𝜵, 𝜵𝜵*) be a dualistic structure: A dual pair of connections coupled 

to the metric so that dual parallel transport is metric-compatible

• We can build a 1-family of dualistic structures (M, g, 𝜵𝜵−α, 𝜵𝜵α) 

so that 𝜵𝜵
−α+𝜵𝜵α

𝟐𝟐
=𝛻𝛻0 = 𝛻𝛻LC

• No distance associated with the dualistic structure. 

In particular, when α =0, (M, g, 𝜵𝜵0, 𝜵𝜵0) = (M, g) the Riemannian geometry. 
Thus information geometry generalizes (Fisher-Rao) Riemannian geometry
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Amari’s expected α-geometry

• Given a parametric family of distributions, consider the Fisher 
information matrix and a family of connections: α connections

• Exponential e-mixture connection and m-mixture connection

Levi-Civita connection : 𝛻𝛻0 = 𝛻𝛻LC

gpξ
(𝛻𝛻α

𝜕𝜕i𝜕𝜕j(p ξ),𝜕𝜕k(p ξ))=Γα
ijk(p ξ)=E ξ[( 𝜕𝜕

𝜕𝜕ξi

𝜕𝜕
𝜕𝜕ξj log(pξ)+ 1−α

2
𝜕𝜕

𝜕𝜕ξi log(pξ)
𝜕𝜕

𝜕𝜕ξj log(pξ)) 𝜕𝜕
𝜕𝜕ξk log(pξ)]

• No associated distance in the alpha-expected geometry

https://arxiv.org/abs/1808.08271

https://arxiv.org/abs/1808.08271
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How to get initial dual expected connections?
• Historically, built the e-connection (exponential, α=1) and 
m-connection (mixture, α=-1) for statistical models

Log-likelihood 

e-connection

m-connection

Dual connections with respect to the Fisher information (Riemannian) metric
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Example of dual e-/m-connections for the 
univariate Gaussian 2D manifold

Misconception: The m-geodesic between two Gaussians of a Gaussian 
manifold is a Gaussian (and not a mixture of Gaussian!)
The Gaussian is obtained from linear interpolation on the moment parameters
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Dualistic structure of the Gaussian manifold
∇: e-connection
∇*:m-connection
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Dual connections from any divergence!

• a tensor metric g: gij(pξ)=
𝜕𝜕

𝜕𝜕ξ𝑖𝑖
1

𝜕𝜕
𝜕𝜕ξ𝑗𝑗2

D(pξ1
,pξ2

)|ξ1=ξ2=ξ

• a torsion-less affine connection 𝛻𝛻:
Γijk(p 𝜉𝜉)= − 𝜕𝜕

𝜕𝜕ξ𝑖𝑖
1

𝜕𝜕
𝜕𝜕ξ𝑗𝑗

2

𝜕𝜕
𝜕𝜕ξ𝑘𝑘

2

D(pξ1
,pξ2

)|ξ1=ξ2=ξ

D*(pξ1
,pξ2

)= D(pξ2
,pξ1

)Dual divergences
and dual connections

(M, 𝐷𝐷g, 𝐷𝐷𝜵𝜵, 𝐷𝐷𝜵𝜵*) 

Dual connections from any smooth parametric distance, 
called a (parameter) divergence D: D is not necessarily symmetric 

Symmetric divergences yields the same connection:
The Levi-Civita connection
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Many distances/divergences 
in information sciences

Divergence= discrepancy, dissimilarity, 
deviance between two probability 
distributions

Also nowadays, smooth parametric 
dissimilarities (contrast function)

Distance is often thought as
a metric distance:
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Divergences: Statistical distances

• In information theory, relative entropy called Kullback-Leibler divergence

• Can be extended to f-divergences

• Properties: Distances can be scale-invariant (eg, Itakura-Saito), 
homogeneous, projective (work on unnormalized probability densities), 
etc.
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Organize dissimilarities 
in (exhaustive) classes
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Invariant divergence = f-divergences
• Lump or coarse-bin a separable distance, and ask for 

information monotonicity

Theorem: The only monotone separable divergences are f-divergences
(except for the curious case of binary alphabets)
f-divergences are invariant by diffeormorphisms of the sample space
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Statistical invariance

• Fisher-Rao distance is independent of parameterization (but FIM is covariant!)
Same Fisher-Rao distance for parameterizations {N(μ, σ)} or {N(μ, σ2)}

• Fisher information metric is the only invariant metric tensor (up to a scale factor)

• Metric tensor induced by any standard f-divergence coincides with the Fisher 
information metric

• Dual connections induced by any f-divergence yield expected alpha-connections
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Recommended textbooks + overview survey

2016
Very nice up-to-date survey including

Applications by the pioneer S.-i. Amari

2014
More details on differential geometry

with exercices

An elementary introduction 
to information geometry

https://arxiv.org/abs/1808.08271
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Prerequisite: 
Information sciences + Differential geometry

• Tensors + Manifolds
• Statistics + Information theory 



Outline of the lectures:
• Introduction and overview of the dualistic structures (these slides)
• Background:

• Probability and statistics
• Information theory
• Differential geometry
• Distances

• Information-geometric manifolds
• Fisher-Rao Riemannian manifolds
• Manifolds with dual connections coupled to the metric
• Bregman manifolds
• Geometry of mixture families with applications

• Information geometry in action:
• Natural gradient descent methods and deep learning
• Clustering
• Bayesian hypothesis testing

• Advanced topics, limitations and perspectives
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Thank you.

http://forum.cs-dc.org/category/72/geometric-science-of-information

https://franknielsen.github.io/

http://forum.cs-dc.org/category/72/geometric-science-of-information
https://franknielsen.github.io/
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Genesis of an information-geometric structure

https://arxiv.org/abs/1808.08271

https://arxiv.org/abs/1808.08271
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Background
• Probability and statistical inference

• Measures, random variables, Fisher information, exponential families

• Information theory and maximum entropy
• Entropy, relative entropy (Kullback-Leibler divergence), maximum entropy 

principle

• Distances
• Metrics, divergences, properties, information monotonicity, parametric 

families, f-divergences, Bregman divergences, Jensen divergences

• Geometry
• Algebraic structures (dual vector/covector spaces, tensors), affine space, 

differential geometry (Riemannian, affine: uncoupling metric/connection)
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Applications

Singularities in neuromanifolds
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Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

IEEE TPAMI 34, 2012

t-center:

Robust to noise/outliers
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Total Bregman divergence and its applications to DTI analysis
IEEE Transactions on medical imaging, 30(2), 475-483, 2010.
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The origin of dual connections

• Aleksander P. Norden (1904-1993), relative geometry 
(equiaffine torsion-free connection)
Russian book "Spaces with an affine connection" (1976) 

• Rabindra Nath Sen (1896-1974), “Senian geometry”

• Nomizu and Sasaki’s Affine differential geometry (geometry of 
immersions)

• Information geometry (Chentsov’s category approach and Amari)

• Wong’s optimal transport and c-divergences

Norden Sen

Nomizu Amari
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Geometry and its language affordance
• What is geometry?

• Science of measurements
• Science of figures (ruler and compass construction)
• Axioms, consistency and deductive theorems (Euclidean/hyperbolic)
• Science of invariance (congruence of figures/Erlangen program)
• Etc.

• Geometry has its own human language for reasoning
• What is the distance between two points?
• What is the midpoint between two points?
• What is the closest point of a surface from a given point? (projection) 
• Balls and space of balls binary operations (CSG construction)
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Background for Information Geometry
•Probability and statistics
•Information theory
•Elements of differential geometry
•Distances, divergences and entropies

Frank Nielsen

https://arxiv.org/abs/1808.08271
An elementary introduction to information geometry

https://arxiv.org/abs/1808.08271
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Probability and statistics
Background

Frank Nielsen
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Outline
• Classic probability theory

• Modern  theory of probability measures

• Statistical inference:  
• method of moments, 
• Maximum Likelihood Estimator (MLE), 
• sufficient statistics, 
• Fisher information (with curvature interpretation)

• Exponential families

Pierre de Fermat

Kolmogorov

Sir Ronald Fisher

Barndorff-Nielsen

Jacob Bernoulli
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Discrete random variables  
• Bernoulli distribution (coin tossing), binomial distribution (tossing a coin n times), 

multinomial distribution (throwing a dice n times), Poisson distributions, etc.

• Sample space and probability of events:

• Probability mass function
(pmf)

• Cumulative distribution function (CDF)

• Expectation
• Variance

Jacob Bernoulli
(1654,1705)
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Discrete random variable 

• Poisson distribution with support 0, 1, 2, 3, … 
• Probability mass function:

• Cumulative distribution function

• Mean and variance:

Siméon Denis Poisson 
(1781–1840)
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Continuous random variable
• Probability density function (PDF)
• Normal or Gaussian distribution
• A location-scale distribution:

• CDF of standard normal distribution N(0,1)

• Expectation and moments

1777-1855

Riemann
integral
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• Lorentzian/Cauchy PDF:

• CDF:

• Cauchy distributions do not have finite moments of 
any order! No expectation (bcs of improper integral)

• Location-scale family, standard Cauchy

Continuous random variable

Augustin-Louis Cauchy
(1789-1857) 
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Probability measures
• additive  law of probability  for possibly countably infinite pairwise mutually 

exclusive events

• Interpreted as volumes of  events for disjoint events

• But Banach-Tarsky's paradox kicks in: for an uncountably sample space there 
exists a set S which can be partitioned into two disjoint congruent sets S1 and 
such that
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• Pb: Cannot consider the full power set for continuous sample spaces

• Let us define an algebra of measurable events: the σ-algebra

• σ-algebra generated/induced  by a set S:
=Smallest σ-algebra with respect to set inclusion

Measure theory: σ-algebra (of events)
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Measure space 

• Borel sets                  : =σ-algebra generated by all open intervals

• Counting measure:   σ-algebra is the power set        and the measure is 
defined by cardinality 

• Lebesgue measure:
Volume for open boxes
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Measurable function and simple functions
• Consider two measurable spaces: 
• Preimage:

• Measurable function:
If and only if the preimages                                           are in        for all B  

• Indicator function:

• Simple function:
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Lebesgue integration

• Riemann integral (signed area under the curve) not enough!
(compact, problem with limits, etc.) 

• Integral of a simple function:

• Other notations:

• Integral of positive measurable functions:

• In general, for a measure, decompose into positive/negative measures:

Henri Léon Lebesgue  
(1875-1941) 
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Random variables and expectations

• A random variable X is a real-valued measurable function: 

• Probability:

• Bonus: The expectation of a discrete or a continuous random variable 
writes similarly using probability measure theory:
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Density and dominating measure

• For a measure space                  and a measurable function f, define 
the measure

For example, the Gaussian density is formed from the Lebesgue density

• Absolute continuity: 
is dominated by  

Let                        then  
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Many properties:

Radon-Nikodym theorem and RN density
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Statistical inference: Estimators
• Given n independent and identically distributed (iid) observations, estimate the 

underlying distribution (probability density)
• Idea: Assume the density is parametric
• One of the oldest method is the method of moments:

Simply match the distribution moments with the sample moments

• Infinitely many (point) estimators! Which one is best?
Pafnuty Chebyshev

(1821-1894)
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Maximum likelihood estimator (MLE)

• Likelihood function: Function of the parameter

• Maximum likelihood estimate:

• Consistent method: converge in probability to the true value

Parametric family:
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Fisher information

• FI measures the amount of information that an observable random variable X 
carries about an unknown parameter θ

• Fisher information interpreted as the curvature of the  graph of the log-
likelihood: Near the MLE, high Fisher information indicates that the maximum 
is sharp, low Fisher information indicates that the maximum  is shallow (many 
nearby values with a similar log-likelihood).
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Cramer-Rao lower bound (CRLB): Univariate 
case

• The variance of any unbiased estimator is lower bounded by the 
inverse of the Fisher information:

• Fisher information:

Cramer-Rao lower bound and information geometry.  Connected at Infinity II, 2013. 
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Cramer-Rao lower bound: Multivariate case

Under regularity conditions:

Cramer-Rao lower bound and information geometry.  Connected at Infinity II, 2013. 

Equivalent representation of the FIM 

Löwner partial ordering on positive-semi-definite matrices: 

CRLB Theorem:



© Frank Nielsen

Properties of the Maximum Likelihood Estimator (MLE)

• Consistency:

• Efficiency: Variance of estimator matches the Cramer-Rao lower bound (CRLB)

• Equivariance: MLE estimator of Gaussian variance σ2 is equivariant to MLE 
estimator of deviation σ

• Asymptotic normality (convergence in distribution):
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Some properties of the Fisher Information Matrix

• Positive semi-definite FIM 

• Positive-definite FIM for regular models (=identifiable)

• FIM is invariant under reparametrizations of the sample space X.

• Covariant under reparameterization (later, a 2-covariant tensor metric…)
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Regular versus non-regular models
Regular models: 1-to-1 correspondence of parameters with distributions

Hierarchical models are usually non-regulars (eg., mixtures, multilayer perceptron)

Multiple Layer Perceptron
(MLP)
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Key concept: Sufficient statistics
• A statistic is a function of a random vector  (e.g., mean, variance)

• A sufficient statistic collect and concentrate from a random sample all 
necessary information for recovering/estimating the parameters. 

Informally, a statistical lossless compression scheme…
• Definition: conditional distribution of X given  t   does not depend on θ

• Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density 
can be decomposed as:

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)
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Example of sufficient statistics:

Fisher-Neyman factorization: 

For Poisson distributions of intensity λ: 
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Natural exponential families (NEF)
• Consider a positive measure 
• An exponential family is a parametric family of densities that write as

where F is real-analytic, strictly convex and differentiable:

F: Log-normalizer (also known as partition function, cumulant function, etc.)

Natural parameter space

Log-Laplace 
transform
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Exponential families (from Natural EFs to EFs)

• Consider a (sufficient) statistic t(x)
• Consider an additional carrier measure term k(x)
• Consider an inner product between t(x) and θ

(usual scalar/dot product) 

Properties:

Exponential families have finite moments of any order
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Many common distributions are exponential families in disguise
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Maximum likelihood estimator for 
exponential families

Average log-likelihood:

MLE equation
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Regular EFs and steepness of exponential families
• An exponential family is regular when the natural parameter space is open

• Closed convex hull of {t(x)}: 

• Map                                                  is one-to-one
• Consider the expectation/moment parameter space:
• Family is steep if
• MLE exists and is unique for regular and steep EFs when 

Example of non-steep family: Singly-truncated Gaussian family
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Dual moment/expectation parameterization
• For a regular EF density, let                       
• denote the dual parameterization 

• Related to the Legendre-Fenchel convex conjugate:

• Moreau biconjugate theorem: when F is proper, lower semi-continuous, 
and convex function:

Legendre transformation and information geometry, 2010.
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Dual parameterization of exponential families
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Legendre-Fenchel conjugate
• We have                                and
• The convex conjugate is defined by:

• Crouzeix identity for convex conjugates

The identity matrix

Crouzeix, J.P. A Relationship Between The Second Derivatives of a Convex Function and of Its Conjugate. 
Math. Program. 1977, 3, 364–365.
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Convex conjugates at the heart of Bregman manifolds
• Young’s inequality states that

• It yields the Fenchel-Young divergence:

…. that is equivalent to a Bregman divergence:
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Bernoulli family
Order 1

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
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Univariate Gaussian family
Order 2

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
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Poisson family
Order 1

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
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Multivariate Gaussian family
Order

Statistical exponential families: A digest with flash cards. arXiv:0911.4863 (2009)
On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019

Compound parameter:
Vector part
Matrix part

Inner product defined by:
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Summary
• Probability measure bypasses the Banach-Tarsky paradox by fixing a σ-algebra 

of measurable events, and unifies discrete/continuous random variables as 
measurable functions

• Fisher information (FI) measures the sensitivity of the log-likelihood 
(curvature), invariant to reparametrization of sample space, covariant to 
reparameterization of parameter space

• Cramer-Rao bound provides a lower bound on the variance of unbiased 
estimator (non-asymptotic) based on the inverse of FI

• MLE has asymptotic normality for regular models
• Sufficient statistics is statistical lossless compression of random vectors
• Exponential families: Dual parameterizations via Legendre-Fenchel

conjugation, MLE in closed-form in dual moment parameterization
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Information Theory

Background

Frank Nielsen
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Outline
• Shannon entropy and differential entropy
• Relative entropy known as the Kullback-Leibler divergence
•
• Maximum entropy principle 

MaxEnt distributions = exponential families

• Bounding the differential entropy of statistical mixtures
• Kullback-Leibler divergence of location-scale families
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Shannon’s entropy

• Quantifies the uncertainty of a discrete random variable X

• Can be derived axiomatically from Kinchin’s axioms



© Frank Nielsen

The negentropy is called Shannon information (= a convex function)

Shannon’s entropy is a concave function

• Always positive
• Bounded by log(n)
• Finite for fixed-size alphabets
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Differential entropy is different from discrete entropy

• Can be negative : e.g., Gaussian distributions                                   
• Can be infinite when the integral diverges

• For Dirac distribution, the entropy is: 

NB: For Gaussian distributions, the entropy is independent of location
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Entropy of a probability measure
• Random variable (=measurable function)

Unifies:
• discrete entropy (counting measure)
• differential entropy (Lebesgue measure)

With Radon-Nikodym derivative with respect to  to base measure μ:
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Relative entropy: Kullback-Leibler divergence (KLD)

KLD = Relative entropy with respect to a reference distribution P
Not a metric distance because (1) asymmetric and (2) failing the triangle inequality

Cross-entropy:

KLD is an 
oriented 
distance!
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Entropy for discrete/continuous exponential families

Using natural parameter θ:

Using expectation parameter η:

Entropies and cross-entropies of exponential families, IEEE ICIP 2010

without carrier term k(x)
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Kullback-Leibler divergence for exponential families
Fenchel-Young divergence for exponential families

Fenchel-Young divergence (on mixed parameters): 

Bregman divergence (on natural/expectation parameters): 
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Jaynes’ maximum entropy principle (MaxEnt)
• Jaynes's principle of maximum ignorance: 

Underconstrained optimization problem 

Maximizing a concave function subject to linear constraints 
(or equivalently convex mininimization optimization problem).

Edwin Thompson Jaynes 
(1922–1998)
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MaxEnt with Kullback-Leibler divergence
and with a prior constraint distribution q

Maximum entropy  distribution is the uniform prior:

MaxEnt is KL 
left-sided 

minimization
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MaxEnt distributions (Boltzmann-Gibbs)
Solving the constrained optimization problem: 
Use Lagrange multipliers θ (but θ not in closed form)

Gibbs distribution, Maxwell-Boltzmann distribution in statistical mechanics:

Prior q gives the carrier measure:

MaxEnt distributions  are exponential families

Log-normalizer: 

Gibbs distribution in statistical physics,
Titled distribution in probability, etc.

Free enery
log-partition
cumulant function

Josiah Willard
Gibbs

Ludwig
Boltzmann
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Example: Fixed mean and fixed variance 
MaxEnt distribution

• Find the MaxEnt distributions with support the full real line and the 
first two moments prescribed

Gaussian
family
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MLE as a right-sided KLD minimization

Empirical distribution:

Recall that MaxEnt is KL left-sided minimization:

MLE is KL 
right-sided 

minimization
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Upper bounding the differential entropy of mixtures (1/2)

Key idea: compute the differential entropy of an exponential family with 
given sufficient statistics in closed form. Since it is a MaxEnt distribution, 
any other distribution with the same moment expectations has less entropy. 
In particular, this observation applies to statistical mixtures.

MaxEnt Upper Bounds for the Differential Entropy of Univariate Continuous Distributions,
IEEE SPL 2017, arxiv:1612.02954 https://www.lix.polytechnique.fr/~nielsen/MEUB/

Absolute Monomial Exponential Family (AMEF):

with log-normalizer

https://www.lix.polytechnique.fr/%7Enielsen/MEUB/
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Upper bounding the differential entropy of mixtures (2/2)

Density of a Gaussian Mixture Model (GMM):

MaxEnt distribution is Laplacian distribution

MaxEnt distribution is Gaussian distribution
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A series of upper bounds for h(GMMs)

MaxEnt Upper Bounds for the Differential Entropy of Univariate Continuous Distributions,
IEEE SPL 2017, arxiv:1612.02954

Zero-centered Gaussian Mixture Models:
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Computing non-central absolute geometric moments of 
Gaussians and GMMs
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• In theory, Risch semi-algorithm reports whether a definite integral has a 
closed-form or not. Notice that the KLD can also diverge.

• Symbolic calculations
• For example: Cauchy location-scale families . 

Computing the Kullback-Leibler divergence…

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, arXiv:1905.10965

Symmetric 
KL
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Kullback-Leibler divergence: Location-scale families

On the Kullback-Leibler divergence between location-scale densities, arXiv:1904.10428

Interesting properties for the KL minimization:

Location-scale group:
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Mutual information of RVs (MI) 
• Consider two random variables X and Y.
• There are independent if and only if

• Amount of mutual information quantified as the KL divergence 
between the joint distribution and the product of distributions

MI is not a metric distance but a symmetric distance between random variables
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Elements of differential geometry

Frank Nielsen
Elie Cartan
1869-1951

∇
Jean-Louis Koszul  

(1921-2018)
Charles Ehresmann

(1905-1979) 
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Outline

• Vector space and dual covector space

• Inner product space and metric tensor 
(contravariant and covariant coordinates)

• Tensor fields

• Affine connection
• Riemannian metric connection
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Finite dimensional real vector spaces
A real vector space is a set X with a special element 0, and three operations :

• Addition: Given two elements x, y in X, one can form the sum x+y, which is also an element of X.
• Inverse: Given an element x in X, one can form the inverse -x, which is also an element of X.
• Scalar multiplication: Given an element x in X and a real number c, one can form the product cx, which is 

also an element of X.
Operations must satisfy the following axioms:
• Additive axioms. For every x,y,z in X, we have

• x+y = y+x.
• (x+y)+z = x+(y+z).
• 0+x = x+0 = x.
• (-x) + x = x + (-x) = 0.

• Multiplicative axioms. For every x in X and real numbers c,d, we have
• 0x = 0
• 1x = x
• (cd)x = c(dx)

• Distributive axioms. For every x,y in X and real numbers c,d, we have
• c(x+y) = cx + cy.
• (c+d)x = cx +dx.
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Einstein 
summation
convention

Bases and dimension of a vector space V 
• A set of D vectors                                                is linearly independent iff

• A basis is a set of maximal linearly independent vectors (wrt. set inclusion)

• The dimension of the vector space is the cardinality of any basis (finite 
dimensional case)

• Vector v written in a basis B using coefficients/components:
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Dual vector space V*: Vector space of covectors

• Linear form: Linear mapping
• Dual vector space V* = vector space of real-valued linear mappings
• Same dimension:
• Isomophism

• Dual covector basis: We have
• Choose covector basis which reads vector components:
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• By notational definition:

• Vector components:

• Covector components  

Pairing product of a covector with a vector
Basis  in vector space

Basis  in covector space

Pairing
product
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Inner product space:   
notion of lengths/angles/orthogonality of vectors

Orthogonality
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Norm and distance induced by an inner product

Length of a vector v is its norm

Distance (metric) induced by a norm:
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Reciprocal basis is a basis of vectors
• Given an inner product <.,.>, we can define a reciprocal basis of V

• The coefficients of a vector v in the primal basis are called the 
contravariant coefficients:

• The coefficients of a vector v in the reciprocal basis are called the 
covariant coefficients:

primal and reciprocal basis are mutually orthogonal



© Frank Nielsen

Geometric reading the covariant/contravariant 
coefficients/components of a vector

In a Cartesian orthonormal coordinate system, 
the contravariant components match 
the covariant components

contravariant

covariant

Abide rules of change of basis 
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Primal and reciprocal basis are mutually orthogonal
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Scalar product and dual metric tensors

• Scalars are tensors of order 0
• Vectors are contravariant tensors of order 1
• Covectors are covariant tensors of order 1
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Converting covariant ↔ contravariant components

Raising and 
lowering indices
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Geometric tensors and tensor algebra
• Informally, tensor = multi-array of coefficients…
• Got attention in the media in deep learning with TensorFlow
• But tensors are geometric objects interpreted as multilinear maps

Later, we shall see that g is a 2-covariant tensor:

A tensor of type (r,s)

Components/coefficients with respect to a basis
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Riemannian metric tensor g
• On a manifold, a smooth 2-covariant tensor field
• On each tangent space, define an inner product space

extrinsic=embedded versus intrinsic visualization/interpretation
• Union of all tangent spaces is called the tangent bundle

• Eat two vectors…
• Bilinear positive-definite
g(aU+V,W)=ag(U,W)+g(V,W)

• symmetric
g(V,W) = g(W,V)

• nondegenerate
∀p, ∀V ≢ 0 ∃ W, gp(V,W) ≠ 0

Vs in (local) coordinates:
gp=gp(𝜕𝜕𝑖𝑖(p), 𝜕𝜕𝑗𝑗(p))=gij(p)

Coordinate-free
description
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Affine connection ∇
• Define how to parallel transport a vector from one tangent 

plane to another tangent plane by infinitesimally parallel shifting 
it along a curve

• Use to define geodesics as autoparallel curves

γ

Vp=V(p)

q
V(q)

γ̇𝛻𝛻Also covariant derivative…
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How to define an affine connection
• Report d^3 smooth functions, called Christoffel symbols
• In a local coordinate chart with natural basis, we have:

• Christoffel symbols are not tensors: they do not obey the     
covariant/contravariant laws of change of basis

Elwin Bruno Christoffel
(1829-1900)
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∇-geodesics
• Geodesics are “straight lines”, auto-parallel lines

• We find geodesics by solving a second-order Ordinary Differential 
Equations (ODE)
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Connection and covariant derivative
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Riemannian metric-compatible connection

• A connection is metric-compatible if for any smooth vectors fields X,Y,Z

• In local coordinates, this amount to check that

• Metric-compatible connection enjoys parallel transport with the property:
PT 

preserves 
metric
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Fundamental theorem of Riemannian geometry

• There exists a unique torsion-free affine connection compatible with 
the metric called the Levi-Civita connection: 

• The Christoffel symbols of the Levi-Civita connection are calculated 
from the metric tensor in local coordinates :

• Or in coordinate-free equation by the Koszul formula:
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Elie Cartan’s study of affine connections

E. Cartan, Sur les variétés à connexion affine, et la théorie de la relativité généralisée , Ann. Ec. Norm. Sup. 40 
(1923)

Cartan-Einstein manifold
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Curvature of 𝛁𝛁

Cylinder is flat
Parallel transport is 
independent of path Sphere has constant curvature

Parallel transport is path-dependent
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Torsion of 𝐚𝐚 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝜵𝜵

• For connections:

Torsion measures the speed of rotation of the binormal vector

Connections differing by torsions have same geodesics
Pregeodesics

parallel transport “twists” vectors.
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Summary

• Algebraic structures: Vector and dual covector spaces with natural 
pairing, inner product space and contravariant/covariant coordinates, 
tensor space and dyadic product

• Manifold with an affine connection: tensor fields, parallel transport, 
geodesics, curvature and torsion
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Distances and  entropies

Frank Nielsen
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Distances
• Too many synonyms and ambiguities in the literature! 
(two-point function, notion of distinguishability, discrepancy, divergence, 
metric, relative entropy, measure of discrimination, coefficient of divergence, 
etc.)

• Distance between points, densities, random variables, etc.
• Statistical divergence versus parameter divergence

• Principal distances and main classes of distances

• Generalized entropies and relative entropies
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Metric distances and metric spaces (X,D)

A metric D is a (distance) function that satisfies the following axioms:

• M1. (Non-negativity)

• M2. (Identity of the indiscernibles)

• M3. (Symmetry) 

• M4. (Triangle inequality/subadditivity)  
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Examples of metric spaces

• Euclidean distance
• Manhattan/Taxi cab distance
• Minkowski metric distances

L1 is not geodesic Non-metric (not convex) and metric balls (convex)
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Inner product, induced norms and 
induced distance

• Inner product 
• Induced norm
• Induced metric distance
• Example with Euclidean distance an its dot/scalar product

• Example with Minkowski norms 
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Distances and some notational conventions
• Typing distances: between strings, vectors, matrices (tensors), graphs, 

probability densities, cumulative distribution functions, random 
variables (mutual information), etc.

• : to indicate that the distance is oriented, asymmetric: 

Stemmed from  information theory to avoid confusion with 
joint variables 
• ; to indicate a symmetric but non-metric distance: 
Example: Mutual information
• Bracket []  to indicate a statistical distance:
• For a parametric family P, a statistical distance amount to a parameter 

distance:
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Signed distances (failing non-negativity)

Hilbert-cross ratio metric
(signed)

Clustering in Hilbert simplex geometry, arXiv:1704.00454 (2017)
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Pseudo-metrics: Failing the identity of the 
indiscernibles
• For example, we would like that the distance of a substring s' to a 

string s containing s' is zero but not the converse.
• Schubert distance:

Schubert varieties and distances between subspaces of different dimensions
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Failing symmetry: E.g., Funk oriented distance

Hilbert cross-ratio metric is the arithmetic 
symmetrization of Funk distances

Reverse distance or dual distance (reference duality)
Satisfies triangle 

inequality but 
fails symmetry

Related to Finsler geometry that extends Riemannian geometry with a Finsler metric (norm)
Medians and means in Finsler geometry,  arXiv:1011.6076
A family of statistical symmetric divergences based on Jensen's inequality, arXiv:1009.4004 
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Failing triangle inequality/subadditivity:

• Example: Kullback-Leibler divergence between two pmfs:

• Notice that the squared Euclidean distance fails the triangle inequality

Clustering in Hilbert simplex geometry, arXiv:1704.00454
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Scale-invariant distances
• Itakura-Saito divergence:

• Scale-invariance property:

• Often used in music applications (spectrum)

Fumitada Itakura
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Projective distances: E.g., Birkhoff’s distance
• Distance independent of both argument scaling factors
• C a cone that induces a partial order 

• For the positive orthant cone, we have Birkhoff’s projective distance:

On Hölder projective divergences, Entropy 19 (3), 2017
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Statistical distance: Total Variation  (TV) metric

• The TV measures the largest probability difference of an event E of 
the σ-algebra of the sample space.

• When P and Q admit Radon-Nikodym densities p and q wrt µ, 
respectively, we have

• Synonyms: city block distance, overlap distance, etc.
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Kolmogorov metric distance
• A distance between distribution functions, less than TV:

Related to
Kolmogorov–Smirnov test
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Classes of distances: Csiszar’s f-divergence
• Function f convex, strictly convex at 1, with f(1)=0

• Include the Kullback-Leibler divergence for f(u)=-log u
• Invariant divergence in information geometry (information monotone)

On the chi square and higher-order chi distances for approximating f-divergences, IEEE SPL 2013
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Axioms for a statistical distance (Ali & Silvey, 1966)

Coarser sigma-algebra
More distinguishability of stochastic processes
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Classes of distances: Bregman divergence
• Bregman divergence between parameters for a strictly convex and 

differentiable convex function F

• The canonical divergence of dually flat spaces
• Extend to other types (matrices, functions, etc)

Mining matrix data with Bregman matrix divergences for portfolio selection."Matrix Information Geometry. 
Springer, Berlin, Heidelberg, 2013. 373-402.
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Matrix Bregman divergences

Mining Matrix Data with Bregman Matrix Divergences for Portfolio Selection, 2013
Bregman–Schatten p-divergences…

For real symmetric matrices:

where F is  a strictly convex and differentiable generator

• Squared Froebenius distance for
• von Neumann divergence for 

• Log-det divergence for  
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Jensen difference/Jensen divergence (Burbea-Rao)

Asymptotic scaled Jensen 
divergence amount to a Bregman or 

reverse Bregman divergence

The Burbea-Rao and Bhattacharyya centroids." IEEE Transactions on Information Theory 57.8 (2011): 5455-5466. 
Bregman chord divergence: https://arxiv.org/abs/1810.09113
A family of statistical symmetric divergences based on Jensen's inequality, arXiv:1009.4004 

• Introduced by Burbea and Rao
• Vertical gap induced by Jensen inequality

https://arxiv.org/abs/1810.09113
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Statistical divergences amount to parameter 
divergences for exponential families:

The Burbea-Bao and Bhattacharyya centroids, IEEE Transactions on Information Theory 57(8), 2011 
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Bregman chord divergence: Free of gradient!
Ordinary Bregman divergence
requires gradient calculation:

Bregman chord divergence
uses two extra scalars α and β:

Using linear interpolation notation
No 

gradient!

and

Subfamily of Bregman tangent divergences: 

The Bregman chord divergence, arXiv:1810.09113
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The Jensen chord divergence: Truncated skew Jensen divergences 

A property:
(truncated skew Jensen divergence)

Linear interpolation (LERP):

The chord gap divergence and a generalization of the Bhattacharyya distance, ICASSP 2018
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Summary
• Distance measures the separation of (same type) entities 

(vectors, probability measures, probability densities, 
cumulative distribution functions, random variables, matrices, functions, etc.)

• A metric (distance) is a symmetric non-negative distance (dissimilarity) that 
satisfies both the law of the indiscernibles and the triangle inequality

• A divergence originally meant a statistical distance (eg., probability metric), 
and also means a smooth parametric distance in information geometry

• Statistical divergences between densities of a same parametric family 
amount to parameter divergences

• Three classes of non-mutually exclusive parametric distances: 
The Csiszar f-divergences, Bregman divergences, and Jensen divergences, that are non-
mutually exclusive

• But also Wasserstein distance in optimal transport (ground distance?), etc.
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Information-geometric structures:
•Fisher-Rao geometry
•Dualistic information-geometric structures
•Bregman manifolds and information projections
•Mixture family manifolds and exponential family 
manifolds

Frank Nielsen
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Fisher-Rao 
Riemannian geometry

Frank Nielsen
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Recalling the Fisher information metric…

• Fisher Information Metric (FIM):

• Infinitesimally, the KLD is related to the FIM via:

This is a squared Mahalanobis distance
This Taylor’ expansion holds for any standard f-divergence (f’’(1)=1)

covariant to 
reparameterization

of θ
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Rao distance is Riemannian geodesic distance

Riemannian 
geodesics locally

minimize 
lengths

independent to 
reparameterization of θ
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C. R. Rao with Sir R. Fisher in 1956

STATISTICAL DATA ANALYSIS AND INFERENCE edited by Yadolah DODGE, 1989
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Fisher-Rao geometry: Standard simplex 
(categorical distribution)

• Trinomial (trinoulli)

Embedding to the sphere positive orthant

Pattern Learning and Recognition on Statistical Manifolds: An Information-Geometric Review, SIMBAD 2013
Clustering in Hilbert simplex geometry, arXiv:1704.00454 

(Hotelling)-Fisher-Rao distance:

Fisher information metric:

Square root embedding



© Frank Nielsen

In practice, calculating Rao’s distance is difficult

1. Need to solve the Ordinary Differential Equation (ODE) for find the 
geodesic:

2. Need to integrate the infinitesimal length elements along the 
geodesics…
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Hotelling’s 1930 paper considered location-scale 
families!

• 2D FIM

• Constant (non-positive) curvature, isometric to hyperbolic geometry of 
curvature

Harold 
Hotelling
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Some common Fisher-Rao geodesic distances

Anirban DasGupta, Probability for Statistics and Machine Learning
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Approximating  geodesics for multivariate normal 
via geodesic shooting

Minyeon Han · F.C. Park, DTI Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal 
model." Statistics & Risk Modeling 9.1-2 (1991): 119-138.
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Approximating the smallest enclosing ball
• Iterative algorithm that yields a core-set
• Extends to balls, etc.
• Useful for k-center clustering. 

Approximating smallest enclosing balls with applications to machine learning, IJCGA, 2009
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Riemannian minimum enclosing ball

On Approximating the Riemannian 1-Center, Comp. Geom. 2013
Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry, GSI, 2015

Positive-definite matrices:

Hyperbolic geometry:
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f-divergence between isotropic Gaussians:
= monotic increasing function of Mahalanobis
Smallest enclosing ball same for all f-divergences…

From Ali and Silvey’66
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Other differential metrics for parametric probability families

• Rao’s quadratic entropy

• Conditionally negative definite kernel: 

Rao, C.R. (1987). Differential metrics in probability spaces, in Differential Geometry in 
Statistical Inference, S.-I. Amari et al. Eds., IMS Lecture Notes and Monographs Series
Rao, C. R. "Quadratic entropy and analysis of diversity." Sankhya A 72.1 (2010): 70-80.

Jensen-Shannon divergence:

Theorem: Metric distance property of
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Summary: Hotelling-Fisher-Rao geometry
• By using the Fisher information matrix of a regular parametric model as 

the Riemannian metric tensor (= information metric), we get a 
Riemannian manifold for the probability model

• FIM properties: statistical invariance by a 1-to-1 transformation of the 
sample space X

• Geodesic length invariant by reparameterization of the parameter space θ
• The Fisher-Rao distance is the Riemannian metric distance

= geodesic distance
• Difficult to calculate/approximate, even for the multivariate normal family:

a. Explicit geodesic calculation
b. Integration of infinitesimal length elements on the geodesics

Berkane, Maia, Kevin Oden, and Peter M. Bentler. "Geodesic estimation in elliptical distributions."
Journal of Multivariate Analysis 63.1 (1997): 35-46
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Interview with Professor Calyampudi Radhakrishna Rao

https://magazine.amstat.org/blog/2016/12/01/raointerview/
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Dualistic structures 
of

information geometry
Frank Nielsen

Sony Computer Science Laboratories, Inc

https://arxiv.org/abs/1808.08271An elementary introduction to information geometry

Shun-ichi Amari Shinto Eguchi

https://arxiv.org/abs/1808.08271
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Covariant derivative ∇

• calculate differentials of a vector field Y with respect to another 
vector field X: Namely, the covariant derivative

• Defined by prescribing a dimension cubic number of smooth 
functions: The Christoffel symbols

• In local coordinates of a chart, we have
• The k-th component of the covariant derivative of vector 

field Y with respect to vector field X is given by    
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Curvature of 𝛁𝛁

Cylinder is flat
Parallel transport is 
independent of path Sphere has constant curvature

Parallel transport is path-dependent
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Curvature/torsion of 𝐚𝐚𝐧𝐧 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝛁𝛁

• Curvature tensor (or Riemann-Christoffel RC curvature)

• Connection is said flat when R=0
• Symmetric connection:

In local coordinates:

• (1,2)-torsion tensor: 

parallel transport “twists” vectors.

(in local coordinates)
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Conjugate connections or dual connections (∇, ∇*)
• For any three smooth vectors fields X,Y,Z of manifold M, conjugate 

affine torsion-free connection ∇* of ∇ with respect to the metric 
tensor g 

• NB: check that the right-hand-side is a scalar and that the left-hand-
side is a directional derivative of a real-valued function, that is also a 
scalar.  Unique dual torsion-free affine connection ∇*

• Involution:
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Dual ∇-geodesic and  ∇*-geodesic 

With respect to the metric tensor
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Property: Dual parallel transport of vectors 
preserves the metric
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Metric Levi-Civita connection from averaging 
dual connections
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Statistical manifolds: Cubic tensor   

Apply also to non-statistical contexts! 
Dualistic structure with metric  tensor g and cubic tensor C

(local coordinates)

In a local basis:
Steffen Lauritzen

(1987)

… totally symmetric (=components invariant by index permutation)
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From a statistical manifold to 
a 1-family of structures

The α-connections
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The fundamental theorem of information geometry

Theorem: If ∇ has constant curvature κ then its 
conjugate connection ∇* has necessarily the same 
constant curvature κ

Case Κ=0

Case Κ=0
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How to get initial dual connections?
• Historically, Amari’s defined the statistical expected exponential and 

mixture connections, and then the expected α-connections
Linked to parametric family of densities/manifolds

• Then Eguchi showed how to define dual connections from any 
smooth parameter distances called divergences (originally, called 
contrast functions). From that, we get a 1-family of α-connections
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Definition of a parameter divergence

Statistical divergence (deviance) like the Kullback-Leibler divergence
versus

Parameter divergence as a synonym for a contrast function
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Statistical manifolds from divergences
• Reverse/dual parameter divergence (reference duality)

• Statistical manifold structures:
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Statistical manifolds from Bregman divergences

Bregman divergence (1967, on Operations research):

Dual Bregman divergence and Legendre-Fenchel transformation F*

Described later on,
In Bregman Hessian 

manifolds
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Expected α-geometry for a parametric model

• Use Fisher information metric (FIM)
• Define the expected α-connections:
• Amari-Chentsov cubic tensor
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Exponential family and mixture family

Monte Carlo information geometry: The dually flat case, arXiv:1803.07225 
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Exponential e-connection and mixture m-connection:
An example of dually flat connections wrt. FIM

• For an exponential family, the e-connection is flat. 
Then by using the fundamental theorem of 
information geometry, we have the dual m-
connection flat too. 

• For a mixture family, the m-connection is flat. Then 
by using the fundamental theorem of information 
geometry, we have the dual e-connection flat too.
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Statistical invariance

• Which metric tensor to choose?

• Which dual connections to choose?

• How are statistical divergences related to geometric structures?
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The Fisher information metric is the unique invariant metric tensor 
under Markov embeddings (up to a scaling constant).

Statistical invariance: metric tensor

- L. Lorne Campbell. An extended Cencov characterization of the information metric. ˇ 
Proceedings of the American Mathematical Society, 98(1):135–141, 1986. 
- Hong Van Le. The uniqueness of the Fisher metric as information metric. Annals of the 
Institute of Statistical Mathematics, 69(4):879–896, 2017.
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Statistical invariance: Statistical divergences

• Information monotonicity of parameter divergences:

Markov embeddings, Markov kernels, etc.

Invariant 
divergence
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Statistical invariance: Csiszar/Ali-Silvey f-divergences

• Separable divergence: A separable divergence is a divergence that can be 
expressed as the sum of elementary scalar divergences

• Squared Euclidean distance is separable but not the Euclidean distance 
(because of the square root)

• Theorem: The only invariant and decomposable divergences when D>2 
are f-divergences defined for a convex functional generator f:
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Standard invariant f-divergences

• f strictly convex at 1  (for ensuring the law of the indiscernibles)
• Choose f(1)=0 (for lower bound of f-divergence being 0)
• Choose f’(1)=0 to fix lambda in equivalent class of generators:

• Expansion of 

• Choose f’’(1)=1 to get standard f-divergence with infinitesimal 
distance expressed using the Fisher information matrix tensor

• The α-connection for any standard f-divergence corresponds to the
expected α-connections  for
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Summary
• Geometry of parametric families of distributions:

• Fisher Riemannian geometry (Levi-Civita connections)
• α-expected geometry (Conjugate/dual connections)
• Statistical invariance 

• Expected α-geometry vs α-geometry from any 
parameter divergence

• Dually flat geometry for +1/-1-geometry of 
exponential families or mixture families 
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Bregman dually flat manifolds
and

∇-information projections

Frank Nielsen
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Projection, orthogonality and Pythagoras’ theorem

Recalling Euclidean geometry….
Distance, geodesic, orthogonality, uniqueness of projection

Non-unique projectionGuaranteed unique projection
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Goal: Provide geometric interpretations of
MLE/MaxEnt of KL divergence minimizations 
as information projections

MaxEnt (with prior q) Maximum Likelihood Estimate
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Bregman manifolds in a nutshell
• From any smooth (C3) convex function F, we can build a dualistic 

information-geometric structure called a dually flat manifold.
• Duality emanates from Legendre-Fenchel conjugation
• There are two global (affine) coordinate systems: primal  θ and dual η

• We can associate a canonical divergence to dually flat manifolds: Bregman 
divergences or Fenchel-Young divergences (mixed coordinates)

• There are two dual Pythagoras theorems (and generalized laws of cosines)
(Give a sufficient case where dual information projections are unique)

• Very well-suited to computational geometry  (Voronoi and proximity queries)
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Dually flat geometry from a convex function

Not necessarily related to statistical models, but can always associate a regular statistical model

Vân Lê, Hông. "Statistical manifolds are statistical models." Journal of Geometry 84.1-2 (2006)

Historically, the dualistic structure of
information geometry was called
by Lauritzen (1987) a statistical manifold.

But the structure can be used 
in non-statistical contexts.
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Dually flat manifold construction
• A global coordinate system (single chart) θ

• Metric tensor g is the Hessian of the potential function:

• ∇-geodesic of the connection ∇ are straight lines in the θ-coordinate system 
since 

• Bregman manifold is a special case of Hessian manifolds where the Hessian is 
the Hessian of a global function
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• Dual Riemannian metric tensor

• Expressed in the dual coordinate system η :
• Coordinate-free notation:
• ∇*-geodesic of the connection ∇* are straight lines since

Dually flat manifold construction

Duality emanates from the Legendre-Fenchel convex duality:
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Crouzeix’s identity of Hessians of convex conjugates:

Metric tensor using covariant/contravariant notations

2-covariant metric tensor in local coordinates:

Dual  metric tensor in local coordinates:



© Frank Nielsen

α-geometry of Bregman manifolds

Amari-Chentsov cubic tensor:

Get the α-connections:
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Dual Pythagoras’ theorem
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Dual Riemann geodesic distances induced by a 
separable Bregman divergence

Bregman divergence:

Separable Bregman generator:

Riemannian metric tensor:

Riemannian distance (metric):

where

Geodesics:

Legendre conjugate:
Geometry and clustering with metrics derived from separable Bregman divergences, arXiv:1810.10770
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Uniqueness of projections in dually flat spaces
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Geometry of KLD for exponential families or 
for mixture families is dually flat

I-projection, rI-projection, KL-projection
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MLE for an exponential family as an 
information projection

Exponential Family Manifold (EFM) is e-flat
Observed point
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MaxEnt as an information projection
• MaxEnt linear constraints define a m-flat

Pythagoras’ theorem  (Fisher orthogonality)
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Simplifying a mixture model to a single component

Learning mixtures by simplifying kernel density estimators, 2012
Model centroids for the simplification of kernel density estimators, ICASSP 2012

KL right-sided minimization problem for simplifying a mixture of EFs

Best single distribution is expressed in 
η-coordinates as the center of mass
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Information projection: Closest independent distribution

• Independence of random variables X and Y: KL between joint (X,Y) and 
product of marginals

m-projection of p(x, y) to
Manifold of independent distributions

e-geodesic of two independent distributions is 
family of independent distributions
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Sanov’s theorem (large deviation theory)

Empirical distribution from iid observations is MLE of categorical distributions
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MLE on a curved exponential family

m-geodesic
m-projection
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Divergence between two submanifolds
Alternating minimization algorithm

Unique when S is flat and K is dually flat. 
Otherwise,  converging point not necessarily unique.
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Bregman bisectors

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010
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Bregman Voronoi diagrams from lower envelopes

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010
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Bregman Voronoi diagrams from power diagrams

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010
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Space of Bregman spheres

Bregman voronoi diagrams, Discrete & Computational Geometry, 2010
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Fast Proximity queries for Bregman divergences (incl. KL)

https://www.lix.polytechnique.fr/~nielsen/BregmanProximity/

E.g., Extended Kullback-Leibler

Bregman ball trees

Space partition induced by 
Bregman vantage point trees

Bregman vantage point trees for efficient nearest Neighbor Queries, ICME 2009 
Tailored Bregman ball trees for effective nearest neighbors, EuroCG 2009

Fast Nearest Neighbour Queries for Bregman divergences

Key property:
Check whether two Bregman spheres 
Intersect or not easily 
(radical hyperplane, space of spheres)

C++ source code

https://www.lix.polytechnique.fr/%7Enielsen/BregmanProximity/


© Frank Nielsen

Dualistic structure of the Gaussian manifold
∇: e-connection
∇*:m-connection
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Distances 
and 

information geometry 
of

finite statistical mixtures
Frank Nielsen
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Finite statistical mixtures

• Semi-parametric models, universal estimators of smooth densities
• Gaussian mixture models (GMMs), Exponential family mixture models 

(EFMMs), etc.

• But non-identifiable/non-regular !!!  (not 1-to-1 parameter/density)
• Usually learn GMMs by Expectation-Maximization (EM, local optimum)
• But also can learn mixtures by simplifying a Kernel Density Estimator

with

Model centroids for the simplification of kernel density estimators, ICASSP 2012.
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Usual centroids based on Kullback-Leibler sided/symmetrized 
divergence

or Fisher-Rao distance (hyperbolic distance)

Learning a mixture by simplifying a kernel density estimator

Model centroids for the simplification of Kernel Density estimators. ICASSP 2012

Original histogram
raw KDE (14400 components) 
simplified mixture (8 components)

Galperin’s model centroid (HG)

Simple model centroid algorithm:
Embed Klein points to points of the Minkowski hyperboloid
Centroid = center of mass c, scaled back to c’ of the hyperboloid
Map back c’  to Klein disk

Problem: 
No closed-form FR/SKL  centroids!!!
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Log-likelihood of the simplified models and computation time

Model centroids for the simplification of Kernel Density estimators. ICASSP 2012

Dataset: intensity histogram of Lena image
KL with right-sided centroids
Full k-means or only one iteration

While achieving same log-likelihood, model centroid is the fastest method, 
significantly faster than EM.

Experiments
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Distances and geometry of statistical mixtures
• Many common statistical distances are not in closed-form when dealing with 

statistical mixtures (eg., KLD between GMMs not even analytic!). 
• Need approximation algorithms to calculate mixture distances

• Or design novel principled statistical distances that admit closed forms or 
approximate probabilistically/deterministically statistical distances

(e.g., Cauchy-Schwarz divergence, Jensen-Renyi divergence , etc.)

• Geometry of mixtures family in information geometry is dually flat: 
Intractable Bregman manifold and tractable Monte Carlo Bregman manifold

Guaranteed Bounds on Information-Theoretic Measures of Univariate Mixtures Using Piecewise Log-Sum-Exp
Inequalities. Entropy 18(12) (2016)
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Batch learning of mixtures and lightspeed distance calculations

• Hungarian best bipartite matching 
of components (Goldberger)
• Variational approximation of KL for mixtures:

Comix: Joint estimation and lightspeed comparison of mixture models. ICASSP 2016
Bag-of-components: an online algorithm for batch learning of mixture models, GSI 2015

Extend Expectation-Maximization algorithms 
for batch learning of  co-mixtures
(co-EM, adapt Bregman soft clustering) 

Monte-Carlo stochastic estimation (iid sampling from m)

Precompute the matrix:

Kullback-Leibler
divergence
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Experiments on co-mixturess
mean average precision (mAP) over all 
the possible queries (by successively 
taking each mixture as the query 
and looking at the retrieved mixtures 
in a short list of size 10)
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Chain Rule Optimal Transport (CROT) distance

Solve the Linear Program:
with the following constraints:

Equivalent optimal transport problem:

On The Chain Rule Optimal Transport Distance. CoRR abs/1812.08113 (2018)
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Chain Rule Optimal Transport (CROT) distance

On The Chain Rule Optimal Transport Distance. arXiv:1812.08113 (2018)

For any joint convex distance                            ,   
the CROT distance                          upper bound  between mixtures 

f-divergences
(incl. KL)

are joint convex

But also the p-powered Wasserstein distances,
Etc.
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Chain Rule Optimal Transport (CROT) distance

On The Chain Rule Optimal Transport Distance. CoRR abs/1812.08113 (2018)

Fast 
Sinkhorn

calculations
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• In statistics, finite statistical mixtures are irregular models 
(non-identifiable)

• Information geometry primarily considers regular models
• In information geometry, mixture families are regular parametric 

models

• Statistical mixtures with prescribed distinct component 
distributions form mixture families

Statistical mixtures versus mixture families

On the Geometry of Mixtures of Prescribed Distributions. ICASSP 2018
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A mixture family of order 1 (=2 fixed components)

p0(x)

p1(x)
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A mixture family of order 2 (=3 fixed components)
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A mixture family is a Bregman (Hessian) manifold

• Two global coordinate systems related by Legendre-Fenchel transformation
• Two flat connections that are coupled to the metric tensor (Hessian of a potential function)
• Primal/dual geodesics are straight lines in the primal/dual coordinate system 

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019
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Two prominent examples of Bregman manifolds
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• The canonical divergence of any dually flat manifold is a Bregman divergence

The KL between two mixtures with prescribed components amounts to a 
Bregman divergence
• Strictly convex and differential convex generator:

• However, G not in closed-form, event not analytic!
• A Bregman divergence is always finite, and so is the KL between two 

members of the same mixture family (but not on the closure).

A mixture family is a dually flat manifold
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Computational tractability of Bregman manifolds
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• If any time we want to compute integral-based generators or Bregman divergences, 
we used stochastic Monte-Carlo estimators, we get inconsistencies and faulty algorithms

• Solution: use the same variates for all integral-based evaluations

• It turns out that this scheme is similar to defining a random Bregman generator 
that is with high probability a proper Bregman generator. Geometric algorithms run inside 
that randomized manifold are consistent by construction

Random Bregman manifolds: Monte Carlo

This can be negative
(because “positive” measures)

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019
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Random 1D mixture manifolds

Theorem: With high-probability,        is is a Bregman generator

q is a 
proposal 

distribution
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© Frank Nielsen
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Application to clustering Gaussian mixtures
(with prescribed Gaussian components)
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Random d-dimensional mixture manifolds

Monte Carlo Information-Geometric Structures, Geometric Structures of Information, 2019
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Random Exponential Family Manifolds

Computationally 
intractable

Log-sum-exp modified function to ensure always strict convexity
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Polynomial Exponential Families
• Estimate a PEF with score matching/summed area table
• Use projective gamma-divergence  (Monte-Carlo)

Patch matching with polynomial exponential families and projective divergences. 
International Conference on Similarity Search and Applications (SISAP). 2016
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Random/Monte Carlo Bregman Voronoi diagrams
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Some statistical distances with closed-form 
expressions for statistical mixtures

• Cauchy-Schwarz divergence:

• For mixtures of exponential families with conic natural parameter 
space: 

Closed-form information-theoretic divergences for statistical mixtures, ICPR 2012.

When natural parameter space
Is a cone
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Examples of conic exponential families (CEFs)
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Some applications of information geometry:

• Natural gradient and deep learning
• Bayesian hypothesis testing 

geometry of the error exponent
• Clustering

partition-based, soft mixtures and hierarchical 

Frank Nielsen
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Natural gradient and
mirror descent

Frank Nielsen
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Steepest gradient descent method
• Iterative optimization algorithm
• Start from an initial parameter value
• Update iteratively the current parameter using a learning rate α (step 

size) and the gradient of the energy function:

• First-order optimization method
• Zig-zag local minimum convergence
• Stopping criterion

Similarly, maximization with hill climbing, steepest ascent
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Steepest descent in a Riemannian space

• The steepest descent direction of E(θ) in a Riemannian space is given 
by

Amari, Shun-Ichi. "Natural gradient works efficiently in learning." Neural computation 10.2 (1998): 251-276.

Learning rate

Computing the inverse of the Fisher information matrix is tricky

Contravariant
form of the 

ordinary 
gradient
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Pros and cons of natural gradient
• Pros:

• Invariant (intrinsic) gradient (at infinitesimal scale/ODE)
• Not trapped in plateaus 
• Achieve Fisher efficiency in online learning 

• Cons:
• Too expensive to compute (no closed-form FIM; need matrix inversion; 

numerical stability)
• Degenerate for irregular models (e.g., hierarchical models, Deep learning)
• Need to adapt step size
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In a dually flat space, natural gradient is 
ordinary gradient for the dual coordinates
In a dually flat space (Hessian manifold), we have

Natural gradient

Ordinary gradient

Used in variational inference (VI)
Zhang, Guodong, et al. "Noisy natural gradient as variational inference." arXiv:1712.02390 (2017).
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Mirror descent in non-Euclidean space

Can be rewritten as

Replace squared loss with any Bregman divergence:

Garvesh Raskutti, Sayan Mukherjee: The Information Geometry of Mirror Descent. IEEE Trans. Information Theory 61(3): 
1451-1457 (2015)

Thus mirror descent for the Bregman divergence on the primal parameter 
amounts to natural gradient for the dual parameter
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Relative Fisher Information Matrix (RFIM) and 
Relative Natural Gradient (RNG) for deep learning

Relative Fisher Information and Natural Gradient for Learning Large Modular Models (ICML'17)

The RFIMs of single neuron models, a linear layer, a non-linear layer, a soft-max 
layer, two consecutive layers all have simple RFIM closed form solutions

Dynamic 
geometry

Relative Fisher IM:
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Neuromanifolds, Occam’s Razor and Deep Learning

https://arxiv.org/abs/1905.11027

Spectrum density of the Fisher Information Matrix (FIM)

Occam’s razor for Deep Neural Networks (DNNs):
(uniform width M, L layers, N #observations, d: dimension of screen distributions in lightlike neuromanifold)

: parameters of the DNN,       : estimated parameters

Question: Why do DNNs generalize well with huge number of free parameters?

Problem: Generalization error of DNNs is experimentally 
not U-shaped but a double descent risk curve (arxiv 1812.11118)

https://arxiv.org/abs/1905.11027
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Summary
• Natural gradient in a dually flat manifold is equivalent 

to ordinary gradient with respect to the dual 
parameter

• Mirror descent extends gradient descent
• Random Matrix Theory (RMT) for the FIM
• Other alternatives: Energetic natural gradient, etc.

Thomas, Philip, et al. "Energetic natural gradient descent." International Conference on Machine Learning. 
2016.
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Information geometry of
Bayesian binary/multiple 

hypothesis testing

An information-geometric characterization of Chernoff information, IEEE Signal Processing Letters (2013)
Hypothesis Testing, Information Divergence and Computational Geometry. GSI 2013
Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
Computational Information Geometry for Binary Classification of High-Dimensional Random Tensors,  Entropy (2018)

Detecting signal from noise

Frank Nielsen
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Recalling Bayes’ rule

Reverend 
Thomas Bayes
(1701-1761) 

Using probability’s chain rule:

Get Bayes’ rule:

Interpreted as:

• P(A|B): conditional probability = likelihood of event A occurring given that B is true.
• P(B|A): conditional probability = likelihood of event B occurring given that A is true.
• P(A) and P(B) are the probabilities of observing A and B independently of each other

= marginal probability of A and B
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Setting for the Bayesian binary hypothesis testing
• Given an iid sample set, decide whether it emanates from the 

distribution of the null hypothesis H0 or the alternative hypothesis H1   
-> unavoidable probability of error

Among the many decision rules, the best rule is 
provably the Maximum A Posteriori (MAP) rule:
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Probability of error 
(Bayes’ error for diagonal cost matrix)

• Confusion matrix
• Cost design matrix, where errors uniformly account (diagonal matrix)
• Probability of error:

• A priori probabilities of classes: w0=P(H0) and w1=P(H1)
• Theorem: MAP rule minimizes the probability of error 

among all decision rules:

Class conditional probabilities
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Probability of error with equal priors (w1=w2=1/2)

From Bayes’ rule:

It follows that we have:

This is also called histogram intersection similarity in computer vision
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Bounding the probability of error

Trick:

Then it comes that

Define Chernoff information :

For alpha=1/2, we get the Bhattacharyya distance, skewed Bhattacharyya distance: 
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Chernoff information: A statistical distance
• For m  iid samples

• Asymptotic regime when m->oo

• Best error exponent: Herman Chernoff
(1923, 95 yo) 
© photo 2015

Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,” 
Ann. Math. Statist., vol. 23, pp. 493–507, 1952
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Hypothesis testing: Exponential family manifold

By using the bijection between log-likelihood and Bregman divergence:

The map rule induces an additive Bregman Voronoi diagram

The manifold of an exponential family is dually flat
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Geometry of the best error exponent

Theorem:  At best exponent, the Chernoff information amounts
to an equivalent Bregman divergence: 

Jensen divergence:
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Visualizing that maximizing skew Jensen divergence 
yields a Bregman divergence
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Bayesian hypothesis testing:
Geometric characterization of the best error exponent

This characterization yields to an exact closed-form solution in 1D EFs, 
and a simple geodesic bisection search for arbitrary dimension 

An Information-Geometric Characterization of Chernoff Information, IEEE SPL, 2013 
(arXiv:1102.2684)

Dually flat Exponential Family Manifold (EFM)
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Multiple hypothesis testing
• Minimum pairwise Chernoff information distance

• In the (additive) Bregman Voronoi diagram, check only the natural 
neighbors (with Voronoi cells sharing a common facet)

Hypothesis testing, information divergence and computational geometry, GSI 2013
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Multiple hypothesis testing on EFM

Bregman Voronoi diagram is affine in the 
eta (moment/expectation) coordinate system

Natural neighbors

Hypothesis testing, information divergence and computational geometry, GSI 2013
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Link between the Probability of error and the 
Total Variation (TV) distance:

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. 
Pattern Recognition Letters (2014)

Use the trick

(same weights here)
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Computing Total Variation can be difficult…
Pe between two multivariate Gaussians with same positive semi-definite covariance matrix

Guaranteed Deterministic Bounds on the total variation Distance between univariate mixtures,  MLSP 2019
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From geometric mean to other abstract means
Remember the trick:
Geometric weighted mean
is greater than the minimum

Internness property of any mean abstract M:

Consider quasi arithmetic means for a strictly monotone function f
(with well-defined inverse function)
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Abstract weighted means: f-means (quasi-arithmetic)

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)

Weighted arithmetic mean:

Weighted geometric mean:

Weighted harmonic mean:
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Chernoff information with quasi-arithmetic means

Andrey Nikolaevich Kolmogorov, Sur la notion de la moyenne (1930)  
Mitio Nagumo, Über eine Klasse der Mittelwerte (1930) 
Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic 
means. PRL (2014)
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Geometric means and exponential families

1 since natural parameter 
space is convex
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Harmonic mean for Cauchy distributions
• Cauchy family is a location-scale family

• Choose harmonic mean with generator 

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
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Probability of error for Cauchy hypothesis

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
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Hypothesis Testing: Pearson type VII distributions

Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. PRL (2014)
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New Bregman divergences from abstract means

Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity, IEEE SPL 2017

A function is (M,N)-convex (comparative convexity) if and only if

A mean is regular if it is: 
1. homogeneous
2. symmetric,
3. continuous
4. increasing in each variable. 

Skewed (M,N)-Jensen-divergence for regular means:

Example of non-regular means:  Lehmer mean (also Bajraktarevic mean)
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Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity, IEEE SPL 2017

(M,N) Bregman divergences obtained in the scaled limit case of Jensen divergence:

(M,N)-Bregman divergences from comparative convexity

Quasi-arithmetic Bregman divergences obtained

For example, the power mean Bregman divergences:
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Generalizing Jensen-Shannon divergences

https://www.mdpi.com/1099-4300/21/5/485
On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019

Jensen-Shannon divergence is the total divergence to the average divergence
Always bounded by log 2, and the square root of JSD is a metric

https://www.mdpi.com/1099-4300/21/5/485
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Symmetrizing the KL divergence

Resistor average divergence:

Jeffreys divergence:
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Jensen-Bregman divergence as a Jensen divergence

Skew Jensen-Bregman Voronoi diagrams, 2011
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M-statistical mixture
Need to normalize 

M-mixtures

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019
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When does M-Jensen-Shannon divergence are 
bounded?

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019

A further generalization of the Jensen-Shannon divergence:
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Closed-form formula for exponential families

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means, Entropy 2019
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Case study of multivariate Gaussians
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Case study of Cauchy family: Harmonic mean
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Kullback-Leibler divergence between Cauchy  densities

https://arxiv.org/pdf/1905.10965.pdf

Cross-entropy

Differential entropy

Relies on this definite integral
with  

Cauchy density

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions

Symmetric 
KL

https://arxiv.org/pdf/1905.10965.pdf
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Kullback-Leibler divergence between location-scale densities

Property: The f-divergence between location-scale densities reduces to 
the f-divergence between a standard density  and another location-scale density

Location-scale groupProof by change of variable

https://arxiv.org/abs/1904.10428On the Kullback-Leibler divergence between location-scale densities, 2019

https://arxiv.org/abs/1904.10428
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Information geometry 
of clustering:

Hard, Soft and Hierarchical

Frank Nielsen
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Finding structures (clusters) in datasets

Hard membership
Flat clustering (partitions)

Soft membership
Mixture models
Gaussian mixture models

Hierarchical clustering
Dendrograms
Agglomerative/divisive

Exploratory data science
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Rationale
• Extend squared Euclidean distance-based clustering to arbitrary Bregman 

divergence: k-means, expectation-maximization (isotropic GMMs), 
hierarchical clustering, etc.

• Use duality of “regular” Bregman divergences with regular exponential 
families to learn mixtures of exponential families

• Use conformal Bregman divergences (total Bregman divergences) to get 
robust clustering
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Bregman k-mean clustering
• NP-complete when k>1 and d>1
• Local, global and probabilistic heuristics to find good k-means clustering 
• Easy dynamic programming (DP) when d=1: Interval clustering

• Speed calculation of mean/variance of clusters using Look-Up-Tables 
(summed area tables) 

• Can perform model selection and also give constraints on cluster sizes 
Optimal Interval Clustering: Application to Bregman Clustering and Statistical Mixture Learning. IEEE Signal Process. Lett. 21(10) (2014)
https://arxiv.org/abs/1403.2485

https://arxiv.org/abs/1403.2485
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Bregman clustering (d>1)

Bregman centroids are centers of mass, independent of the generator
Compared to squared Euclidean k-means, only the assignment step changes
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k-MLE: Inferring statistical mixtures a la k-Means

Online k-MLE for Mixture Modeling with Exponential Families, GSI 2015
On learning statistical mixtures maximizing the complete likelihood, AIP 2014
Hartigan's Method for k-MLE: Mixture Modeling with Wishart Distributions and Its Application to Motion Retrieval, GTI 2014
A New Implementation of k-MLE for Mixture Modeling of Wishart Distributions, GSI 2013
Fast Learning of Gamma Mixture Models with k-MLE, SIMBAD 2013
k-MLE: A fast algorithm for learning statistical mixture models, ICASSP 2012
k-MLE for mixtures of generalized Gaussians, ICPR 2012

Bijection between regular Bregman divergences
and regular (dual) exponential families

Maximum log-likelihood estimate (exp. Family) 
= dual Bregman centroid

Classification Expectation-Maximization (CEM) yields a dual Bregman k-means for mixtures
of exponential families (however, k-MLE is not consistent)

arxiv:1203.5181
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MLE as a Bregman centroid for exponential families
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K-MLE: Classification Expectation-Maximization (CEM)

Additive Bregman Voronoi diagrams
Biased, not consistent

On learning statistical mixtures maximizing the complete likelihood, AIP 2014
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Bregman soft-clustering: Generalize 
expectation-maximization (EM) algorithm
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K-means++ probabilistic seeding
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K-means++ probabilistic seeding

Total Jensen divergences: Definition, properties and clustering. ICASSP 2015
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Hierarchical clustering (Ward criterion)

Telgarsky, Matus, and Sanjoy Dasgupta. "Agglomerative Bregman Clustering." (2012).

Potential inversions…



© Frank Nielsen© Frank Nielsen

Extending to Bregman divergences

Consider more general directional derivatives

Subgradient derivatives

Bregman
Ward

Criterion
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Another generalization of Bregman divergences

Gordon,  Approximate Solutions to Markov Decision Processes. CMU PhD, 1999.
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Clustering with mixed α-Divergences

On Clustering Histograms with k-Means by Using Mixed α-Divergences. Entropy 16(6): 3273-3301 (2014)

with

Heinz means interpolate
the arithmetic and the

geometric means

K-means (hard/flat clustering) EM (soft/generative clustering)
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Hierarchical mixtures of exponential families

Simplification and hierarchical representations of mixtures of exponential families. Signal Processing 90(12): 3197-
1 1

Hierarchical clustering with Bregman sided and symmetrized divergences 

Learning & simplifying
Gaussian mixture models (GMMs)
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Conformal divergences

Total Bregman divergences, total Jensen divergences, etc.

On Conformal Divergences and Their Population Minimizers. IEEE Trans. Information Theory 62(1) (2016)
Total Jensen divergences: Definition, properties and clustering. ICASSP 2015: 2016-2020
Shape Retrieval Using Hierarchical Total Bregman Soft Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(12): 2407-
2419 (2012)
Total Bregman Divergence and Its Applications to DTI Analysis. IEEE Trans. Med. Imaging 30(2): 475-483 (2011)

Consider the right-sided centroid: Amount to reweight the points according to a positive conformal factor.
Related to conformal geometry

https://dblp.uni-trier.de/db/conf/icassp/icassp2015.html#NielsenN15
https://dblp.uni-trier.de/db/journals/pami/pami34.html#LiuVAN12
https://dblp.uni-trier.de/db/journals/tmi/tmi30.html#VemuriLAN11
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Conformal distances in machine learning: SVM

• Conformal kernel

• Conformal Riemannian metric

Wu, Si, and Shun-ichi Amari. "Conformal Transformation of Kernel Functions: A Data-dependent 
Way to Improve Support Vector Machine Classifiers." Neural Processing Letters 15.1 (2002): 59-67.
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Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

IEEE TPAMI 34, 2012

t-center:

Robust to noise/outliers
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Total Bregman divergence and its applications to DTI analysis
IEEE Transactions on medical imaging, 30(2), 475-483, 2010.
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Total Bregman divergence

Invariant to axis rotation
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Total Jensen divergence

Invariant to axis rotation
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Clustering categorical distributions  
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Hilbert log cross-ratio metric

Geodesics are straight lines but not unique
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K-center clustering in metric spaces

Guaranteed performance: 2-factor for any metric
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Smallest enclosing ball in the Hilbert simplex geometry
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Riemannian minimum enclosing ball

On Approximating the Riemannian 1-Center, Comp. Geom. 2013
Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry, GSI, 2015

Positive-definite matrices:

Hyperbolic geometry:
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Approximating the smallest enclosing ball
in Hilbert simplex geometry
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Some enclosing balls in the simplex
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Experiments: K-means
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Experiments: K-center
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Aitchison distance in the simplex

• Non-separable  (g= geometric mean)  

• Invariant by permutation, by scaling, by subcompositional dominance

-> Compositional Data (CoDa) Analysis
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Clustering correlation matrices (elliptope)

Covariance matrices with unit diagonal, correlation coefficients
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Some distances between correlation matrices

• Hilbert log cross-ratio distance

• L1-norm

• L2-norm

• Log-det divergence
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Experiments of clustering in the elliptope



© Frank Nielsen

Information geometry:
Advanced topics, limitations and 

perspectives

Frank Nielsen
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α-Embedding

α-representations of the FIM
We introduced the
FIM in two ways
formerly

α-likelihood function

α-representation of the FIM:

Corresponds to a basis choice in the tangent space (α-base)
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• 0-representation (square root) :
• 1-representation (log): 
• Under mild regularity conditions:

• Coefficients of the connection:

α-representations of the FIM

The α-representations of the Fisher Information Matrix, 2017

α-Embedding
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(ρ, τ)-representations of the FIM

Zhang, Jun. "On monotone embedding in information geometry." Entropy 17.7 (2015

Smooth convex function and convex conjugates:

ρ-representation
τ -representation

(ρ, τ)-FIM

(ρ, τ)-α-connections
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Libraries for Mixture of Exponential Families

• jMEF in Java
http://vincentfpgarcia.github.io/jMEF/

• pyMEF in Python
http://www-connex.lip6.fr/~schwander/pyMEF/

http://vincentfpgarcia.github.io/jMEF/
http://www-connex.lip6.fr/%7Eschwander/pyMEF/
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Limitations of parametric frameworks
• The f-divergence between 1-to-1 smooth transformations of variables 

yields the same parametric divergence, and the same information 
geometry

Eg., KL and f-divergences between normal or log-normal have same 
formula (via y=log x)

• Fisher-Rao distance between elliptical distributions with fixed dispersion 
matrix is proportional to Mahalanobis distance

• Optimal transport formula is the same for elliptical distributions and 
coincide with the formula for Gaussian measures. Two difficulties when 
using OT: (1) choosing the ground distance, and (2) bad convergence rates 
of empirical estimators.
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Topics to be covered in an extended lecture series

• Deformed exponential families
• Kernel exponential families and deep exponential families
• Non-parametric information geometry
• Wong’s logarithmic-divergence and relationship IG with OT via c-divergence
• Quantum information geometry
• Many applications!
• Etc.


	Information geometry�for information sciences:�- A first intuitive overview -
	The goal of this talk is to…
	A (too) brief history of geometry
	Geometry is an incredibly creative science!
	Analytic versus synthetic geometry
	Pythagoras’ / Pythagorean theorem  
	Pythagoras’ theorem generalizes to the �			law of cosines for arbitrary triangles
	A modern view of Pythagoras’ theorem: �A triangle PQR is rectangle if and only if �straight lines perpendicular at Q induce distance identity
	Riemannian differential geometry
	Riemannian geometry: Infinitesimal Pythagorean theorem
	Riemannian geometry: A revolution that changed our perception of the universe and data science�
	Riemannian manifolds: Extrinsic vs intrinsic views
	Conformal versus non-conformal metric tensor field:�Hyperbolic geometry
	Smooth manifold
	Visualizing (shortest) paths in a chart: �(i.e., in local coordinates)
	Manifold: Tangent spaces
	An essential concept: Affine Connection 𝛻
	Curvature of �a connection 𝛁
	A word about the torsion of 𝐚 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧 𝜵
	Metric-compatible connection 𝛻  
	The fundamental theorem of Riemannian geometry
	Rationale for information spaces
	Rationale for Information Geometry (IG)
	What is the geometry of the Gaussian manifold?
	Fisher-Riemannian geometry (1930/1945)
	Population space/parameter space
	Fisher information metric/matrix (FIM)
	Geometry of normal distributions: hyperbolic
	Hyperbolic geometry for location-scale families
	Cramer-Rao lower bound (CRLB + Frechet)
	Examples of statistical models  (regular/identifiable) 
	Non-regular statistical models
	Statistical curvature (1975)
	Dualistic structure of information geometry
	Dual parallel transport is metric-compatible
	Dually flat space: Pythagoras’ theorem
	From any dualistic structure…�	… to a 1-family of duality structures: α-geometries
	From a dualistic structure to a 1-family of dually structures
	Amari’s expected α-geometry
	How to get initial dual expected connections?
	Example of dual e-/m-connections for the univariate Gaussian 2D manifold
	Dualistic structure of the Gaussian manifold
	Dual connections from any divergence!
	Many distances/divergences �in information sciences
	Divergences: Statistical distances	
	Organize dissimilarities �in (exhaustive) classes
	Invariant divergence = f-divergences
	Statistical invariance	
	Recommended textbooks + overview survey
	Prerequisite: �		Information sciences + Differential geometry
	Outline of the lectures:
	Thank you.
	Genesis of an information-geometric structure
	Background
	Applications
	Shape Retrieval Using Hierarchical Total Bregman Soft Clustering
	Total Bregman divergence and its applications to DTI analysis
	The origin of dual connections
	Geometry and its language affordance
	Acknowledgements
	Background for Information Geometry
	Probability and statistics
	Outline
	Discrete random variables  
	Discrete random variable 
	Continuous random variable
	Slide Number 67
	Probability measures
	Slide Number 69
	Slide Number 70
	Measurable function and simple functions
	Lebesgue integration
	Random variables and expectations
	Density and dominating measure
	Radon-Nikodym theorem and RN density
	Statistical inference: Estimators
	Maximum likelihood estimator (MLE)
	Fisher information
	Cramer-Rao lower bound (CRLB): Univariate case
	Slide Number 80
	Properties of the Maximum Likelihood Estimator (MLE)
	Some properties of the Fisher Information Matrix
	Regular versus non-regular models
	 Key concept: Sufficient statistics
	Example of sufficient statistics:
	Natural exponential families (NEF)
	Exponential families (from Natural EFs to EFs)
	Many common distributions are exponential families in disguise
	Maximum likelihood estimator for �							exponential families
	Regular EFs and steepness of exponential families
	Dual moment/expectation parameterization
	Dual parameterization of exponential families
	Legendre-Fenchel conjugate
	Convex conjugates at the heart of Bregman manifolds
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Summary
	Information Theory
	Outline
	Shannon’s entropy
	Shannon’s entropy is a concave function
	Differential entropy is different from discrete entropy
	Entropy of a probability measure
	Relative entropy: Kullback-Leibler divergence (KLD)
	Entropy for discrete/continuous exponential families
	Kullback-Leibler divergence  for exponential families�Fenchel-Young divergence for exponential families
	Jaynes’ maximum entropy principle (MaxEnt)
	MaxEnt with Kullback-Leibler divergence�and with a prior constraint distribution q
	MaxEnt distributions (Boltzmann-Gibbs)
	Example: Fixed mean and fixed variance MaxEnt distribution
	MLE as a right-sided KLD minimization
	Upper bounding the differential entropy of mixtures (1/2)
	Upper bounding the differential entropy of mixtures (2/2)
	A series of upper bounds for h(GMMs)
	Computing non-central absolute geometric moments of �Gaussians and GMMs
	Computing the Kullback-Leibler divergence…
	Kullback-Leibler divergence: Location-scale families
	Mutual information of RVs (MI) 
	Elements of differential geometry
	Outline
	Finite dimensional real vector spaces
	Bases and dimension of a vector space V 
	Dual vector space V*: Vector space of covectors
	Pairing product of a covector with a vector
	Inner product space:   �notion of lengths/angles/orthogonality of vectors
	Norm and distance induced by an inner product
	Reciprocal basis is a basis of vectors
	Geometric reading the covariant/contravariant coefficients/components of a vector
	Primal and reciprocal basis are  mutually orthogonal
	Scalar product and dual metric tensors
	Converting covariant ↔ contravariant components
	Geometric tensors and tensor algebra
	Riemannian metric tensor g
	Affine connection 
	How to define an affine connection
	∇-geodesics
	Connection and covariant derivative
	Riemannian metric-compatible connection
	Fundamental theorem of Riemannian geometry
	Elie Cartan’s study of affine connections
	Curvature of 𝛁
	Torsion of 𝐚 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧 𝜵
	Summary
	Distances and  entropies
	Distances
	Metric distances and metric spaces (X,D)
	Examples of metric spaces
	Inner product, induced norms and �					      induced distance
	Distances and some notational conventions
	Signed distances (failing non-negativity)
	Pseudo-metrics: Failing the identity of the indiscernibles
	Failing symmetry: E.g., Funk oriented distance
	Failing triangle inequality/subadditivity:
	Scale-invariant distances
	Projective distances: E.g., Birkhoff’s distance
	Statistical distance: Total Variation  (TV) metric
	Kolmogorov metric distance
	Classes of distances: Csiszar’s f-divergence
	Axioms for a statistical distance (Ali & Silvey, 1966)
	Classes of distances: Bregman divergence
	Slide Number 163
	Jensen difference/Jensen divergence (Burbea-Rao)
	Statistical divergences amount to parameter divergences for exponential families:
	Bregman chord divergence: Free of gradient!
	Slide Number 167
	Summary
	Information-geometric structures:
	Fisher-Rao �Riemannian geometry
	Recalling the Fisher information metric…
	Rao distance is Riemannian geodesic distance
	Slide Number 173
	Fisher-Rao geometry: Standard simplex �(categorical distribution)
	In practice, calculating Rao’s distance is difficult
	Hotelling’s 1930 paper considered location-scale families!
	Some common Fisher-Rao geodesic distances
	Approximating  geodesics for multivariate normal �via geodesic shooting
	Approximating the smallest enclosing ball
	Riemannian minimum enclosing ball
	f-divergence between isotropic Gaussians:�= monotic increasing function of Mahalanobis�Smallest enclosing ball same for all f-divergences…
	Other differential metrics for parametric probability families�
	Summary: Hotelling-Fisher-Rao geometry
	Slide Number 184
	Dualistic structures �of�information geometry�
	Covariant derivative ∇
	Curvature of 𝛁
	Curvature/torsion of 𝐚𝐧 𝐚𝐟𝐟𝐢𝐧𝐞 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧 𝛁
	Conjugate connections or dual connections (∇, ∇*)
	Dual ∇-geodesic and  ∇*-geodesic 
	Property: Dual parallel transport of vectors preserves the metric
	Metric Levi-Civita connection from averaging dual connections
	Statistical manifolds: Cubic tensor   
	From a statistical manifold to �					a 1-family of structures
	The fundamental theorem of information geometry
	How to get initial dual connections?
	Definition of a parameter divergence
	Statistical manifolds from divergences
	Statistical manifolds from Bregman divergences
	Expected α-geometry for a parametric model
	Exponential family and mixture family
	Exponential e-connection and mixture m-connection:�An example of dually flat connections wrt. FIM
	Statistical invariance
	Statistical invariance: metric tensor
	Statistical invariance: Statistical divergences
	Statistical invariance: Csiszar/Ali-Silvey f-divergences
	Standard invariant f-divergences
	Summary
	Bregman dually flat manifolds�and�∇-information projections
	Projection, orthogonality and Pythagoras’ theorem
	Goal: Provide geometric interpretations of�MLE/MaxEnt of KL divergence minimizations �as information projections
	Bregman manifolds in a nutshell
	Dually flat geometry from a convex function
	Dually flat manifold construction
	Slide Number 215
	Crouzeix’s identity of Hessians of convex conjugates:
	Slide Number 217
	Dual Pythagoras’ theorem
	Dual Riemann geodesic distances induced by a separable Bregman divergence
	Uniqueness of projections in dually flat spaces
	Geometry of KLD for exponential families or for mixture families is dually flat
	MLE for an exponential family as an information projection
	MaxEnt as an information projection
	Simplifying a mixture model to a single component
	Information projection: Closest independent distribution
	Sanov’s theorem (large deviation theory)
	MLE on a curved exponential family
	Divergence between two submanifolds
	Bregman bisectors
	Bregman Voronoi diagrams from lower envelopes
	Bregman Voronoi diagrams from power diagrams
	Space of Bregman spheres
	Fast Proximity queries for Bregman divergences (incl. KL)
	Dualistic structure of the Gaussian manifold
	Distances �and �information geometry �of�finite statistical mixtures
	Finite statistical mixtures
	Learning a mixture by simplifying a kernel density estimator
	Experiments
	Distances and geometry of statistical mixtures
	Batch learning of mixtures and lightspeed distance calculations
	Experiments on co-mixturess
	Chain Rule Optimal Transport (CROT) distance
	Chain Rule Optimal Transport (CROT) distance
	Chain Rule Optimal Transport (CROT) distance
	Statistical mixtures versus mixture families
	A mixture family of order 1 (=2 fixed components)
	A mixture family of order 2 (=3 fixed components)
	A mixture family is a Bregman (Hessian) manifold
	Two prominent examples of Bregman manifolds
	A mixture family is a dually flat manifold
	Computational tractability of Bregman manifolds
	Random Bregman manifolds: Monte Carlo
	Random 1D mixture manifolds
	Slide Number 254
	Slide Number 255
	Application to clustering Gaussian mixtures�(with prescribed Gaussian components)
	Random d-dimensional mixture manifolds
	Random Exponential Family Manifolds
	Polynomial Exponential Families
	Random/Monte Carlo Bregman Voronoi diagrams
	Some statistical distances with closed-form expressions for statistical mixtures
	Examples of conic exponential families (CEFs)
	Some applications of information geometry:
	Natural gradient and�mirror descent
	Steepest gradient descent method
	Steepest descent in a Riemannian space
	Pros and cons of natural gradient
	In a dually flat space, natural gradient is ordinary gradient for the dual coordinates
	Mirror descent in non-Euclidean space
	Relative Fisher Information Matrix (RFIM) and Relative Natural Gradient (RNG) for deep learning
	Neuromanifolds, Occam’s Razor and Deep Learning
	Summary
	Information geometry of�Bayesian binary/multiple �hypothesis testing
	Recalling Bayes’ rule
	Setting for the Bayesian binary hypothesis testing
	Probability of error �		(Bayes’ error for diagonal cost matrix)
	Probability of error with equal priors (w1=w2=1/2)
	Bounding the probability of error
	Chernoff information: A statistical distance
	Hypothesis testing: Exponential family manifold
	Geometry of the best error exponent
	Visualizing that maximizing skew Jensen divergence yields a Bregman divergence
	Bayesian hypothesis testing:�Geometric characterization of  the best error exponent
	Multiple hypothesis testing
	Multiple hypothesis testing on EFM
	Link between the Probability of error and the Total Variation (TV) distance:
	Computing Total Variation can be difficult…
	From geometric mean to other abstract means
	Abstract weighted means: f-means (quasi-arithmetic)
	Chernoff information with quasi-arithmetic means
	Geometric means and exponential families
	Harmonic mean for Cauchy distributions
	Probability of error for Cauchy hypothesis
	Hypothesis Testing: Pearson type VII distributions
	New Bregman divergences from abstract means
	(M,N)-Bregman divergences from comparative convexity
	Generalizing Jensen-Shannon divergences
	Symmetrizing the KL divergence
	Jensen-Bregman divergence as a Jensen divergence
	M-statistical mixture
	When does M-Jensen-Shannon divergence are bounded?
	Closed-form formula for exponential families
	Case study of multivariate Gaussians
	Case study of Cauchy family: Harmonic mean
	Kullback-Leibler divergence between Cauchy  densities
	Kullback-Leibler divergence between location-scale densities
	Information geometry �of clustering:�Hard, Soft and Hierarchical
	Finding structures (clusters) in datasets
	Rationale
	Bregman k-mean clustering
	Bregman clustering (d>1)
	k-MLE: Inferring statistical mixtures a la k-Means
	MLE as a Bregman centroid for exponential families
	K-MLE: Classification Expectation-Maximization (CEM)
	Bregman soft-clustering: Generalize expectation-maximization (EM) algorithm
	K-means++ probabilistic seeding
	K-means++ probabilistic seeding
	Slide Number 318
	Hierarchical clustering (Ward criterion)
	Extending to Bregman divergences
	Slide Number 321
	Clustering with mixed α-Divergences
	Hierarchical mixtures of exponential families
	Conformal divergences
	Conformal distances in machine learning: SVM
	Shape Retrieval Using Hierarchical Total Bregman Soft Clustering
	Total Bregman divergence and its applications to DTI analysis
	Total Bregman divergence
	Total Jensen divergence
	Clustering categorical distributions  
	Slide Number 331
	Hilbert log cross-ratio metric
	Slide Number 333
	Slide Number 334
	Slide Number 335
	K-center clustering in metric spaces
	Smallest enclosing ball in the Hilbert simplex geometry
	Riemannian minimum enclosing ball
	Approximating the smallest enclosing ball�in Hilbert simplex geometry
	Some enclosing balls in the simplex
	Experiments: K-means
	Experiments: K-center
	Aitchison distance in the simplex
	Clustering correlation matrices (elliptope)
	Some distances between correlation matrices
	Experiments of clustering in the elliptope
	Information geometry:�Advanced topics, limitations and perspectives
	Slide Number 348
	α-representations of the FIM
	(ρ, τ)-representations of the FIM
	Libraries for Mixture of Exponential Families
	Limitations of parametric frameworks
	Topics to be covered in an extended lecture series

