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1 Context

The cocktail party problem consists in recovering statistically independent source signals
from linear combinations of these sources (see figure [I).
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Figure 1: Cocktail party problem: case of two recorded signals generated by two source
signals.

The problem can be modeled as
x(t,w) = As(t,w), te€T,we

where A € R™ " is a constant unknown matrix termed mizing matriz, 7 C R is the time
set, € is the sample space of a probability space, z : 7 x €2 — R™ is an observed stochastic

process, and s : T x £ — R™ is a hidden stochastic process whose components s1, ..., S,
are statistically independent.

However, in practical applications, we only have a sampled signal (z(t;),...,z(ty))
with values in R", and we do not know the probability distribution of x, but we assume
that = comes from a realization (s(t1),...,s(ty)) of the random process s according to a
linear law

By defining matrices
si(ti) si(t2) - si(tw)
S = : : : :

sult)) sult) - sulty)



and

zi(t1) wi(t2) - x(ty)
X = : : : )
Tn(t1) @altz) -+ aaltn)
we obtain the form
X = AS,

where X is known (observed) and A and S are unknown. The goal is to recover A and
S as faithfully as possible, knowning that the rows of S are realizations of statistically
independent random processes.

A popular approach is to look for an unmizing matric W € R"*" such that the rows
of matrix

7 =Wrx (1)

are “as independent as possible”. To this end, we make use of a contrast function ~vx :
R™™ — R : W + ~x(W) which measures the “dependence” of the rows of Z. The
problem then reduces to computing a matrix W that minimizes the cost function vyx. This
approach is termed Independent Component Analysis (ICA).

Most ICA algorithms minimize a contrast whose domain of definition is restricted to
the orthogonal group O, (instead of R"*™). This restriction is made possible by the
whitening technique, as follows. Let us suppose that the rows of X are linearly independent
(a reasonable assumption). Let W = UXV be a singular value decomposition of W.
Equation (Il) becomes

Z=VTsU"Xx.

Whitening consists in choosing matrices > and U such that the correlation matrix of
YUTx is a multiple of the identity, i.e., (BUTX)(ZUTX)T = oI. Tt then remains to choose
V € O,, that minimizes v¢(V), where X := XUTX. From now on, we assume that X has
been whitenend (i.e., X X7 = o) and that it remains to find V' € O,, that minimizes the
interdependence between the rows of Z = VT X

We propose to use a contrast function of “SOBI” type [BAMCMO97] which measures
the “diagonality” of lagged covariance matrices of z. Concretely, for a lag d, we define the

(symmetric) covariance matrix R(d) € R™"™ whose element (i, j) is given by

N—d
(Rx(d))(i,5) = ) _(X(i,k)X(j,k+d) + X (1, k+d)X(j,k)).
k=1
Since Z = VT X, we get
Rz(d) = VI Rx(d)V. (2)
We choose a collection of lags dy, . .., dk; from matrix X (known), we build the covariance

matrices

Cyp = Rx(dy), k=1,....K,



and we consider the contrast

K

F1O0, 2RV f(V) =) [off(VICV)|7 (3)
k=1

where off (M) stands for M with the diagonal elements set to zero, and || - ||z denotes the

Frobenius norm. This contrast can be thought of as a “measure of diagonality” of matrices

Rz(dg), k=1,..., K, and thus gives an account of the “level of dependence” of the rows

of Z.

2 Questions

1. Show that it is possible to choose matrices > diagonal and U orthogonal such that
(BUTX)(ZUTX)T is a multiple of the identity.

2. Show that matrices Rx(d) are symmetric. Are they always positive definite? Prove
equation ().

Suggestion: Write the expression of Ry (d) in matrix form.

3. Prove that the orthogonal group O,, = {V € R™" : VIV = [} is a submanifold of
RTLXTZ.

4. Give an expression for Ty O,,.

5. Give an expression for the Riemannian metric induced on O,, by the canonical metric
(Zy, Zy) = trace(Z] Zy) of R™*™.

6. Give an expression for grad f(V'), where f is the cost function on O,, defined in (3)).
Remarks: || M||% = trace(MT M). For all matrices A and B of compatible dimensions,
trace(off(A)off(B)) = trace(off(A)B) = trace(Aoff(B)); trace(AB) = trace(BA);
trace(AT) = trace(A).

7. Write an expression for Hess f(V')[Z] where Z € Ty O,,.

8. Write a steepest-descent method for f and use it in the provided Matlab template.

9. Likewise with a conjugate gradient method.

3

Complementary questions

The following, more difficult questions involve quotient manifolds.
Let R?*P. p < n, denote the set of all full rank matrices of size n x p. Consider the cost
function

K
JiRPP 5 R:Y ) (logdet ddiag(Y"'CLY) — log det (Y7 1Y), (4)

k=1



where (', ..., Ck are given symmetric positive-definite matrices.

The Hadamard inequality guarantees that det(M) < [], my; for all symmetric positive-
definite matrices M, and that the equality holds if and only if M is diagonal. It follows
that f(V) is nonnegative for all V and is zero if and only if all the matrices V7O,V are
diagonal.

Let D? be the set of nonsingular diagonal matrices. Let YD? denote the set {Y D : D €
Dr} and let RI*P/DP denote the quotient space {YDP : Y € RI*P}.

1. Prove that the function f defined in (@) satisfies the invariance property
f(YD) = f(Y)
for all D € DP.

2. Choose a Riemannian metric on R?*? that turns R?*?/DP into a Riemannian quotient
manifold.

3. Let f be the projection of f onto the quotient R™*?/DP i.e., f = fox where 7 is the
natural projection associated with the quotient. Write the gradient and the Hesian
of f by means of horizontal lifts.
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