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1 Context

The cocktail party problem consists in recovering statistically independent source signals
from linear combinations of these sources (see figure 1).
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Figure 1: Cocktail party problem: case of two recorded signals generated by two source
signals.

The problem can be modeled as

x(t, ω) = As(t, ω), t ∈ T , ω ∈ Ω

where A ∈ R
n×n is a constant unknown matrix termed mixing matrix, T ⊂ R is the time

set, Ω is the sample space of a probability space, x : T ×Ω → R
n is an observed stochastic

process, and s : T × Ω → R
n is a hidden stochastic process whose components s1, . . . , sn

are statistically independent.
However, in practical applications, we only have a sampled signal (x(t1), . . . , x(tN))

with values in R
n, and we do not know the probability distribution of x, but we assume

that x comes from a realization (s(t1), . . . , s(tN)) of the random process s according to a
linear law

x(ti) = As(ti), i = 1, . . . , N.

By defining matrices

S :=







s1(t1) s1(t2) · · · s1(tN)
...

...
. . .

...
sn(t1) sn(t2) · · · sn(tN)
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and

X :=







x1(t1) x1(t2) · · · x1(tN)
...

...
. . .

...
xn(t1) xn(t2) · · · xn(tN)






,

we obtain the form
X = AS,

where X is known (observed) and A and S are unknown. The goal is to recover A and
S as faithfully as possible, knowning that the rows of S are realizations of statistically
independent random processes.

A popular approach is to look for an unmixing matrix W ∈ R
n×n such that the rows

of matrix
Z = W TX (1)

are “as independent as possible”. To this end, we make use of a contrast function γX :
R

n×n → R : W 7→ γX(W ) which measures the “dependence” of the rows of Z. The
problem then reduces to computing a matrix W that minimizes the cost function γX . This
approach is termed Independent Component Analysis (ICA).

Most ICA algorithms minimize a contrast whose domain of definition is restricted to
the orthogonal group On (instead of R

n×n). This restriction is made possible by the
whitening technique, as follows. Let us suppose that the rows of X are linearly independent
(a reasonable assumption). Let W = UΣV be a singular value decomposition of W .
Equation (1) becomes

Z = V TΣUTX.

Whitening consists in choosing matrices Σ and U such that the correlation matrix of
ΣUTx is a multiple of the identity, i.e., (ΣUTX)(ΣUTX)T = σI. It then remains to choose
V ∈ On that minimizes γX̃(V ), where X̃ := ΣUTX. From now on, we assume that X has
been whitenend (i.e., XXT = σI) and that it remains to find V ∈ On that minimizes the
interdependence between the rows of Z = V TX.

We propose to use a contrast function of “SOBI” type [BAMCM97] which measures
the “diagonality” of lagged covariance matrices of z. Concretely, for a lag d, we define the
(symmetric) covariance matrix R(d) ∈ R

n×n whose element (i, j) is given by

(RX(d))(i, j) =
N−d
∑

k=1

(X(i, k)X(j, k + d) +X(i, k + d)X(j, k)).

Since Z = V TX, we get
RZ(d) = V TRX(d)V. (2)

We choose a collection of lags d1, . . . , dK ; from matrix X (known), we build the covariance
matrices

Ck = RX(dk), k = 1, . . . , K,
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and we consider the contrast

f : On → R : V 7→ f(V ) =
K
∑

k=1

‖off(V TCkV )‖2F (3)

where off(M) stands for M with the diagonal elements set to zero, and ‖ · ‖F denotes the
Frobenius norm. This contrast can be thought of as a “measure of diagonality” of matrices
RZ(dk), k = 1, . . . , K, and thus gives an account of the “level of dependence” of the rows
of Z.

2 Questions

1. Show that it is possible to choose matrices Σ diagonal and U orthogonal such that
(ΣUTX)(ΣUTX)T is a multiple of the identity.

2. Show that matrices RX(d) are symmetric. Are they always positive definite? Prove
equation (2).
Suggestion: Write the expression of RX(d) in matrix form.

3. Prove that the orthogonal group On = {V ∈ R
n×n : V TV = I} is a submanifold of

R
n×n.

4. Give an expression for TVOn.

5. Give an expression for the Riemannian metric induced on On by the canonical metric
〈Z1, Z2〉 = trace(ZT

1
Z2) of R

n×n.

6. Give an expression for grad f(V ), where f is the cost function on On defined in (3).
Remarks: ‖M‖2F = trace(MTM). For all matrices A and B of compatible dimensions,
trace(off(A)off(B)) = trace(off(A)B) = trace(Aoff(B)); trace(AB) = trace(BA);
trace(AT ) = trace(A).

7. Write an expression for Hess f(V )[Z] where Z ∈ TVOn.

8. Write a steepest-descent method for f and use it in the provided Matlab template.

9. Likewise with a conjugate gradient method.

3 Complementary questions

The following, more difficult questions involve quotient manifolds.
Let Rn×p

∗
, p ≤ n, denote the set of all full rank matrices of size n×p. Consider the cost

function

f : Rn×p
∗

→ R : Y 7→
K
∑

k=1

(log det ddiag(Y TCkY )− log det(Y TCkY )), (4)
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where C1, . . . , CK are given symmetric positive-definite matrices.
The Hadamard inequality guarantees that det(M) ≤

∏

i mii for all symmetric positive-
definite matrices M , and that the equality holds if and only if M is diagonal. It follows
that f(V ) is nonnegative for all V and is zero if and only if all the matrices V TCkV are
diagonal.

Let Dp
∗
be the set of nonsingular diagonal matrices. Let YDp

∗
denote the set {Y D : D ∈

Dp
∗
} and let Rn×p

∗
/Dp

∗
denote the quotient space {YDp

∗
: Y ∈ R

n×p
∗

}.

1. Prove that the function f defined in (4) satisfies the invariance property

f(Y D) = f(Y )

for all D ∈ Dp
∗
.

2. Choose a Riemannian metric on R
n×p
∗

that turns Rn×p
∗

/Dp
∗
into a Riemannian quotient

manifold.

3. Let f be the projection of f onto the quotient Rn×p
∗

/Dp
∗
, i.e., f = f ◦π where π is the

natural projection associated with the quotient. Write the gradient and the Hesian
of f by means of horizontal lifts.
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