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Reference

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, R. Sepulchre
Princeton University Press, January 2008

4



About the reference

◮ The publisher, Princeton University Press,
has been a non-profit company since 1910.

◮ PDF version of book chapters available on
the publisher’s web site.

5



Reference: contents

1. Introduction
2. Motivation and applications
3. Matrix manifolds: first-order geometry
4. Line-search algorithms
5. Matrix manifolds: second-order geometry
6. Newton’s method
7. Trust-region methods
8. A constellation of superlinear algorithms
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Matrix Manifolds: first-order geometry

Chap 3: Matrix Manifolds: first-order geometry

1. Charts, atlases, manifolds

2. Differentiable functions

3. Embedded submanifolds

4. Quotient manifolds

5. Tangent vectors and differential maps

6. Riemannian metric, distance, gradient
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A toolbox
http://www.manopt.org/

Ref: Nicolas Boumal et al, Manopt, a Matlab toolbox for optimization on
manifolds, JMLR 15(Apr) 1455-1459, 2014.
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Other generic software
for optimization on manifolds

◮ ROPTLIB (C++)
http://www.math.fsu.edu/~whuang2/ROPTLIB.htm

◮ Pymanopt (Python)
https://pymanopt.github.io/

◮ See also Geomstats (Python package for Riemannian geometry in
machine learning)
https://github.com/geomstats/geomstats
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First glimpse

Manifolds everywhere
Blind source separation – Input
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First glimpse

Manifolds everywhere
Blind source separation – Output
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First glimpse

Manifolds everywhere
Vibration analysis

VIDEO: mode1.avi
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First glimpse

Manifolds everywhere
Minimum bounding box
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First glimpse

Manifolds everywhere
Morphing

VIDEO
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First glimpse

Manifolds everywhere
Recommender system
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First glimpse

Manifolds
Generalizing R

n without losing smoothness

M

R

f

x

f ∈ C∞(x)?
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First glimpse

Manifolds
Generalizing R

n without losing smoothness

M

R

f

Yes iff
f ◦ ϕ−1 ∈ C∞(ϕ(x))

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ
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First glimpse

Manifolds
Generalizing R

n without losing smoothness

M

R

f

Yes iff
f ◦ ϕ−1 ∈ C∞(ϕ(x))

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ

ψ

U V

ψ(V)
ϕ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1
C∞

R
d

ψ(U ∩ V)
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First glimpse

Optimization on manifolds: illustration

M

R

f

Given:

◮ A setM endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f :M→ R, smooth in the sense of the manifold
structure.

Task: Compute a minimizer of f .
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First glimpse

Manifolds appear in two ways
1st way: Submanifolds of Rn

ϕ(U)

R
d

R
n−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

R
n

x

The setM⊂ R
n is termed a submanifold of Rn if the situation described

above holds for all x ∈M.
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First glimpse

Manifolds appear in two ways
1st way: Submanifolds of Rn — for example, the sphere

f

R
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First glimpse

Manifolds appear in two ways
1st way: Submanifolds of Rn — for example, the Stiefel manifold

The Stiefel manifold of orthonormal p-frames in R
n is

St(p, n) = {X ∈ R
n×p : XTX = I}.
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First glimpse

Manifolds appear in two ways
1st way: Submanifolds of Rn — for example, the Stiefel manifold

The Stiefel manifold of orthonormal p-frames in R
n is

St(p, n) = {X ∈ R
n×p : XTX = I}.

When p = 1, we recover the sphere:

f

R
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First glimpse

Manifolds appear in two ways
2nd way: Quotient manifold M/ ∼

M

π(x)

M=M/ ∼

x

[x ] = {y ∈M : y ∼ x}

π

Rq

Rn−q

∃ϕ(x)
diffeo

The setM/ ∼ is termed a quotient manifold if the situation described
above holds for all x ∈M.
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First glimpse

Manifolds appear in two ways
2nd way: Quotient manifold M/ ∼ — for example, the projective space

[x ] = {αx : α ∈ R0} = {y ∈ R
2
0 : y ∼ x}

x
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First glimpse

Manifolds appear in two ways
2nd way: Quotient manifold M/ ∼ — for example, the Grassmann manifold

[Y ] = YGLp

R
n×p
∗

Y

π(Y )

span

R
n×p
∗ /GLp Grass(p,n)

span(Y )

π
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Intro

Smooth unconstrained optimization in R
n

Given: a smooth function
f : Rn → R,

termed the cost function or objective function.

Task: find x∗ ∈ R
n such that there exists ǫ > 0 for which

f (x) ≥ f (x∗) whenever ‖x − x∗‖ < ǫ.

Such a point x∗ is called a local minimizer of f .
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Intro

Smooth optimization on manifolds
in its most abstract formulation

M f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff

ψ

U V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1
C∞

R
d

Given:

◮ A setM endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f :M→ R, smooth in the sense of the manifold
structure.

Task: Compute a local minimizer of f .
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Intro

Optimization on manifolds: algorithms

M f

R

x

Given:

◮ A setM endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f :M→ R, smooth in the sense of the manifold
structure.

Task: Compute a local minimizer of f .
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Intro

Previous work on Optimization On Manifolds

R

f

x

x+

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”.
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Intro

The purely Riemannian era

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Stepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics.

Smith (1994), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential; parallel translation.
But Remark 4.9: If Algorithm 4.7 (Newton’s iteration on the sphere for
the Rayleigh quotient) is simplified by replacing the exponential update
with the update

xk+1 =
xk + ηk
‖xk + ηk‖

then we obtain the Rayleigh quotient iteration.
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Intro

The pragmatic era

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.
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Intro

Looking ahead: Newton on abstract manifolds

Required: Riemannian manifoldM; retraction R onM; affine
connection ∇ onM; real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ TxkM, where

Hess f (xk)ηk := ∇ηkgrad f .

2. Set
xk+1 := Rxk (ηk).
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Intro

Looking ahead: Newton on submanifolds of Rn

Required: Riemannian submanifoldM of Rn; retraction R onM;
real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ TxkM, where

Hess f (xk)ηk := PTxk
MD(grad f )(xk)[ηk ].

2. Set
xk+1 := Rxk (ηk).
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Intro

Looking ahead: Newton on the unit sphere Sn−1

Required: real-valued function f on Sn−1.
Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{
PxkD(grad f )(xk)[ηk ] = −grad f (xk)
xTηk = 0,

for the unknown ηk ∈ R
n, where

Pxk = (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk
‖xk + ηk‖

.
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Intro

Looking ahead: Newton for Rayleigh quotient optimization on unit
sphere

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{
PxkAPxkηk − ηkx

T
k Axk = −PxkAxk ,

xTk ηk = 0,

for the unknown ηk ∈ R
n, where

Pxk = (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk
‖xk + ηk‖

.
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Intro

Programme

◮ Provide background in differential geometry instrumental for
algorithmic development

◮ Present manifold versions of some classical optimization algorithms:
steepest-descent, Newton, conjugate gradients, trust-region methods

◮ Show how to turn these abstract geometric algorithms into practical
implementations

◮ Illustrate several problems that can be rephrased as optimization
problems on manifolds.
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Intro

Some important manifolds

◮ Stiefel manifold St(p, n): set of all orthonormal n × p matrices.

◮ Grassmann manifold Grass(p, n): set of all p-dimensional subspaces
of Rn

◮ Euclidean group SE (3): set of all rotations-translations

◮ Flag manifold, shape manifold, oblique manifold...

◮ Several unnamed manifolds
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Intro

Motivations for the manifold approach to optimization

◮ Exploit the submanifold structure of the feasible set.
◮ Feasible iterates.
◮ Sometimes cheaper methods.
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Intro

Motivations for the manifold approach to optimization

◮ Exploit the submanifold structure of the feasible set.
◮ Feasible iterates.
◮ Sometimes cheaper methods.

◮ Exploit the quotient manifold structure of the feasible set.
◮ Stronger theoretical convergence results.
◮ Sometimes (much) stronger practical convergence results.
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Intro

Motivations for the manifold approach to optimization

◮ Exploit the submanifold structure of the feasible set.
◮ Feasible iterates.
◮ Sometimes cheaper methods.

◮ Exploit the quotient manifold structure of the feasible set.
◮ Stronger theoretical convergence results.
◮ Sometimes (much) stronger practical convergence results.

◮ The objective function involves concepts of differential geometry.
◮ For example, in the Riemannian barycenter problem, the objective

function uses the Riemannian distance.
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Intro

Motivations for the manifold approach to optimization

◮ Exploit the submanifold structure of the feasible set.
◮ Feasible iterates.
◮ Sometimes cheaper methods.

◮ Exploit the quotient manifold structure of the feasible set.
◮ Stronger theoretical convergence results.
◮ Sometimes (much) stronger practical convergence results.

◮ The objective function involves concepts of differential geometry.
◮ For example, in the Riemannian barycenter problem, the objective

function uses the Riemannian distance.

◮ The adequate choice of differential-geometric tools (e.g.,
Riemannian metric) can speed up algorithms.
◮ The Riemannian metric affects the steepest-descent direction.
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Overview of application to eigenvalue problem

A manifold-based approach to the
symmetric eigenvalue problem
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Overview of application to eigenvalue problem

OPT EVP
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

Rayleigh quotient

Rayleigh quotient of (A,B):

f : Rn
∗ → R : f (y) =

yTAy

yTBy

Let A, B in R
n×n, A = AT , B = BT ≻ 0,

Avi = λiBvi

with λ1 < λ2 ≤ · · · ≤ λn.
Stationary points of f : αvi , for all α 6= 0.
Local (and global) minimizers of f : αv1, for all α 6= 0.
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

“Block” Rayleigh quotient

Let Rn×p
∗ denote the set of all full-column-rank n × p matrices.

Generalized (“block”) Rayleigh quotient:

f : Rn×p
∗ → R : f (Y ) = trace

(
(Y TBY )−1Y TAY

)

Stationary points of f :

[
vi1 . . . vip

]
M, for all M ∈ R

p×p
∗ .

Minimizers of f :

[
v1 . . . vp

]
M, for all M ∈ R

p×p
∗ .
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Newton for Rayleigh quotient in R
n
0

Let f denote the Rayleigh quotient of (A,B).
Let x ∈ R

n
0 be any point such that f (x) /∈ spec(B−1A).

Then the Newton iteration

x 7→ x −
(
D2f (x)

)−1 · grad f (x)

reduces to the iteration
x 7→ 2x .
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Invariance properties of the Rayleigh quotient

Rayleigh quotient of (A,B):

f : Rn
∗ → R : f (y) =

yTAy

yTBy

Invariance: f (αy) = f (y) for all α ∈ R0.
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Overview of application to eigenvalue problem

Invariance properties of the Rayleigh quotient

Generalized (“block”) Rayleigh quotient:

f : Rn×p
∗ → R : f (Y ) = trace

(
(Y TBY )−1Y TAY

)

Invariance: f (YM) = f (Y ) for all M ∈ R
p×p
∗ .
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Remedy 1: modify f

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡???

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Remedy 1: modify f

Consider

PA : Rn → R : x 7→ PA(x) := (xT x)2 − 2xTAx .

Theorem
(i)

min
x∈Rn

PA(x) = −λ2
n

The minimum is attained at any
√
λnvn, where vn is a unitary

eigenvector related to λn.
(ii) The set of critical points of PA is {0} ∪ {√λkvk}.
References: Auchmuty (1989), Mongeau and Torki (2004).
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Overview of application to eigenvalue problem

OPT EVP

for f : Rn → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Remedy 2: modify the search space

Instead of

f : Rn
∗ → R : f (y) =

yTAy

yTBy
,

minimize

f :M→ R : f (y) =
yTAy

yTBy
,

where
M = {y ∈ R

n : yTBy = 1}.
Stationary points of f : ±vi .
Local (and global) minimizers of f : ±v1.
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Overview of application to eigenvalue problem

Remedy 2: modify search space: block case

Instead of generalized (“block”) Rayleigh quotient:

f : Rn×p
∗ → R : f (Y ) = trace

(
(Y TBY )−1Y TAY

)
,

minimize

f : Grass(p, n)→ R : f (col(Y )) = trace
(
(Y TBY )−1Y TAY

)
,

where Grass(p, n) denotes the set of all p-dimensional subspaces of Rn,
called the Grassmann manifold.
Stationary points of f : col(

[
vi1 . . . vip

]
).

Minimizer of f : col(
[
v1 . . . vp

]
).
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Smooth optimization on a manifold: big picture

M f

R
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Overview of application to eigenvalue problem

Smooth optimization on a manifold: tools

Purely Riemannian way Pragmatic way

Search direc-
tion

Tangent vector Tangent vector

Steepest de-
scent dir.

−grad f (x) −grad f (x)

Derivative of
vector field

Levi-Civita connection
g

∇ Any connection ∇

Update Search along the geodesic
tangent to the search direc-
tion

Search along any curve tan-
gent to the search direction
(prescribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced

by
g

∇
Vector Transport
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Newton’s method on abstract manifolds

Required: Riemannian manifoldM; retraction R onM; affine
connection ∇ onM; real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ TxkM, where Hess f (xk)ηk := ∇ηkgrad f .

2. Set
xk+1 := Rxk (ηk).
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Convergence of Newton’s method on abstract manifolds

Theorem
Let x∗ ∈M be a nondegenerate critical point of f , i.e., grad f (x∗) = 0
and Hess f (x∗) invertible.
Then there exists a neighborhood U of x∗ inM such that, for all x0 ∈ U ,
Newton’s method generates an infinite sequence (xk)k=0,1,... converging
superlinearly (at least quadratically) to x∗.
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Geometric Newton for Rayleigh quotient optimization

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{
PxkAPxkηk − ηkx

T
k Axk = −PxkAxk ,

xTk ηk = 0,

for the unknown ηk ∈ R
n, where

Pxk = (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk
‖xk + ηk‖

.
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Overview of application to eigenvalue problem

Geometric Newton for Rayleigh quotient optimization: block case

Iteration col(Yk) ∈ Grass(p, n) 7→ col(Yk+1) ∈ Grass(p, n) defined by

1. Solve the linear system

{
Ph
Yk

(
AZk − Zk(Y

T
k Yk)

−1Y T
k AYk

)
= −Ph

Yk
(AYk)

Y T
k Zk = 0

for the unknown Zk ∈ R
n×p, where

Ph
Yk

= (I − Yk(Y
T
k Yk)

−1Y T
k ).

2. Set
Yk+1 = (Yk + Zk)Nk

where Nk is a nonsingular p × p matrix chosen for normalization.
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Convergence of the EVP algorithm

Theorem
Let Y∗ ∈ R

n×p be such that col(Y∗) is a spectral invariant subspace of
B−1A. Then there exists a neighborhood U of col(Y∗) in Grass(p, n)
such that, for all Y0 ∈ R

n×p with col(Y0) ∈ U , Newton’s method
generates an infinite sequence (Yk)k=0,1,... such that (col(Yk))k=0,1,...

converges superlinearly (at least quadratically) to col(Y∗) on Grass(p, n).
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Other optimization methods

◮ Trust-region methods: PAA, C. G. Baker, K. A. Gallivan,
Trust-region methods on Riemannian manifolds, Foundations of
Computational Mathematics, 2007.

◮ “Implicit” trust-region methods: PAA, C. G. Baker, K. A. Gallivan,
An implicit trust-region method on Riemannian manifolds, IMAJNA,
2008. The RTR solver in Sandia Lab’s Trilinos Anasazi framework
(https://trilinos.org/packages/anasazi/) is based on this
work.
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Manifolds, submanifolds, quotient manifolds

Manifolds
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp
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Manifolds, submanifolds, quotient manifolds

Submanifolds of Rn

ϕ(U)

R
d

R
n−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

R
n

x

The setM⊂ R
n is termed a submanifold of Rn if the situation described

above holds for all x ∈M.
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Manifolds, submanifolds, quotient manifolds

Submanifolds of Rn

ϕ(U)

R
d

R
n−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

R
n

x

The manifold structure onM is defined in a unique way as the manifold

structure generated by the atlas







eT1
...
eTd


 ϕ(x)

∣∣
M

: x ∈M




.

81



Manifolds, submanifolds, quotient manifolds

Back to the basics: partial derivatives in R
n

Let F : Rn → R
q.

Define ∂iF : Rn → R
q by

∂iF (x) = lim
t→0

F (x + tei )− F (x)

t
.

If ∂iF is defined and continuous on R
n, then F is termed continuously

differentiable, denoted by F ∈ C 1.
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Manifolds, submanifolds, quotient manifolds

Back to the basics: (Fréchet) derivative in R
n

If F ∈ C 1, then

DF (x) : Rn lin−→ R
q : z 7→ DF (x)[z ] := lim

t→0

F (x + tz)− F (x)

t

is the derivative (or differential) of F at x .
We have DF (x)[z ] = JF (x)z , where the matrix

JF (x) =



∂1(e

T
1 F )(x) · · · ∂n(e

T
1 F )(x)

...
. . .

...
∂1(e

T
q F )(x) · · · ∂n(e

T
q F )(x)




is the Jacobian matrix of F at x .
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Manifolds, submanifolds, quotient manifolds

Submanifolds of Rn: sufficient condition

F : Rn C 1

→ R
q

R
n

R
q

M = F−1(0)

y

y ∈ R
q is a regular value of F if, for all x ∈ F−1(y), DF (x) is an onto

function (surjection).
Theorem (submersion theorem): If y ∈ R

q is a regular value of F ,
then F−1(y) is a submanifold of Rn.
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Manifolds, submanifolds, quotient manifolds

Submanifolds of Rn: sufficient condition: application

F : Rn C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

The unit sphere
Sn−1 := {x ∈ R

n : xT x = 1}
is a submanifold of Rn.
Indeed, for all x ∈ Sn−1, we have that

DF (x) : Rn → R : z 7→ DF (x)[z ] = xT z + zT x

is an onto function.
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag

Embedding theorems
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Manifolds, submanifolds, quotient manifolds

A simple quotient set: the projective space

2θ

R
2
0/ ∼= R

2
0/R0 ≃ S1

π

[x ] = {αx : α ∈ R0} = {y ∈ R
2
0 : y ∼ x}

x θ
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Manifolds, submanifolds, quotient manifolds

A slightly less simple quotient set: Rn×p
∗ /GLp

[Y ] = YGLp

R
n×p
∗

Y

π(Y )

span

R
n×p
∗ /GLp Grass(p,n)

span(Y )

π
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Manifolds, submanifolds, quotient manifolds

Abstract quotient setM/ ∼

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π
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Manifolds, submanifolds, quotient manifolds

Abstract quotient manifoldM/ ∼

M

π(x)

M=M/ ∼

x

[x ] = {y ∈M : y ∼ x}

π

Rq

Rn−q

∃ϕ(x)
diffeo

The setM/ ∼ is termed a quotient manifold if the situation described
above holds for all x ∈M.
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Manifolds, submanifolds, quotient manifolds

Abstract quotient manifoldM/ ∼

M

π(x)

M=M/ ∼

x

[x ] = {y ∈M : y ∼ x}

π

Rq

Rn−q

∃ϕ(x)
diffeo

The manifold structure onM/ ∼ is defined in a unique way as the

manifold structure generated by the atlas







eT1
...
eTq


ϕ(x) ◦ π−1 : x ∈M




.
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag

Embedding theorems
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Manifolds, submanifolds, quotient manifolds

Manifolds, and where they appear

◮ Stiefel manifold St(p, n) and orthogonal group Op = St(n, n)

St(p, n) = {X ∈ R
n×p : XTX = Ip}

Applications: computer vision; principal component analysis;
independent component analysis...

◮ Grassmann manifold Grass(p, n)

Set of all p-dimensional subspaces of Rn

Applications: various dimension reduction problems...

◮ R
n×p
∗ /Op

X ∼ Y ⇔ ∃Q ∈ Op : Y = XQ

Applications: Low-rank approximation of symmetric matrices;
low-rank approximation of tensors...
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Manifolds, submanifolds, quotient manifolds

Manifolds, and where they appear

◮ Shape manifold On/R
n×p
∗

Y ∼ Y ⇔ ∃U ∈ On : Y = UX

Applications: shape analysis

◮ Oblique manifold R
n×p
∗ /Sdiag+

R
n×p
∗ /Sdiag+ ≃ {Y ∈ R

n×p
∗ : diag(Y TY ) = Ip}

Applications: independent component analysis; factor analysis
(oblique Procrustes problem)...

◮ Flag manifold R
n×p
∗ /Supp∗

Elements of the flag manifold can be viewed as a p-tuple of linear
subspaces (V1, . . . ,Vp) such that dim(Vi ) = i and Vi ⊂ Vi+1.
Applications: analysis of QR algorithm...
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Steepest descent

Steepest-descent methods on
manifolds
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Steepest descent

Steepest-descent in R
n

R
n

x

x+

R

grad f (x)

f

grad f (x) =
[
∂1f (x) · · · ∂nf (x)

]T
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Steepest descent

Steepest-descent: from R
n to manifolds

R
n

x

x+

R

grad f (x)

f

R
n Manifold

Search direction Vector at x Tangent vector at x

Steepest-desc. dir. −grad f (x) −grad f (x)
Curve γ : t 7→ x − t grad f (x) γ s.t. γ(0) = x and

γ̇(0) = −grad f (x)
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Steepest descent

Steepest-descent: from R
n to manifolds

R

f
x

x+

grad f (x)

R
n Manifold

Search direction Vector at x Tangent vector at x

Steepest-desc. dir. −grad f (x) −grad f (x)
Curve γ : t 7→ x − t grad f (x) γ s.t. γ(0) = x and

γ̇(0) = −grad f (x)
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Steepest descent

Update directions: tangent vectors

R

f

x+

grad f (x)
x

Let γ be a curve in the manifoldM with γ(0) = x .

For an abstract manifold, the definition γ̇(0) = dγ
dt
(0) = limt→0

γ(t)−γ(0)
t

is meaningless.
Instead, define: Df (x)[γ̇(0)] := d

dt
f (γ(t))

∣∣
t=0

IfM⊂ R
n and f = f |M, then

Df (x)[γ̇(0)] = Df (x)

[
dγ

dt
(0)

]
.

The application γ̇(0) : f 7→ Df (x)[γ̇(0)] is a tangent vector at x .
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Steepest descent

Update directions: tangent spaces

R

f

x+

grad f (x)
x

The set

TxM = {γ̇(0) : γ curve inM through x at t = 0}

is the tangent space toM at x .
With the definition

αγ̇1(0) + βγ̇2(0) : f 7→ αDf (x)[γ̇1(0)] + βDf (x)[γ̇2(0)],

the tangent space TxM becomes a linear space.
The tangent bundle TM is the set of all tangent vectors toM.
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Steepest descent

Tangent vectors: submanifolds of Euclidean spaces

R

f

x+

grad f (x)
x

IfM is a submanifold of Rn and f = f |M, then

Df (x)[γ̇(0)] = Df (x)

[
dγ

dt
(0)

]
.

Proof: The left-hand side is equal to d
dt
f (γ(t))

∣∣
t=0

. This is equal to
d
dt
f (γ(t))

∣∣
t=0

because γ(t) ∈M for all t. The classical chain rule yields
the right-hand side.
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Steepest descent

Tangent vectors: quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

LetM/ ∼ be a quotient manifold. Then [x ] is a submanifold ofM. The
tangent space Tx [x ] is the vertical space Vx . A horizontal space is a
subspace of TxM complementary to Vx .
Let ξπ(x) be a tangent vector toM/ ∼ at π(x).

Theorem: In Hx there is one and only one ξx such that

Dπ(x)[ξx ] = ξπ(x).
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Steepest descent

Steepest-descent: norm of tangent vectors
R

f
x

x+

grad f (x)

The steepest ascent direction is along

argmax
ξ∈TxM
‖ξ‖=1

Df (x)[ξ].

To this end, we need a norm on TxM.
For all x ∈M, let gx denote an inner product in TxM, and define

‖ξx‖ :=
√

gx(ξx , ξx).

When gx “smoothly” depends on x , we say that (M, g) is a Riemannian
manifold.
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Steepest descent

Steepest-descent: gradient
R

f
x

x+

grad f (x)

There is a unique grad f (x), called the gradient of f at x , such that

{
grad f (x) ∈ TxM
gx(grad f (x), ξx) = Df (x)[ξx ], ∀ξx ∈ TxM.

We have
grad f (x)

‖grad f (x)‖ = argmax
ξ∈TxM
‖ξ‖=1

Df (x)[ξ]

and

‖grad f (x)‖ = Df (x)

[
grad f (x)

‖grad f (x)‖

]
.
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Steepest descent

Steepest-descent: Riemannian submanifolds

R

f
x

x+

grad f (x)

Let (M, g) be a Riemannian manifold andM be a submanifold ofM.
Then

gx(ξx , ζx) := g x(ξx , ηx), ∀ξx , ζx ∈ TxM
defines a Riemannian metric g onM. With this Riemannian metric,M
is a Riemannian submanifold ofM.
Every z ∈ TxM admits a decomposition z = Pxz︸︷︷︸

∈TxM

+ P⊥x z︸︷︷︸
∈T⊥

x M

.

If f :M→ R and f = f |M, then

grad f (x) = Pxgrad f (x).
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Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Let g be a Riemannian metric onM.
Suppose that, for all ξπ(x) and ζπ(x) in Tπ(x)M/ ∼, and all
x̃ ∈ π−1(π(x)), we have

g x̃(ξx̃ , ζ x̃) = g x(ξx , ζx).
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Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Then
gπ(x)(ξπ(x), ζπ(x)) := g x(ξx , ζx).

defines a Riemannian metric onM/ ∼.
If moreover Hx is the orthogonal complement of Vx in the sense of g ,
then π is termed a Riemannian submersion), and we say thatM/ ∼ is a
Riemannian quotient manifold.

108



Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Let f :M/ ∼→ R. Let Ph,g
x denote the orthogonal projection onto Hx .

grad f x = Ph,g
x grad (f ◦ π)(x).

If Hx is the orthogonal complement of Vx in the sense of g (π is a
Riemannian submersion), then grad (f ◦ π)(x) is already in Hx , and thus

grad f x = grad (f ◦ π)(x).
109



Steepest descent

Steepest-descent: choosing the search curve

R

f
x

x+

grad f (x)

It remains to choose a curve γ through x at t = 0 such that

γ̇(0) = −grad f (x).

Let R : TM→M be a retraction onM, that is

1. R(0x) = x , where 0x denotes the origin of TxM;

2. d
dt
R(tξx) = ξx .

Then choose γ : t 7→ R(−tgrad f (x)).
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Steepest descent

Steepest-descent: line-search procedure

R

f
x

x+

grad f (x)

Find t such that f (γ(t)) is “sufficiently smaller” than f (γ(0)). Since
t 7→ f (γ(t)) is just a function from R to R, we can use the step selection
techniques that are available for classical line-search methods.
For example: exact minimization, Armijo backtracking,...
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : Rn C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

Let the manifold be the unit sphere

Sn−1 = {x ∈ R
n : xT x = 1} = F−1(1),

where F : Rn → R : x 7→ xT x .
Let A = AT ∈ R

n×n and let the cost function be the Rayleigh quotient

f : Sn−1 → R : x 7→ xTAx .

The tangent space to Sn−1 at x is

TxS
n−1 = ker(DF (x)) = {z ∈ R

n : xT z = 0}.
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Steepest descent

Derivation formulas

If F is linear, then
DF (x)[z ] = F (z).

Chain rule: If range(F ) ⊆ dom(G ), then

D(G ◦ F )(x)[z ] = DG (F (x))[DF (x)[z ]].

Product rule: If the ranges of F and G are in matrix spaces of
compatible dimension, then

D(FG )(x)[z ] = DF (x)[z ]G (x) + F (x)DG (x)[z ].
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : Rn C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

Rayleigh quotient:
f : Sn−1 → R : x 7→ xTAx .

The tangent space to Sn−1 at x is

TxS
n−1 = ker(DF (x)) = {z ∈ R

n : xT z = 0}.

Product rule:

D(FG )(x)[z ] = DF (x)[z ]G (x) + F (x)DG (x)[z ].

Differential of f at x ∈ Sn−1:

Df (x)[z ] = xTAz + zTAx = 2zTAx , z ∈ TxS
n−1.
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : Rn C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

“Natural” Riemannian metric on Sn−1:

gx(z1, z2) = zT1 z2, z1, z2 ∈ TxS
n−1.

Differential of f at x ∈ Sn−1:

Df (x)[z ] = 2zTAx = 2gx(z ,Ax), z ∈ TxS
n−1.

Gradient:
grad f (x) = 2PxAx = 2(I − xxT )Ax .

Check: {
grad f (x) ∈ TxS

n−1

Df (x)[z ] = gx(grad f (x), z), ∀z ∈ TxS
n−1.
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

x

grad f (x) = 2Ax

grad f (x) = 2PxAx

Sn−1

f : Sn−1 → R : x 7→ xTAx

f : Rn → R : x 7→ xTAx

grad f (x) = 2Ax

grad f (x) = 2PxAx = 2(I − xxT )Ax .
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Newton

Newton’s method on manifolds
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Newton

Newton in R
n

Let f : Rn → R.
Recall grad f (x) =

[
∂1f (x) · · · ∂nf (x)

]T
.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n,

D(grad f )(x)[z ] = −grad f (x).

2. Set
x+ = x + z .
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Newton

Newton in R
n: how it may fail

Let f : Rn
0 → R : x 7→ xTAx

xT x
.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n,

D(grad f )(x)[z ] = −grad f (x).

2. Set
x+ = x + z .

Proposition: For all x such that f (x) is not an eigenvalue of A, we have

x+ = 2x .
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Newton

Newton: how to make it work for RQ

Let f : Sn−1 → R : x 7→ xTAx
xT x

.
Newton’s iteration:

1. Solve, for the unknown z ∈ R
n
 ηx ∈ TxS

n−1

D(grad f )(x)[z ] = −grad f (x)  ? (grad f )(x)[ηx ] = −grad f (x)

2. Set
x+ = x + z  x+ = R(ηx)
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Newton

Newton’s equation on an abstract manifold

LetM be a manifold and let f :M→ R be a cost function.
The mapping x ∈M 7→ grad f (x) ∈ TxM is a vector field.

D(grad f )(x)[z ] = −grad f (x)  ? (grad f )(x)[ηx ] = −grad f (x)

The new object has to be such that

◮ In R
n, ? reduces to the classical derivative

◮ ? (grad f )(x)[ηx ] belongs to TxM
◮ ? has the same linearity properties and multiplication rule as the

classical derivative.
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Newton

Newton’s equation on an abstract manifold

LetM be a manifold and let f :M→ R be a cost function.
The mapping x ∈M 7→ grad f (x) ∈ TxM is a vector field.

D(grad f )(x)[z ] = −grad f (x)  ? (grad f )(x)[ηx ] = −grad f (x)

The new object has to be such that

◮ In R
n, ? reduces to the classical derivative

◮ ? (grad f )(x)[ηx ] belongs to TxM
◮ ? has the same linearity properties and multiplication rule as the

classical derivative.

Differential geometry offers a concept that matches these conditions: the
concept of an affine connection.
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Newton

Newton: affine connections

Let X(M) denote the set of smooth vector fields onM and F(M) the
set of real-valued functions onM.
An affine connection ∇ on a manifoldM is a mapping

∇ : X(M)× X(M)→ X(M),

which is denoted by (η, ξ)
∇−→ ∇ηξ and satisfies the following properties:

i) F(M)-linearity in η: ∇f η+gχξ = f∇ηξ + g∇χξ,

ii) R-linearity in ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ,

iii) Product rule (Leibniz’ law): ∇η(f ξ) = (ηf )ξ + f∇ηξ,

in which η, χ, ξ, ζ ∈ X(M), f , g ∈ F(M), and a, b ∈ R.
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Newton

Newton’s method on abstract manifolds

Cost function: f : Rn → R  f :M→ R.
Newton’s iteration:

1. Solve, for the unknown z ∈ R
n
 ηx ∈ TxM

D(grad f )(x)[z ] = −grad f (x)  ∇(grad f )(x)[ηx ] = −grad f (x)

2. Set
x+ = x + z  x+ = R(ηx)

In the algorithm above, ∇ is an affine connection onM and R is a
retraction onM.
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Newton

Newton’s method on Sn−1

IfM is a Riemannian submanifold of Rn, then ∇ defined by

∇ηx ξ = PxDξ(x)[ηx ], ηx ∈ TxM, ξ ∈ X(M)

is a particular affine connection, called Riemannian connection.
For the unit sphere Sn−1, this yields

∇ηx ξ = (I − xxT )Dξ(x)[ηx ], xTηx = 0.
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Newton

Newton’s method for Rayleigh quotient on Sn−1

Let f :





R
n

M
Sn−1

→ R : x 7→





f (x)

f (x)
xTAx
xT x

.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n
 ηx ∈ TxM  xTηx = 0

D(grad f )(x)[z ] = −grad f (x)
 ∇(grad f )(x)[ηx ] = −grad f (x)

 (I − xxT )(A− f (x)I )ηx = −(I − xxT )Ax

2. Set

x+ = x + z  x+ = R(ηx)  x+ =
x + ηx
‖x + ηx‖
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Newton

Newton for RQ on Sn−1: a closer look

(I − xxT )(A− f (x)I )ηx = −(I − xxT )Ax

⇒ (I − xxT )(A− f (x)I )(x + ηx) = 0

⇒ (A− f (x)I )(x + ηx) = αx

Therefore, x+ is collinear with (A− f (x)I )−1x , which is the vector
computed by the Rayleigh quotient iteration.
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Newton

Newton method on quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

Affine connection: choose ∇ defined by

∇ηξx = Ph
x∇ηx ξ,

provided that this really defines a horizontal lift. This requires special
choices of ∇.
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Newton

Newton method on quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

If π :M→M/ ∼ is a Riemannian submersion, then the Riemannian
connection onM/ ∼ is given by

∇ηξx = Ph
x∇ηx ξ,

where ∇ denotes the Riemannian connection onM.
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Rayleigh on Grassmann

A detailed exercise

Newton’s method for the Rayleigh
quotient on the Grassmann

manifold
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Rayleigh on Grassmann

Manifold: Grassmann

The manifold is the Grassmann manifold of p-planes in R
n:

Grass(p, n) ≃ ST(p, n)/GLp.

The one-to-one correspondence is

Grass(p, n) ∋ Y ↔ Y GLp ∈ ST(p, n)/GLp

such that Y is the column space of Y .
The quotient map

π : ST(p, n)→ Grass(p, n)

is the “column space” or “span” operation.
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Rayleigh on Grassmann

Grassmann and its quotient representation

[Y ] = YGLp

R
n×p
∗

Y

π(Y )

span

R
n×p
∗ /GLp Grass(p,n)

span(Y )

π
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Rayleigh on Grassmann

Total space: the noncompact Stiefel manifold

The total space of the quotient is

ST(p, n) = {Y ∈ R
n×p : rank(Y ) = p}.

This is an open submanifold of the Euclidean space R
n×p.

Tangent spaces: TY ST(p, n) ≃ R
n×p.
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Rayleigh on Grassmann

Riemannian metric on the total space

Define a Riemannian metric g on ST(p, n) by

gY (Z1,Z2) = trace
(
(Y TY )−1ZT

1 Z2

)
.

This is not the canonical Riemannian metric, but it will allow us to turn
the quotient map π : ST(p, n)→ Grass(p, n) into a Riemannian
submersion.
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Rayleigh on Grassmann

Vertical and horizontal spaces

The vertical spaces are the tangent spaces to the equivalence classes:

VY := TY (YGLp) = Y TYGLp = YR
p×p.

Choice of horizontal space:

HY := (VY )⊥
= {Z ∈ TY ST(p, n) : gY (Z ,V ) = 0, ∀V ∈ VY }
= {Z ∈ R

n×p : Y TZ = 0}.

Horizontal projection:

Ph
Y = (I − Y (Y TY )−1Y T ).
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Rayleigh on Grassmann

Compatibility equation for horizontal lifts

Given ξ ∈ Tπ(Y )Grass(p, n), we have

ξYM = ξYM.

To see this, observe that ξYM is in HYM ; moreover, since YM + tξYM
and Y + tξY have the same column space for all t, one has

Dπ(YM)[ξYM] = Dπ(Y )[ξY ] = ξπ(Y ).

Thus ξYM satisfies the conditions to be ξYM .
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Rayleigh on Grassmann

Riemannian metric on the quotient

On Grass(p, n) ≃ ST(p, n)/GLp, define the Riemannian metric g by

gπ(Y )(ξπ(Y ), ζπ(Y )) = gY (ξY , ζY ).

This is well defined, because for all Ỹ ∈ π−1(π(Y )) = YGLp, we have
Ỹ = YM for some invertible M, and

gYM(ξYM , ζYM) = gY (ξY , ζY ).

This definition of g turns

π : (ST(p, n), g)→ (Grass(p, n), g)

into a Riemannian submersion.
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Rayleigh on Grassmann

Cost function: Rayleigh quotient

Consider the cost function

f : Grass(p, n)→ R : span(Y ) 7→ trace
(
(Y TY )−1Y TAY

)
.

This is the projection of

f : ST(p, n)→ R : Y 7→ trace
(
(Y TY )−1Y TAY

)
.

That is, f = f ◦ π.
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Rayleigh on Grassmann

Gradient of the cost function

For all Z ∈ R
n×p,

Df (Y )[Z ] = 2 trace
(
(Y TY )−1ZT (AY − Y (Y TY )−1Y TAY )

)
.

Hence
grad f (Y ) = 2

(
AY − Y (Y TY )−1Y TAY

)
,

and
grad f Y = 2

(
AY − Y (Y TY )−1Y TAY

)
.
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Rayleigh on Grassmann

Riemannian connection

The quotient map is a Riemannian submersion. Therefore

∇η ξ = Ph
Y

(
∇ηY ξ

)

It turns out that
∇η ξ = Ph

Y

(
Dξ (Y ) [ηY ]

)
.

(This is because the Riemanian metric g is “horizontally invariant”.)
For the Rayleigh quotient f , this yields

∇ηgrad f = Ph
Y

(
Dgrad f (Y ) [ηY ]

)

= 2Ph
Y

(
AηY − ηY (Y

TY )−1Y TAY
)
.
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Rayleigh on Grassmann

Newton’s equation

Newton’s equation at π(Y ) is

∇ηπ(Y )
grad f = −grad f (π(Y ))

for the unknown ηπ(Y ) ∈ Tπ(Y )Grass(p, n).
To turn this equation into a matrix equation, we take its horizontal lift.
This yields

Ph
Y

(
AηY − ηY (Y

TY )−1Y TAY
)
= −Ph

YAY , ηY ∈ HY ,

whose solution ηY in the horizontal space HY is the horizontal lift of the
solution η of the Newton equation.
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Rayleigh on Grassmann

Retraction

Newton’s method sends π(Y ) to Y+ according to

∇ηπ(Y )
grad f = −grad f (π(Y ))

Y+ = Rπ(Y )(ηπ(Y )).

It remains to pick the retraction R .
Choice: R defined by

Rπ(Y )ξπ(Y ) = π(Y + ξY ).

(This is a well-defined retraction.)
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Rayleigh on Grassmann

Newton’s iteration for RQ on Grassmann

Require: Symmetric matrix A.
Input: Initial iterate Y0 ∈ ST(p, n).
Output: Sequence of iterates {Yk} in ST(p, n).
1: for k = 0, 1, 2, . . . do
2: Solve the linear system

{
Ph
Yk

(
AZk − Zk(Y

T
k Yk)

−1Y T
k AYk

)
= −Ph

Yk
(AYk)

Y T
k Zk = 0

for the unknown Zk , where Ph
Y is the orthogonal projector onto

HY . (The condition Y T
k Zk expresses that Zk belongs to the

horizontal space HYk
.)

3: Set
Yk+1 = (Yk + Zk)Nk

where Nk is a nonsingular p × p matrix chosen for normalization
purposes.

4: end for
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Trust-Region Methods

Trust-region methods on
Riemannian manifolds
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Trust-Region Methods

Motivating application: Mechanical vibrations

Mass matrix M, stiffness matrix K .
Equation of vibrations (for undamped discretized linear structures):

Kx = ω2Mx

were

◮ ω is an angular frequency of vibration

◮ x is the corresponding mode of vibration

Task: find lowest modes of vibration.
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Trust-Region Methods

Generalized eigenvalue problem

Given n × n matrices A = AT and B = BT ≻ 0, there exist v1, . . . , vn in
R
n and λ1 ≤ . . . ≤ λn in R such that

Avi = λiBvi

vTi Bvj = δij .

Task: find λ1, . . . , λp and v1, . . . , vp.
We assume throughout that λp < λp+1.
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Trust-Region Methods

Case p = 1: optimization in R
n

Avi = λiBvi

Consider the Rayleigh quotient

f̃ : Rn
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Stationary points of f̃ : αvi , for all α 6= 0.
Minimizers of f̃ : αv1, for all α 6= 0.
Difficulty: the minimizers are not isolated.
Remedy: optimization on manifold.
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Trust-Region Methods

Case p = 1: optimization on ellipsoid

f̃ : Rn
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Remedy 1:

◮ M := {y ∈ R
n : yTBy = 1}, submanifold of Rn.

◮ f :M→ R : f (y) = yTAy .

Stationary points of f : ±v1, . . . ,±vn.
Minimizers of f : ±v1.
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Trust-Region Methods

Case p = 1: optimization on projective space

f̃ : Rn
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Remedy 2:

◮ [y ] := yR := {yα : α ∈ R}
◮ M := R

n
∗/R = {[y ]}

◮ f :M→ R : f ([y ]) := f̃ (y)

Stationary points of f : [v1], . . . , [vn].
Minimizer of f : [v1].
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Trust-Region Methods

Case p ≥ 1: optimization on the Grassmann manifold

f̃ : Rn×p
∗ → R : f̃ (Y ) = trace

(
(Y TBY )−1Y TAY

)

Invariance: f̃ (YR) = f̃ (Y ).
Define:

◮ [Y ] := {YR : R ∈ R
p×p
∗ }, Y ∈ R

n×p
∗

◮ M := Grass(p, n) := {[Y ]}
◮ f :M→ R : f ([Y ]) := f̃ (Y )

Stationary points of f : span{vi1 , . . . , vip}.
Minimizer of f : [Y ] = span{v1, . . . , vp}.
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Trust-Region Methods

Optimization on Manifolds

◮ Luenberger [Lue73], Gabay [Gab82]: optimization on submanifolds
of Rn.

◮ Smith [Smi93, Smi94] and Udrişte [Udr94]: optimization on general
Riemannian manifolds (steepest descent, Newton, CG).

◮ ...

◮ PAA, Baker and Gallivan [ABG07]: trust-region methods on
Riemannian manifolds.

◮ PAA, Mahony, Sepulchre [AMS08]:Optimization Algorithms on
Matrix Manifolds, textbook.
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Trust-Region Methods

The Problem : Leftmost Eigenpairs of Matrix Pencil

Given n × n matrix pencil (A,B), A = AT , B = BT ≻ 0 with (unknown)
eigen-decomposition

A [v1| . . . |vn] = B [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T B [v1| . . . |vn] = I , λ1 < λ2 ≤ . . . ≤ λn.
The problem is to compute the minor eigenvector ±v1.
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Trust-Region Methods

The ideal algorithm

Given (A,B), A = AT , B = BT ≻ 0 with (unknown) eigenvalues
0 < λ1 ≤ . . . λn and associated eigenvectors v1, . . . , vn.

1. Global convergence:
◮ Convergence to some eigenvector for all initial conditions.
◮ Stable convergence to the “leftmost” eigenvector ±v1 only.

2. Superlinear (cubic) local convergence to ±v1.
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Trust-Region Methods

The ideal algorithm

Given (A,B), A = AT , B = BT ≻ 0 with (unknown) eigenvalues
0 < λ1 ≤ . . . λn and associated eigenvectors v1, . . . , vn.

1. Global convergence:
◮ Convergence to some eigenvector for all initial conditions.
◮ Stable convergence to the “leftmost” eigenvector ±v1 only.

2. Superlinear (cubic) local convergence to ±v1.
3. “Matrix-free” (no factorization of A, B)

but possible use of preconditioner.
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Trust-Region Methods

The ideal algorithm

Given (A,B), A = AT , B = BT ≻ 0 with (unknown) eigenvalues
0 < λ1 ≤ . . . λn and associated eigenvectors v1, . . . , vn.

1. Global convergence:
◮ Convergence to some eigenvector for all initial conditions.
◮ Stable convergence to the “leftmost” eigenvector ±v1 only.

2. Superlinear (cubic) local convergence to ±v1.
3. “Matrix-free” (no factorization of A, B)

but possible use of preconditioner.

4. Minimal storage space required.
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
 Global convergence.
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
 Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
 Superlinear convergence.
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
 Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
 Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
 “Matrix-free”, preconditioned iteration.
 Minimal storage of iteration vectors.
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Trust-Region Methods

Iteration on the manifold

Manifold: ellipsoidM = {y ∈ R
n : yTBy = 1}.

Cost function: f :M→ R : y 7→ yTAy
?

y

v1

M
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Trust-Region Methods

Tangent space and retraction (2D picture)

TyM
Ry

y

M

η

Tangent space: TyM := {η ∈ R
n : yTBη = 0}.

Retraction: Ryη := (y + η)/‖y + η‖B .
Lifted cost function: f̂y (η) := f (Ryη) =

(y+η)TA(y+η)
(y+η)TB(y+η)

.
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Trust-Region Methods

Concept of retraction

Introduced by Shub [Shu86].

M

TxM

x

Rx

x-lift

1. Rx is defined and one-to-one in a neighbourhood of 0x in TxM.

2. Rx(0x) = x .

3. DRx(0x) = idTxM , the identity mapping on TxM, with the canonical
identification T0xTxM ≃ TxM.

162



Trust-Region Methods

Tangent space and retraction

y

v1

M

TyM

f̂y

η
Ry

Tangent space: TyM := {η ∈ R
n : yTBη = 0}.

Retraction: Ryη := (y + η)/‖y + η‖B .
Lifted cost function: f̂y (η) := f (Ryη) =

(y+η)TA(y+η)
(y+η)TB(y+η)

.
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Trust-Region Methods

Quadratic model

f̂y (η) =
yTAy

yTBy
+ 2

yTAη

yTBy
+

1

yTBy

(
ηTAη − yTAy

yTBy
ηTBη

)
+ . . .

= f (y) + 2〈PAy , η〉+ 1

2
〈2P(A− f (y)B)Pη, η〉+ . . .

where 〈u, v〉 = uT v and P = I − By(yTB2y)−1yTB .
Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.
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Trust-Region Methods

Quadratic model

y

v1

M

TyM

f̂y

η
Ry

my

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.
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Trust-Region Methods

Newton vs Trust-Region

Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0. (1)
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Trust-Region Methods

Newton vs Trust-Region

Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0. (1)

Newton method: Compute the stationary point of the model, i.e., solve

P(A− f (y)B)P η = −PAy .
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Trust-Region Methods

Newton vs Trust-Region

Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0. (1)

Newton method: Compute the stationary point of the model, i.e., solve

P(A− f (y)B)P η = −PAy .

Instead, compute (approximately) the minimizer of my within a
trust-region

{η ∈ TxM : ηTη ≤ ∆2}.
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Trust-Region Methods

Trust-region subproblem

Minimize

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.

subject to ηTη ≤ ∆2.

y

v1

M

TyM

my
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Trust-Region Methods

Truncated CG method for the TR subproblem (1)

Let 〈·, ·〉 denote the standard inner product and let
Hxk := P(A− f (xk)B)P denote the Hessian operator.
Initializations:
Set η0 = 0, r0 = PxkAxk = Axk − Bxk(x

T
k B2xk)

−1xTk BAxk , δ0 = −r0;
Then repeat the following loop on j :
Check for negative curvature

if 〈δj ,Hxk δj〉 ≤ 0
Compute τ such that η = ηj + τδj minimizes m(η) in (1) and

satisfies ‖η‖ = ∆;
return η;
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Trust-Region Methods

Truncated CG method for the TR subproblem (2)

Generate next inner iterate
Set αj = 〈rj , rj〉/〈δj ,Hxk δj〉;
Set ηj+1 = ηj + αjδj ;

Check trust-region
if ‖ηj+1‖ ≥ ∆
Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖ = ∆;
return η;
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Trust-Region Methods

Truncated CG method for the TR subproblem (3)

Update residual and search direction
Set rj+1 = rj + αjHxk δj ;
Set βj+1 = 〈rj+1, rj+1〉/〈rj , rj〉;
Set δj+1 = −rj+1 + βj+1δj ;
j ← j + 1;

Check residual
If ‖rj‖ ≤ ‖r0‖min

(
‖r0‖θ, κ

)
for some prescribed θ and κ

return ηj ;
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Trust-Region Methods

Overall iteration

y

v1

M

TyM

my

η
y+
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Trust-Region Methods

The outer iteration – manifold trust-region (1)

Data: symmetric n × n matrices A and B , with B positive definite.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ (0, 14).
Input: initial iterate x0 ∈ {y : yTBy = 1}.
Output: sequence of iterates {xk} in {y : yTBy = 1}.
Initialization: k = 0
Repeat the following:
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Trust-Region Methods

The outer iteration – manifold trust-region (2)

◮ Obtain ηk using the Steihaug-Toint truncated conjugate-gradient
method to approximately solve the trust-region subproblem

min
xT
k
Bη=0

mxk (η) s.t. ‖η‖ ≤ ∆k , (2)

where m is defined in (1).
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Trust-Region Methods

The outer iteration – manifold trust-region (3)

◮ Evaluate

ρk =
f̂xk (0)− f̂xk (ηk)

mxk (0)−mxk (ηk)
(3)

where f̂xk (η) =
(xk+η)TA(xk+η)
(xk+η)TB(xk+η)

.

◮ Update the trust-region radius:
if ρk < 1

4
∆k+1 =

1
4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k , ∆̄)
else
∆k+1 = ∆k ;
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Trust-Region Methods

The outer iteration – manifold trust-region (4)

◮ Update the iterate:
if ρk > ρ′

xk+1 = (xk + ηk)/‖xk + ηk‖B ; (4)

else
xk+1 = xk ;

k ← k + 1
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
 Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
 Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
 “Matrix-free”, preconditioned iteration.
 Minimal storage of iteration vectors.
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Trust-Region Methods

Summary

We have obtained a trust-region algorithm for minimizing the Rayleigh
quotient over an ellipsoid.
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Trust-Region Methods

Summary

We have obtained a trust-region algorithm for minimizing the Rayleigh
quotient over an ellipsoid.

Generalization to trust-region algorithms for minimizing functions on
manifolds: the Riemannian Trust-Region (RTR) method [ABG07].
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Trust-Region Methods

Convergence analysis

y

v1

M

TyM

my

η
y+
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Trust-Region Methods

Global convergence of Riemannian Trust-Region algorithms

Let {xk} be a sequence of iterates generated by the RTR algorithm with
ρ′ ∈ (0, 14). Suppose that f is C 2 and bounded below on the level set
{x ∈ M : f (x) < f (x0)}. Suppose that ‖grad f (x)‖ ≤ βg and
‖Hess f (x)‖ ≤ βH for some constants βg , βH , and all x ∈ M. Moreover
suppose that

‖ D
dt

d
dt
Rtξ‖ ≤ βD (5)

for some constant βD , for all ξ ∈ TM with ‖ξ‖ = 1 and all t < δD ,
where D

dt
denotes the covariant derivative along the curve t 7→ Rtξ.

Further suppose that all approximate solutions ηk of the trust-region
subproblems produce a decrease of the model that is at least a fixed
fraction of the Cauchy decrease.
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Trust-Region Methods

Global convergence (cont’d)

It then follows that
lim
k→∞

grad f (xk) = 0.

And only the local minima are stable (the saddle points and local
maxima are unstable).

183



Trust-Region Methods

Local convergence of Riemannian Trust-Region algorithms

Consider the RTR-tCG algorithm. Suppose that f is a C 2 cost function
on M and that

‖Hk −Hess f̂xk (0k)‖ ≤ βH‖grad f (xk)‖. (6)

Let v ∈ M be a nondegenerate local minimum of f , (i.e., grad f (v) = 0
and Hess f (v) is positive definite). Further assume that Hess f̂xk is
Lipschitz-continuous at 0x uniformly in x in a neighborhood of v , i.e.,
there exist β1 > 0, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and
all ξ ∈ Bδ2(0x), it holds

‖Hess f̂xk (ξ)−Hess f̂xk (0xk )‖ ≤ βL2‖ξ‖. (7)
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Trust-Region Methods

Local convergence (cont’d)

Then there exists c > 0 such that, for all sequences {xk} generated by
the RTR-tCG algorithm converging to v , there exists K > 0 such that for
all k > K ,

dist(xk+1, v) ≤ c (dist(xk , v))
min{θ+1,2}, (8)

where θ governs the stopping criterion of the tCG inner iteration.
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Trust-Region Methods

Convergence of trust-region-based eigensolver

Theorem:

Let (A,B) be an n × n symmetric/positive-definite matrix pencil with
eigenvalues λ1 < λ2 ≤ . . . ≤ λn−1 ≤ λn and an associated
B-orthonormal basis of eigenvectors (v1, . . . , vn).

Let Si = {y : Ay = λiBy , yTBy = 1} denote the intersection of the
eigenspace of (A,B) associated to λi with the set {y : yTBy = 1}.

...
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Trust-Region Methods

Convergence (global)

(i) Let {xk} be a sequence of iterates generated by the Algorithm. Then
{xk} converges to the eigenspace of (A,B) associated to one of its
eigenvalues. That is, there exists i such that limk→∞ dist(xk ,Si ) = 0.

(ii) Only the set S1 = {±v1} is stable.
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Trust-Region Methods

Convergence (local)

(iii) There exists c > 0 such that, for all sequences {xk} generated by the
Algorithm converging to S1, there exists K > 0 such that for all k > K ,

dist(xk+1,S1) ≤ c (dist(xk ,S1))min{θ+1,2} (9)

with θ > 0.
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
 Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
 Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
 “Matrix-free”, preconditioned iteration.
 Minimal storage of iteration vectors.
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Trust-Region Methods

Numerical experiments: RTR vs Krylov [GY02]
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Distance to target versus matrix-vector multiplications.
Symmetric/positive-definite generalized eigenvalue problem.
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Vector Transport

A new tool for Optimization On
Manifolds:

Vector Transport
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Vector Transport

Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the
geodesic tangent to
the search direction

Search along any curve
tangent to the search di-
rection (prescribed by a
retraction)

Displacement
of tgt vectors

Parallel translation in-

duced by
g

∇
??
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Vector Transport

Where do we use parallel translation?

In CG. Quoting (approximately) Smith (1994):

1. Select x0 ∈M, compute η0 = −grad f (x0), and set k = 0

2. Compute tk such that f (Expxk (tkηk)) ≤ f (Expxk (tηk)) for all
t ≥ 0.

3. Set xk+1 = Expxk (tkηk).

4. Set ηk+1 = −grad f (xk+1) + βk+1τηk , where τ is the parallel
translation along the geodesic from xk to xk+1. Increment k and go
to step 2.
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Vector Transport

Where do we use parallel translation?

In BFGS. Quoting (approximately) Gabay (1982):
xk+1 = Expxk (tkξk) (update along geodesic)

grad f (xk+1)− τ tk0 grad f (xk) = Bk+1τ
tk
0 (tkξk) (requirement on

approximate Jacobian B)
This leads to the a generalized BFGS update formula involving parallel
translation.

194



Vector Transport

Where else could we use parallel translation?

In finite-difference quasi-Newton.
Let ξ be a vector field on a Riemannian manifoldM. Exact Jacobian of
ξ at x ∈M: Jξ(x)[η] = ∇ηξ.
Finite difference approximation to Jξ: choose a basis (E1, · · · ,Ed) of
TxM and define J̃(x) as the linear operator that satisfies

J̃(x)[Ei ] =
τ0h ξExpx (hEi ) − ξx

h
.
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Vector Transport

Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the
geodesic tangent to
the search direction

Search along any pre-
scribed curve tangent to
the search direction

Displacement
of tgt vectors

Parallel translation in-

duced by
g

∇
??
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Vector Transport

Parallel translation can be tough

Edelman et al (1998): We are unaware of any closed form expression for
the parallel translation on the Stiefel manifold (defined with respect to
the Riemannian connection induced by the embedding in R

n×p).
Parallel transport along geodesics on Grassmannians:

ξ(t)Y (t) = −Y0V sin(Σt)UT ξ(0)Y0
+U cos(Σt)UT ξ(0)Y0

+(I−UUT )ξ(0)Y0
.

where Ẏ(0)Y0
= UΣV T is a thin SVD.
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Vector Transport

Alternatives found in the literature

Edelman et al (1998): “extrinsic” CG algorithm. “Tangency of the
search direction at the new point is imposed via the projection I − YY T”
(instead of via parallel translation).
Brace & Manton (2006), An improved BFGS-on-manifold algorithm for
computing weighted low rank approximation. “The second change is that
parallel translation is not defined with respect to the Levi-Civita
connection, but rather is all but ignored.”
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Vector Transport

Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the
geodesic tangent to
the search direction

Search along any curve
tangent to the search di-
rection (prescribed by a
retraction)

Displacement
of tgt vectors

Parallel translation in-

duced by
g

∇
??
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Vector Transport

Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the
geodesic tangent to
the search direction

Search along any curve
tangent to the search di-
rection (prescribed by a
retraction)

Displacement
of tgt vectors

Parallel translation in-

duced by
g

∇
Vector Transport
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Vector Transport

Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.
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Vector Transport

The concept of vector transport

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Vector Transport

Retraction

A retraction on a manifoldM is a smooth mapping

R : TM→M

such that

1. R(0x) = x for all x ∈M, where 0x denotes the origin of TxM;

2. d
dt
R(tξx)

∣∣
t=0

= ξx for all ξx ∈ TxM.

Consequently, the curve t 7→ R(tξx) is a curve onM tangent to ξx .
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Vector Transport

The concept of vector transport – Whitney sum

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Whitney sum

Let TM⊕ TM denote the set

TM⊕ TM = {(ηx , ξx) : ηx , ξx ∈ TxM, x ∈M}.

This set admits a natural manifold structure.
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Vector Transport

The concept of vector transport – definition

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Vector transport: definition

A vector transport on a manifoldM on top of a retraction R is a smooth
map

TM⊕ TM→ TM : (ηx , ξx) 7→ Tηx (ξx) ∈ TM
satisfying the following properties for all x ∈M:

1. (Underlying retraction) Tηx ξx belongs to TRx (ηx )M.

2. (Consistency) T0x ξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx (aξx + bζx) = aTηx (ξx) + bTηx (ζx).
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Inverse vector transport

When it exists, (Tηx )−1(ξRx (ηx )) belongs to TxM. If η and ξ are two
vector fields onM, then (Tη)−1ξ is naturally defined as the vector field
satisfying (

(Tη)−1ξ
)
x
= (Tηx )−1 (ξRx (ηx )).
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Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.

209



Vector Transport

Parallel translation is a vector transport

Proposition

If ∇ is an affine connection and R is a retraction on a manifoldM, then

Tηx (ξx) := P1←0
γ ξx (10)

is a vector transport with associated retraction R, where Pγ denotes the
parallel translation induced by ∇ along the curve t 7→ γ(t) = Rx(tηx).

210



Vector Transport

Vector transport on Riemannian submanifolds

IfM is an embedded submanifold of a Euclidean space E andM is
endowed with a retraction R , then we can rely on the natural inclusion
TyM⊂ E for all y ∈ N to simply define the vector transport by

Tηx ξx := PRx (ηx )ξx , (11)

where Px denotes the orthogonal projector onto TxN .
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Vector Transport

Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.
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Vector transport in finite differences

LetM be a manifold endowed with a vector transport T on top of a
retraction R . Let x ∈M and let (E1, . . . ,Ed) be a basis of TxM. Given
a smooth vector field ξ and a real constant h > 0, let
J̃ξ(x) : TxM→ TxM be the linear operator that satisfies, for
i = 1, . . . , d ,

J̃ξ(x)[Ei ] =
(ThEi

)−1ξR(hEi ) − ξx

h
. (12)

Lemma (finite differences)

Let x∗ be a nondegenerate zero of ξ. Then there is c > 0 such that, for
all x sufficiently close to x∗ and all h sufficiently small, it holds that

‖J̃ξ(x)[Ei ]− J(x)[Ei ]‖ ≤ c(h + ‖ξx‖). (13)
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Convergence of Newton’s method with finite differences

Proposition

Consider the geometric Newton method where the exact Jacobian J(xk)
is replaced by the operator J̃ξ(xk) with h := hk . If

lim
k→∞

hk = 0,

then the convergence to nondegenerate zeros of ξ is superlinear. If,
moreover, there exists some constant c such that

hk ≤ c‖ξxk‖

for all k, then the convergence is (at least) quadratic.
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Vector transport in BFGS

With the notation

sk := Tηkηk ∈ Txk+1
M,

yk := grad f (xk+1)− Tηk (grad f (xk)) ∈ Txk+1
M,

we define the operator Ak+1 : Txk+1
M 7→ Txk+1

M by

Ak+1η = Ãkη −
〈sk , Ãkη〉
〈sk , Ãksk〉

Ãksk +
〈yk , η〉
〈yk , sk〉

yk for all η ∈ Txk+1
M,

with
Ãk = Tηk ◦ Ak ◦ (Tηk )−1.
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Vector transport in CG

Compute a step size αk and set

xk+1 = Rxk (αkηk). (14)

Compute βk+1 and set

ηk+1 = −grad f (xk+1) + βk+1Tαkηk (ηk). (15)
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Vector Transport

Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the
geodesic tangent to
the search direction

Search along any curve
tangent to the search di-
rection (prescribed by a
retraction)

Displacement
of tgt vectors

Parallel translation in-

duced by
g

∇
Vector Transport
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Ongoing work

◮ Use vector transport wherever we can.

◮ Extend convergence analyses.

◮ Develop recipies for building efficient vector transports.
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BFGS on manifolds

BFGS Algorithm on Manifolds

◮ Main source: Riemannian BFGS algorithm with applications. Chunhong Qi, Kyle
A. Gallivan, P.-A. Absil. Recent Advances in Optimization and its Applications in
Engineering, Springer-Verlag, pp. 183-192, 2010. URL:
http://www.inma.ucl.ac.be/~absil/Publi/Qi_RBFGS.htm

◮ Recent point of entry to the literature: A Riemannian BFGS Method without
Differentiated Retraction for Nonconvex Optimization Problems. Wen Huang,
P.-A. Absil, K. A. Gallivan. SIAM Journal on Optimization, 28:1, pp. 470-495,
2018. URL: https://www.math.fsu.edu/~whuang2/papers/ARBMDRNOP.htm
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BFGS on manifolds

A (questionable) historical overview

In R
n On Riemannian manifolds

using classical ob-
jects

using novel objects

Steepest descent 1966 (Armijo
backtracking)

1972 (Luenberger) 1986–2008 ?

Newton 1740 (Simpson) 1993 (Smith) 2002 (Adler et al.)
Conjugate Grad 1964 (Fletcher–

Reeves)
1993 (Smith) 2008 (PAA, Ma-

hony, Sepulchre) ?
Trust regions 1985 (name cre-

ated by Celis, Den-
nis, Tapia)

2007 (PAA, Baker,
Gallivan)

2007 (PAA, Baker,
Gallivan)

BFGS 1970 (B-F-G-S) 1982 (Gabay)
2010 (Qi, Gallivan,
PAA)
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BFGS on manifolds

Background on classical BFGS

◮ BFGS stands for Broyden–Fletcher–Goldfarb–Shanno.

◮ BFGS is a quasi-Newton method, where the Hessian found in the
pure Newton is replaced by an approximation Bk .

◮ The approximation Bk undergoes a rank-two update at each
iteration and satisfies the secant condition:

Bk+1(xk+1 − xk) = grad f (xk+1)− grad f (xk).
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BFGS on manifolds

Symmetric secant update (PSB)

◮ Let sk = xk+1 − xk and yk = grad f (xk+1)− grad f (xk). Then the
secant condition becomes

Bk+1sk = yk .

◮ What is Bk+1 that minimizes ‖Bk+1 − Bk‖F subject to Bk+1sk = yk
and Bk+1 − Bk symmetric?
Answer given by the symmetric secant update, also called
Powell-symmetric-Broyden (PSB) update:

Bk+1 = Bk+
(yk − Bksk)sTk + sTk (yk − Bksk)T

sTk sk
−〈yk − Bksk , sk〉sks

T
k

(sTk sk)2

◮ Drawback: Bk+1 is not necessarily positive-definite. Hence the next
search direction ηk = −B−1k grad f (xk) may not be a descent
direction.
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BFGS on manifolds

Positive-definite secant update (BFGS)

◮ Let sk = xk+1 − xk and yk = grad f (xk+1)− grad f (xk). Then the
secant condition becomes

Bk+1sk = yk .

◮ Let also Bk = LLT be the Cholesky factorization.

◮ What is Bk+1 = JJT with J nonsingular (guaranties Bk+1

symmetric positive definite) such that Bk+1sk = yk and ‖J − L‖F as
small as possible?
Answer given by the positive definite secant update, discovered
independently by Broyden, Fletcher, Goldfarb and Shanno (BFGS)
in 1970:

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksk(Bksk)

T

sTk Bksk
,

iff sTk yk > 0. Otherwise, no solution.
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BFGS on manifolds

Formulation of classical BFGS (in R
n)

Algorithm 1 The classical BFGS algorithm (in R
n)

1: Given: real-valued function f on R
n; initial iterate x1 ∈ R

n; initial
Hessian approximation B1;

2: for k = 1, 2,. . . do
3: Obtain ηk ∈ R

n by solving: ηk = −B−1k grad f (xk).
4: Perform a line search to obtain a step size αk and set xk+1 =

xk + αkηk .
5: Set sk := αkηk
6: Set yk := grad f (xk+1)− grad f (xk)

7: Bk+1 = Bk + yky
T
k

yT
k
sk
− Bk sk (Bk sk)T

sT
k
Bk sk

.

8: end for
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BFGS on manifolds

Significant Riemannian Manifolds

Sphere Sn−1

The manifold of unit sphere:

Sn−1 = {x ∈ R
n : xT x = 1}

Compact Stiefel Manifold

The manifold of orthonormal bases:

St((, p), n) = {Q ∈ R
n×p : QTQ = Ip}

Grassmann manifold
Manifold of linear subspaces:

Grass((, k), n) = {k-dimensional subspaces of Rn}
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BFGS on manifolds

Applications

◮ computing the leftmost eigenvector of A (Sn−1)

f : Sn−1 → R : x 7→ xTAx ,A = AT

◮ Procrustes Problem (St((, p), n) )

f : St(p, n)→ R : Q → ‖AQ − QB‖F ,A : n × n,B : p × p
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BFGS on manifolds

Application

◮ Thomson Problem
(Sn−1 × · · · × Sn−1)

◮ f : [x1, x2, · · · , xN ] 7−→
N∑

i ,j=1
i 6=j

1

‖xi − xj‖2

◮ Optimally arrange N repulsive
particles on a sphere

◮ Determining the minimum
energy configuration of these
particles

Applet: http://thomson.phy.syr.edu/thomsonapplet.htm
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BFGS on manifolds

◮ The weighted low rank approximation problem on Grass(n, k):

min
R∈Rp×n

rank{R}≤r

‖X − R‖2Q (16)

X ∈ R
p×n: a given data matrix, Q ∈ R

pn×pn : a weighted matrix,
‖X − R‖2Q = vec{X − R}TQvec{X − R}., rewrite (16) as

min
N∈Rn×(n−r)

NTN=1

min
R∈Rp×n

RN=0

‖X − R‖2Q

The inner minimization has a closed form solution, call it f (N):

f (N) = vec{X}T (N ⊗ Ip)
[
(N ⊗ Ip)

TQ−1(N ⊗ Ip)
]−1

(N ⊗ Ip)
T vec{X}
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BFGS on manifolds

Riemannian BFGS: past and future

Previous work on BFGS on manifolds

◮ Gabay [Gab82] discussed a version using parallel translation

◮ Brace and Manton restrict themselves to a version on the
Grassmann manifold and the problem of weighted low-rank
approximations [BM06].

◮ Savas and Lim apply a version to the more complicated problem of
best multilinear approximations with tensors on a product of
Grassmann manifolds [SL10].

Our goals

◮ Make the algorithm faster.

◮ Understand its convergence better.
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BFGS on manifolds

Riemannian BFGS: a glimpse of the algorithm

1: Given: Riemannian manifold (M, g); vector transport T on M with
associated retraction R ; real-valued function f on M; initial iterate
x1 ∈ M; initial Hessian approximation B1;

2: for k = 1, 2,. . . do
3: Obtain ηk ∈ TxkM by solving: ηk = −B−1k grad f (xk).
4: Perform a line search on R ∋ α 7→ f (Rxk (αηk)) ∈ R to obtain a

step size αk ; set xk+1 = Rxk (αkηk).
5: Define sk = Tαηkαηk and yk = grad f (xk+1)− Tαηkgrad f (xk)
6: Define the linear operator Bk+1 : Txk+1

M → Txk+1
M as follows

Bk+1p = B̃kp −
g(sk , B̃kp)
g(sk , B̃ksk)

B̃ksk +
g(yk , p)

g(yk , sk)
yk , ∀p ∈ Txk+1

M

with B̃k = Tαkηk ◦ Bk ◦ (Tαkηk )
−1

7: end for
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BFGS on manifolds

Vector transport

Manifold algorithms

◮ Conjugate gradients

◮ Secant methods

◮ BFGS

where parallel translation is used to combine two or more tangent vectors
from distinct tangent spaces.
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BFGS on manifolds

Vector transport

We define a vector transport on a manifoldM to be a smooth mapping

TM⊕ TM→ TM : (ηx , ξx) 7→ Tηx (ξx) ∈ TM
satisfying three properties for all x ∈M.

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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BFGS on manifolds

Vector Transport

◮ (Associated retraction) There exists a retraction R , called the
retraction associated with T , such that the following diagram
commutes

(ηx , ξx) Tηx (ξx)

ηx π (Tηx (ξx))
��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

//
T

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

π

//

R

where π (Tηx (ξx)) denotes the foot of the tangent vector Tηx (ξx).
◮ (Consistency) T0x ξx = ξx for all ξx ∈ TxM;

◮ (Linearity) Tηx (aξx + bζx) = aTηx (ξx) + bTηx (ζx).
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BFGS on manifolds

Vector transport by differentiated retraction

Let M be a manifold endowed with retraction R , a particular vector
transport is given by

Tηx ξx := DRx(ηx)[ξx ]; i.e.,

Tηx ξx :=
d

dt
Rx(ηx + tξx)

∣∣∣∣
t=0

;
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BFGS on manifolds

Vector transport by projection [AMS08, §8.1.2] (submanifolds only)

If M is an embedded submanifold of a Euclidean space ε and M is
endowed with a retraction R , then

Tηx ξx := PRx (ηx )ξx ,

where Px denotes the orthgonal projector onto TxM, is a vector
transport.
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BFGS on manifolds

Vector transport on quotient manifold

M =M/ ∼: a quotient manifold, whereM is an open subset of a
Euclidean space ε.

(Tηx ξx)x+ηx
:= Ph

x+ηx
ξx ,

where Ph
xZ : Tx̄M→Hx̄ denotes the projection parallel to the vertical

space Vx onto the horizontal space Hx̄ at x .
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BFGS on manifolds

Algorithm 2 The Riemannian BFGS (RBFGS) algorithm

1: Given: Riemannian manifold (M, g); vector transport T on M with
associated retraction R ; real-valued function f on M; initial iterate
x1 ∈ M; initial Hessian approximation B1;

2: for k = 1, 2,. . . do
3: Obtain ηk ∈ TxkM by solving: ηk = −B−1k grad f (xk).
4: Perform a line search on R ∋ α 7→ f (Rxk (αηk)) ∈ R to obtain a

step size αk ; set xk+1 = Rxk (αkηk).
5: Define sk = Tαηkαηk and yk = grad f (xk+1)− Tαηkgrad f (xk)
6: Define the linear operator Bk+1 : Txk+1

M → Txk+1
M as follows

Bk+1p = B̃kp −
g(sk , B̃kp)
g(sk , B̃ksk)

B̃ksk +
g(yk , p)

g(yk , sk)
yk , ∀p ∈ Txk+1

M

with B̃k = Tαkηk ◦ Bk ◦ (Tαkηk )
−1

7: end for
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BFGS on manifolds

Sherman-Morrison formula

Let A is an invertible matrix. The for all vectors u, v such that
1 + vTA−1u 6= 0, one has

(A+ uvT )−1 = A−1 +
A−1uvTA−1

1 + vTA−1u
.
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BFGS on manifolds

Another version of the RBFGS algorithm

Works with the inverse Hessian Hk = Bk−1 approximation rather than
the Hessian approximation Bk . In this case the step 4 in algorithm 2 will
be replaced by:

Hk+1 = H̃kp− g(yk ,H̃kp)
g(yk ,sk )

sk − g(sk ,pk )
g(yk ,sk )

H̃kyk +
g(sk ,p)g(yk ,H̃kyk)

g(yk ,sk )2
sk +

g(sk ,sk )
g(yk ,sk )

p

with

H̃k = Tηk ◦ Hk ◦ (Tηk )−1

Makes it possible to cheaply compute an approximation of the inverse of
the Hessian. This may make BFGS advantageous even in the case where
we have a cheap exact formula for the Hessian but not for its inverse.
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BFGS on manifolds

Implementation of RBFGS in submanifolds of Rn

Let x ∈ M, ξx , ηx ∈ TxM, define the inclusions:

i: M → R
n; x 7→ i(x)

ix : TxM → R
n; ξx 7→ ix(ξx)

use the matrix Bk to represent the linear operator Bk : TxkM → TxkM.

Bk ← Bk

we have

ix(Bkξx) = Bk(ix(ξx))

gx(ξx , ηx) = 〈ix(ξx), ix(ηx)〉
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BFGS on manifolds

Compute ηk = −B−1k grad f (xk) for Submanifolds.

Approach 1: Realize Bk by an n-by-n matrix B
(n)
k .

Let Bk be the linear operator Bk : TxkM −→ TxkM, B
(n)
k ∈ R

n×n, s.t

ixk (Bkηk) = B
(n)
k (ixk (ηk)), ∀ηk ∈ TxkM,

from Bkηk = −grad f (xk)
we have B

(n)
k (ixk (ηk)) = −ixk (grad f (xk)).

Approach 2: Use bases.
Let [Ek,1, · · · ,Ek,d ] =: E k ∈ R

n×d be a basis of TxkM. We have

E+
k B

(n)
k E k E

+
k ixk (ηk) = −E+

k ixk (grad f (xk))

where E+
k = (ET

k E k)
−1ET

k

Bd
k = E+

k B
(n)
k E k ∈ R

d×d

B
(d)
k (ηk)

(d) = −(grad f (xk))(d)
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BFGS on manifolds

Global convergence of RBFGS

Assumption 1
(1) The objective function f is twice continuously differentiable
(2) The level set Ω = {x ∈ M : f (x) ≤ f (x0)} is convex. In addition,
there exists positive constants n and N such that

ng(z , z) ≤ g(G (x)z , z) ≤ Ng(z , z) for all z ∈ M and x ∈ Ω

where G (x) denotes the lifted Hessian.

Theorem
Let B0 be any symmetric positive definite matrix, and let x0 be starting
point for which assumption 1 is satisfied.Then the sequence xk generated
by algorithm 2 converge to the minimizer of f .
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BFGS on manifolds

Superlinear convergence of quasi-Newton:
generalized Dennis-Moré condition

Let M be a manifold endowed with a C 2 vector transport T and an
associated retraction R . Let F be a C 2 tangent vector field on M. Also
let M be endowed with an affine connection ∇ and let DF (x) denote the
linear transformation of TxM defined by DF (x)[ξx ] = ∇ξxF for all
tangent vectors ξx to M at x . Let {Bk} be a sequence of bounded
nonsingular linear transformation of TxkM, where k = 0, 1, · · · ,
xk+1 = Rxk (ηk), and ηk = −B−1k F (xk). Assume that DF (x∗) is
nonsingular, xk 6= x∗, ∀k , and lim

k→∞
xk = x∗.

Then {xk} converges superlinearly to x∗ and F (x∗) = 0 if and only if

lim
k→∞

‖[Bk − TξkDF (x∗)T −1ξk
]ηk‖

‖ηk‖
= 0 (17)

where ξk ∈ Tx∗M is defined by ξk = R−1x∗ (xk), i.e. Rx∗(ξk) = xk .
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Superlinear convergence of RBFGS

Assumption 2 The lifted Hessian matrix Hessf̂x is Lipschitz-continuous
at 0x uniformly in a neighbourhood of x∗, i.e., there exists
L∗ > 0, δ1 > 0, and δ2 > 0 such that, for all x ∈ Bδ1(x∗) and all
ξ ∈ Bδ2(0x), it holds that

‖Hess f̂x(ξ)−Hess f̂x(0x)‖x ≤ L∗‖ξ‖x

Theorem
Suppose that f is twice continuously differentiable and that the iterates
generated by the RBFGS algorithm converge to a nondegenerate
minimizer x∗ ∈ M at which Assumption 2 holds. Suppose also that∑∞

k=1 ‖xk − x∗‖ <∞ holds. Then xk converges to x∗ at a superlinear
rate.
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BFGS on manifolds

On the Unit Sphere R
n

Riemannian metric: g(ξ, η) = ξTη
The tangent space at x is:

TxS
n−1 = {ξ ∈ R

n : xT ξ = 0} = {ξ ∈ R
n : xT ξ + ξT x = 0}

Orthogonal projection to tangent space:

Pxξx = ξ − xxT ξx

Retraction:

Rx(ηx) = (x + ηx)/‖(x + ηx)‖, where ‖ · ‖ denotes 〈·, ·〉1/2
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BFGS on manifolds

Transport on the Unit Sphere R
n

Parallel Transport of ξ ∈ TxS
n−1 along the geodesic from x in direction

η ∈ TxS
n−1:

Pt←0
γη ξ =

(
In + (cos(‖η‖t)− 1)

ηηT

‖η‖2 − sin(‖η‖t)xη
T

‖η‖
)
ξ;

Vector Transport by orthogonal projection:

Tηx ξx =

(
I − (x + ηx)(x + ηx)

T

‖x + ηx‖2
)
ξx

Inverse Vector Transport:

(Tηx )−1(ξRx (ηx )) =

(
I − (x + ηx)x

T

xT (x + ηx)

)
ξRx (ηx )
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On the Unit Sphere

Let T
(n)
ηk be the representation of Tηk

T
(n)
ηk =

(
I − (x+η)(x+η)T

‖x+η‖2

)

Approach 1: Realize Bk by an n-by-n matrix

1) B̃
(n)
k = T

(n)
ηk B

(n)
k ((Tηk )

(n))−1;

2) B
(n)
k+1 = B̃n

k −
B̃

(n)
k

sk s
T
k
B̃n
k

〈sk ,B̃
(n)
k

sk 〉
+

yky
T
k

〈yk ,sk 〉
,

Approach 2: Use bases

1) Calculate B̃d
k though B

(d)
k :

B̃d
k = E+

k+1B̃
(n)
k E k+1;

= E+
k+1T

(n)
ηk B

(n)
k (T

(n)
ηk )−1E k+1

= E+
k+1T

(n)
ηk E kB

(d)
k E+

k (T
(n)
ηk )−1E k+1

2) B
(d)
k+1 = B̃

(d)
k − B̃

(d)
k

s
(d)
k

(s
(d)
k

)T B̃
(d)
k

〈s
(d)
k

,B̃
(d)
k

s
(d)
k
〉

+
y
(d)
k

(y
(d)
k

)T

〈y
(d)
k

,s
(d)
k
〉
,
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BFGS on manifolds

Rayleigh quotient minimization on Sn−1

Cost function on Sn−1

f : Sn−1 → R : x 7→ xTAx ,A = AT

Cost function embedded in R
n

f̄ : Rn → R : x 7→ xTAx , so that f = f̄
∣∣∣
Sn−1

TxS
n−1 = {ξ ∈ R

n : xT ξ = 0}, Rx(ξ) =
x + ξ

‖x + ξ‖
Df̄ (x)[ζ] = 2ζTAx → grad f (x) = 2Ax

Projection onto TxR
n : Pxξ = ξ − xxT ξ

Gradient: grad f (x) = 2Px(Ax)
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BFGS on manifolds

Methods Numerical Experiment

1. Vector transport (approach 1), update H = B−1, η = −Hgrad f (x)

2. Vector transport (approach 2), update H = B−1, η = −Hgrad f (x)

3. Parallel transport, update H = B−1, η = −Hgrad f (x)

4. Vector transport (approach 1), Update L, solve
L+L

T
+η = −grad f (x) (QR factorization)

5. Riemannian Line Search Newton-CG

6. Riemannian Trust Region with Truncated-CG
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Numerical Result for Rayleigh Quotient on Sn−1

◮ Problem sizes n = 100 and n = 300 with many different initial
points.

◮ All versions of RBFGS converge superlinearly to local minimizer.

◮ Updating L and B−1 combined with Vector transport display similar
convergence rates.

◮ Vector transport Approach 1 and Approach 2 display the same
convergence rate, but Approach 2 takes more time due to
complexity of each step.

◮ The updated B−1 of Approach 2 and Parallel transport has better
conditioning, i.e. more positive definite.

◮ Vector transport versions converge faster than Parallel transport. On
Sn−1, they have similar computational cost.

◮ Newton−CG version converges slightly more quickly than the Vector
transport versions.
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Rayleigh quotient on Sn−1

Vector transport has better convergence rate than Parallel transport
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Rayleigh quotient on Sn−1

Table: Comparison of Vector transport vs. Parallel translation for Rayleigh
quotient Problem

Case Vector trans. Vector trans. Parallel trans. Parallel trans.

( n=100) (n=300) (n=100) (n=300)

Time 0.22 4.06 0.46 5.49
Iteration 71 97 84 95

Table: Vector transport approach1 vs. approach2 for Rayleigh quotient problem

Case approach 1 approach 1 approach 2 approach 2

( n=100) (n=300) (n=100) (n=300)

Time 0.22 4.06 2.2 33.6
Iteration 71 97 71 97
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Other vector transports on Sn−1

◮ NI: nonisometric vector transport by orthogonal projection onto the
new tangent space (see above)

◮ CB: a vector transport relying on the canonical bases between the
current and next subspaces

◮ CBE: a mathematically equivalent but computationally efficient form
of CB

◮ QR: the basis in the new suspace is obtained by orthogonal
projection of the previous basis followed by Gram-Schmidt.

Rayleigh quotient, n = 300

NI CB CBE QR

Time (sec.) 4.0 20 4.7 15.8
Iteration 97 92 92 97
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On the Manifold Sn−1 × · · · × Sn−1

X = [x1, x2, · · · , xN ] ∈ Sn−1 × · · · × Sn−1

xTi xi = 1, for i = 1 to N

Riemannian metric:

≪ Z ,W ≫X= 〈z1,w1〉x1 + · · ·+ 〈zN ,wN〉xN = tr(ZTW ),Z ,W ∈ TXM
Tangent space at x :

TxM = {Z = [z1, · · · , zN ] ∈ R
n×N

∣∣∣∣x
T
1 z1 = xT2 z2 = · · · = xTN zN = 0}

Orthogonal projection to tangent space:

PXW = [(I − x1x
T
1 )w1, · · · , (I − xNx

T
N )wN ] projects W ∈ R

n×N to TxM
Retraction:

RX (Z ) =
[ x1 + z1
‖x1 + z1‖

, · · · , xN + zN
‖xN + zN‖

]
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Transport on Sn−1 × · · · × Sn−1

Parallel and vector transport (and their inverses) of

ξX = [ξ1, ξ2, · · · , ξN ] ∈ TxM

defined by directions

ηX = [η1, η2, · · · , ηN ] ∈ TxM

simply apply the corresponding transport mechanisms from Sn−1

componentwise.
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Thomson Problem on Sn−1 × · · · Sn−1

X = [x1, x2, · · · , xN ] ∈M, xTi xi = 1, for i = 1 to N

f : [x1, x2, · · · , xN ] 7−→
N∑

i ,j=1
i 6=j

1

‖xi − xj‖2

grad f (X ) =

[
(I − x1x

T
1 )

N∑

j=2

1

(1− xT1 xj)2
xj , · · · , (I − xNx

T
N )

N−1∑

j=1

1

(1− xTN xj)2
xj

]
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Methods Numerical Experiment

1. Vector transport (approach 1), update H = B−1, η = −Hgrad f (x)

2. Vector transport (approach 2), update H = B−1, η = −Hgrad f (x)

3. Parallel transport (approach 1), update H = B−1, η = −Hgrad f (x)

4. Vector transport (approach 1), Update L, solve
L+L

T
+η = −grad f (x) (QR factorization)

5. Riemannian Trust Region with Truncated-CG
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Numerical Result for Thomson Problem

◮ Problem sizes (n,N) = (30, 12) and (n,N) = (50, 20) with many
different initial points.

◮ All versions of RBFGS converge superlinearly to local minimizer.

◮ Updating L and B−1 combined with Vector transport display similar
convergence rates.

◮ Vector transport Approach 1 and Approach 2 display the same
convergence rate, but Approach 2 takes more time due to
complexity of each step.

◮ The updated B−1 of Approach 2 and Parallel transport has better
conditioning, i.e. more positive definite.

◮ Parallel transport converge slightly faster than Vector transport
versions .
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Update of B−1, Parallel and Vector Transport
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Update of B−1, Parallel and Vector Transport

Table: Vector transport (approach 1) vs. Parallel transport for Thomson problem

Case Vector trans. Vector trans. Parallel trans. Parallel trans.

( n=30, N=12) (n=50, N=20) (n=30, N=12) (n=50, N=20)

Time 3.9 60 3.4 47.6
Iteration 20 24 16 19

Table: Vector transport (approach 1) vs. Parallel transport (approach 1) for Thomson
problem

Case approach 1 approach 1 approach 2 approach 2

( n=30, N=12) (n=50, N=20) (n=30, N=12) (n=50, N=20)

Time 3.9 60 13 252
Iteration 20 24 20 24
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Update L and Update of B−1 for Thomson Problem
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Update of B−1 and Riemannian Trust Region Method

◮ Total inner iteration count of RTR is larger than iteration count of
R BFGS

◮ RTR inner iteration and RBFGS iteration similar complexity
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Update of B−1 and Riemannian Trust Region Method

Table: RBFGS (Vector transport, approach 1) vs. RTR for Rayleigh Quotient
problem

Case RBFGS RBFGS RTR RTR

( n=30,N=12) (n=50,N=20) (n=30,N=12) (n=50,N=20)

Iteration 20 24 30 36
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Compact Stiefel Manifold St(p, n)

View St(p, n) as a Riemannian submanifold of the Euclidean space R
n×p

Riemannian metric: g(ξ, η) = tr(ξTη)
The tangent space at X is:

TXSt(p, n) = {Z ∈ R
n×p : XTZ + ZTX = 0}.

Orthogonal projection to tangent space is :

PX ξX = (I − XXT )ξX + X skew(XT ξX )

Retraction:
RX (ηX ) = qf(X + ηX )

where qf(A) = Q ∈ R
n×p
∗ , where A = QR
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Parallel Transport On Stiefel Manifold

Let Y TY = Ip and A = Y TH is skew-symmetric. The geodesic from Y
in direction H:

γH(t) = YM(t) + QN(t),

Q and R : the compact QR decomposition of (I − YY T )H
M(t) and N(t) given by:

(
M(t)
N(t)

)
= exp

(
t

(
A −RT

R 0

))(
Ip
0

)

The parallel transport of H along the geodesic from Y in direction H:

Pt←0
γH

H = HM(t)− YRTN(t)
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Parallel Transport On Stiefel Manifold

The parallel transport of ξ 6= H along the geodesic,γ(t), from Y in
direction H:

w(t) = Pt←0
γ ξ

w ′(t) = −1

2
γ(t)(γ′(t)Tw(t) + w(t)Tγ′(t)),w(0) = ξ

In practice, the ODE is solved discretely.
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Vector Transport on St(p, n) Approach 1

TηX ξX = (I − YY T )ξX + Y skew(Y T ξX ), where Y := RX (ηX )

(TηX )−1ξY = ξY + YS , where Y := RX (ηX )

S is symmetric matrix such that XT (ξY + YS) is skew-symmetric.
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Vector Transport on St(p, n) Approach2

◮ Find d independent tangent vectors Ek,1,Ek,2, · · ·Ek,d ∈ TXk
;

◮ Vector transport each Eki , i = 1, 2, · · · d to TXk+1
,

E k+1 = [T
(np)
ηk Ek,1 T

(np)
ηk Ek,2 · · · T

(np)
ηk Ek,d

]

◮ Calculate B̃
(np)
k = T

(np)
ηk B

(np)
k (T

(np)
ηk )−1:

B̃
(np)
k E k+1 =

[

T (np)
ηk

(B
(np)
k Ek,1) T (np)

ηk
(B

(np)
k Ek,2) · · · T (np)

ηk
(B

(np)
k Ek,d)

]

,

B̃
(np)
k =

[

T (np)
ηk

(B
(np)
k Ek,1) T (np)

ηk
(B

(np)
k Ek,2) · · · T (np)

ηk
(B

(np)
k Ek,d)

]

E+
k+1.

◮ Compute the RBFGS update

B
(np)
k+1 = B̃

(np)
k −

B̃
(np)
k s

(np)
k s

(np)
k

T
B̃

(np)
k

〈s
(np)
k , B̃

(np)
k s

(np)
k 〉

+
y
(np)
k y

(np)
k

T

〈y
(np)
k , s

(np)
k 〉

, and set

ηk+1 = unvec
{

(−B
(np)
k+1 )

−1vec{grad f (Xk)}
}

.
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A Procrustes Problem on St(p, n)

Cost function on St(p, n)

f : St(p, n)→ R : X → ‖AX − XB‖F
where A: n × n matix, B : p × p matix, XTX = Ip
Cost function embedded in R

n×p

f̄ : Rn×p → R : X → ‖AX − XB‖F , with f = f̄
∣∣
St(p,n)

TXSt(p, n) = {Z ∈ R
n×p : XTZ + ZTX = 0}

Df̄ (X )[Z ] =
tr(ZTQ)

f̄ (X )
, where Q = ATAX − ATXB − BTAX + BTXB ,

Projection onto TxR
n :

PXZ = (I − XXT )Z + X skew(XTZ )

Gradient: grad f (X ) = Pxgrad f̄ (x)
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Methods Numerical Experiment

1. Vector transport (approach 1), update H = B−1, η = −Hgrad f (x)

2. Vector transport (approach 2), update H = B−1, η = −Hgrad f (x)

3. Parallel transport, update H = B−1, η = −Hgrad f (x)

4. Vector transport (approach 1), Update L, solve
L+L

T
+η = −grad f (x) (QR factorization)

5. Riemannian Line Search Newton-CG

6. Riemannian Trust Region with Truncated-CG
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Numerical Result for Procrustes on St(p, n)

◮ Problem sizes (n, p) = (7, 4) and (n, p) = (12, 7) with many
different initial points.

◮ All versions of RBFGS converge superlinearly to local minimizer.

◮ Updating L and B−1 combined with Vector transport display B−1 is
slightly faster converging.

◮ Vector transport Approach 1 and Approach 2 display the same
convergence rate, but Approach 2 takes more time due to
complexity of each step.

◮ The updated B−1 of Approach 2 and Parallel transport has better
conditioning, i.e. more positive definite.

◮ Vector transport versions converge noticably faster than Parallel
transport. This depends on numerical evaluation of ODE for Parallel
transport.

◮ Newton−CG version has convergence problems compared to the
Vector transport RBFGS versions.
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Procrustes Problem on St(p, n)

Vector transport has better convergence rate than Parallel transport
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Procrustes Problem on St(p, n)

Table: B−1 update w/ Vector transport (approach 1) vs. Parallel transport

Case Vector trans. Vector trans. Parallel trans. Parallel trans.

( n=7, p=4) (n=12, p=7) (n=7, p=4) (n=12, p=7)

Time 4.1 45 81 781
Iteration 46 82 67 174

Table: Vector transport approach1 vs. approach2 for Procrustes problem

Case approach 1 approach 1 approach 2 approach 2

( n=7, p=4) (n=12, p=7) (n=7, p=4) (n=12, p=7)

Time 4.1 46 7.5 95
Iteration 46 82 48 86
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Update of L and Update of B−1

◮ Both O(n2) operations per step and use Vector transport with
Approach 1.

◮ Similar convergence behavior
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Update L, n=7,p=4
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Update of B−1 and Riemannian Line Search Newton−CG

◮ The Convergence of RBFGS is superlinear, while Newton−CG is
linear since no forcing function used in CG convergence check.
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RBFGS, n=7, p=4
Riemannian Newton

C
G, n=7, p=4
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Update of B−1 and Riemannian Trust Region Method

◮ Total inner iteration count of RTR is larger than iteration count of
RBFGS

◮ RTR inner iteration and RBFGS iteration similar complexity
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Comparision of RBFGS with Riemannian Trust Region Method

Table: RBFGS (Vector transport, approach 1) vs. RTR for Procrustes problem

Case RBFGS RBFGS RTR RTR

( n=7, p=4) (n=12, p=7) (n=7, p=4) (n=12, p=7)

Iteration 47 86 115 357
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A (questionable) historical overview

In R
n On Riemannian manifolds

using classical ob-
jects

using novel objects

Steepest descent 1966 (Armijo
backtracking)

1972 (Luenberger) 1986–2008 ?

Newton 1740 (Simpson) 1993 (Smith) 2002 (Adler et al.)
Conjugate Grad 1964 (Fletcher–

Reeves)
1993 (Smith) 2008 (PAA, Ma-

hony, Sepulchre) ?
Trust regions 1985 (name cre-

ated by Celis, Den-
nis, Tapia)

2007 (PAA, Baker,
Gallivan)

2007 (PAA, Baker,
Gallivan)

BFGS 1970 (B-F-G-S) 1982 (Gabay)
Now!
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News flashes

Manopt — a Matlab toolbox for optimization on manifolds
Latest commit: 19th Jun 2019

Context:

◮ When it was first released on 3rd Jan 2013, Manopt was arguably
the first toolbox based on a separation of the manifolds, the solvers,
and the problem description.

◮ Developed by Nicolas Boumal (Princeton University) and Bamdev
Mishra (Amazon Development Centre India).

◮ Originated at the Universities of Louvain and Liège.

◮ See https://www.manopt.org for download, tutorial, forum...

◮ See http://jmlr.org/papers/v15/boumal14a.html for a paper
presenting the toolbox.
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News flashes

Manopt — a Matlab toolbox for optimization on manifolds
Latest commit: 19th Jun 2019

Context:

◮ When it was first released on 3rd Jan 2013, Manopt was arguably
the first toolbox based on a separation of the manifolds, the solvers,
and the problem description.

◮ Developed by Nicolas Boumal (Princeton University) and Bamdev
Mishra (Amazon Development Centre India).

◮ Originated at the Universities of Louvain and Liège.

◮ See https://www.manopt.org for download, tutorial, forum...

◮ See http://jmlr.org/papers/v15/boumal14a.html for a paper
presenting the toolbox.

Ongoing and future work:

◮ Implement solvers for nonsmooth cost functions.

◮ Implement stochastic gradient methods on manifolds.

◮ Implement automatic differentiation features.

◮ ...
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News flashes

Pymanopt — a Python toolbox for optimization on manifolds
Latest commit: 3rd May 2019

◮ Pymanopt is a Python toolbox for optimization on manifolds with
support for automatic differentiation

◮ Developers: Jamie Townsend, Niklas Koep, Sebastian Weichwald

◮ Announced on 25th Nov 2015

◮ Paper: 17(137):1–5, 2016,
http://jmlr.org/papers/v17/16-177.html
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News flashes

ROPTLIB — C++ Riemannian Manifold Optimization Library
Latest commit: 25th Mar 2019

◮ ROPTLIB is a C++ object-oriented library for optimization on
Riemannian manifolds

◮ Developer: Wen Huang (Rice University)

◮ First version: 20th Feb 2015

◮ Interface with Matlab and Julia

◮ Paper:
http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm
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News flashes

ROPTLIB — C++ Riemannian Manifold Optimization Library
Latest commit: 25th Mar 2019

◮ ROPTLIB is a C++ object-oriented library for optimization on
Riemannian manifolds

◮ Developer: Wen Huang (Rice University)

◮ First version: 20th Feb 2015

◮ Interface with Matlab and Julia

◮ Paper:
http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm

As an illustration, next comes an experiment where the (Karcher) mean
(in the sense of the affine-invariant metric) of three 3× 3
positive-definite matrices is computed. Figure made by Xinru Yuan
(Florida State University).
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News flashes

ROPTLIB — C++ Riemannian Manifold Optimization Library I
Latest commit: 25th Mar 2019
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News flashes

ROPTLIB — C++ Riemannian Manifold Optimization Library II
Latest commit: 25th Mar 2019
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News flashes

“Composite” optimization on Stiefel and Grassmann
[GLCY18] - eprint available on 30th Sep 2016

◮ A well-known “smooth–nonsmooth” composite optimization
problem:

min
x∈Rn

ϕ(x) ≡ f (x) + g(x),

where f is a smooth (possibly nonconvex) function, while g is a
proper, closed, convex (possibly nonsmooth) function with cheaply
computable proximal mapping; see, e.g., [STP16].
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News flashes

“Composite” optimization on Stiefel and Grassmann
[GLCY18] - eprint available on 30th Sep 2016

◮ A well-known “smooth–nonsmooth” composite optimization
problem:

min
x∈Rn

ϕ(x) ≡ f (x) + g(x),

where f is a smooth (possibly nonconvex) function, while g is a
proper, closed, convex (possibly nonsmooth) function with cheaply
computable proximal mapping; see, e.g., [STP16].

◮ A new type of “Grassmann–Stiefel” composite optimization problem:

min
X∈Rn×p

XTX=Ip

ϕ(X ) ≡ h(X ) + trace(GTX ),

where G ∈ R
n×p and h is orthogonally invariant, i.e., h(XQ) = h(X )

for all orthogonal matrix Q; see [GLCY18].

288



News flashes

“Composite” optimization on Stiefel and Grassmann
[GLCY18] - eprint available on 30th Sep 2016

◮ A well-known “smooth–nonsmooth” composite optimization
problem:

min
x∈Rn

ϕ(x) ≡ f (x) + g(x),

where f is a smooth (possibly nonconvex) function, while g is a
proper, closed, convex (possibly nonsmooth) function with cheaply
computable proximal mapping; see, e.g., [STP16].

◮ A new type of “Grassmann–Stiefel” composite optimization problem:

min
X∈Rn×p

XTX=Ip

ϕ(X ) ≡ h(X ) + trace(GTX ),

where G ∈ R
n×p and h is orthogonally invariant, i.e., h(XQ) = h(X )

for all orthogonal matrix Q; see [GLCY18].
◮ In other words, trace(GTX ) is an easy function on the Stiefel

manifold and h is a (general) function on the (smaller) Grassmann
manifold.
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News flashes

Global rates of convergence for nonconvex optimization on manifolds
[BAC16] - eprint available on 25th May 2016

◮ Standard results on the rate of convergence are local. For example,
Newton’s method converges quadratically,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2,

in a neighborhood of a nondegenerate local minimizer x∗.
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Global rates of convergence for nonconvex optimization on manifolds
[BAC16] - eprint available on 25th May 2016

◮ Standard results on the rate of convergence are local. For example,
Newton’s method converges quadratically,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2,

in a neighborhood of a nondegenerate local minimizer x∗.

◮ Global results are known in R
n. For example, for a Lipschitz

differentiable objective function, an upper bound in O(1/ε2) is
known on the number of iterations needed by a gradient descent
method to compute a point x where ‖grad f (x)‖ ≤ ε.
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Global rates of convergence for nonconvex optimization on manifolds
[BAC16] - eprint available on 25th May 2016

◮ Standard results on the rate of convergence are local. For example,
Newton’s method converges quadratically,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2,

in a neighborhood of a nondegenerate local minimizer x∗.

◮ Global results are known in R
n. For example, for a Lipschitz

differentiable objective function, an upper bound in O(1/ε2) is
known on the number of iterations needed by a gradient descent
method to compute a point x where ‖grad f (x)‖ ≤ ε.

◮ A similar result is presented in [BAC16] for steepest-descent on
manifolds.
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Global rates of convergence for nonconvex optimization on manifolds
[BAC16] - eprint available on 25th May 2016

◮ Standard results on the rate of convergence are local. For example,
Newton’s method converges quadratically,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2,

in a neighborhood of a nondegenerate local minimizer x∗.

◮ Global results are known in R
n. For example, for a Lipschitz

differentiable objective function, an upper bound in O(1/ε2) is
known on the number of iterations needed by a gradient descent
method to compute a point x where ‖grad f (x)‖ ≤ ε.

◮ A similar result is presented in [BAC16] for steepest-descent on
manifolds.

◮ See also [ZS16] that treats geodesically convex problems on
Hadamard manifolds.
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News flashes

Barzilai–Borwein step size on manifolds
[IP18] - eprint available on 23rd Dec 2015

◮ On a manifold, the restriction of f to a curve γ is a classical
function f ◦ γ : R→ R.

γ

R

f

x+

grad f (x)
x

M

R
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Barzilai–Borwein step size on manifolds
[IP18] - eprint available on 23rd Dec 2015

◮ On a manifold, the restriction of f to a curve γ is a classical
function f ◦ γ : R→ R.

γ

R

f

x+

grad f (x)
x

M

R

◮ In R
n, the BB stepsize is αBB

k+1 =
sT
k
sk

sT
k
yk

where sk := xk+1 − xk and

yk := ∇f (xk+1)−∇f (xk).
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Barzilai–Borwein step size on manifolds
[IP18] - eprint available on 23rd Dec 2015

◮ On a manifold, the restriction of f to a curve γ is a classical
function f ◦ γ : R→ R.

γ

R

f

x+

grad f (x)
x

M

R

◮ In R
n, the BB stepsize is αBB

k+1 =
sT
k
sk

sT
k
yk

where sk := xk+1 − xk and

yk := ∇f (xk+1)−∇f (xk).
◮ How to generalize BB to manifolds?
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Barzilai–Borwein step size on manifolds
[IP18] - eprint available on 23rd Dec 2015

◮ On a manifold, the restriction of f to a curve γ is a classical
function f ◦ γ : R→ R.

γ

R

f

x+

grad f (x)
x

M

R

◮ In R
n, the BB stepsize is αBB

k+1 =
sT
k
sk

sT
k
yk

where sk := xk+1 − xk and

yk := ∇f (xk+1)−∇f (xk).
◮ How to generalize BB to manifolds?

◮ See [IP15]. It often gives excellent results in practice.
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Isometric vector transport on the Stiefel manifold
[Zhu16] - eprint available on 4th Sep 2016

◮ In many optimization methods, one need to move tangent vectors.
◮ In the important BFGS method on manifolds, the motion (called

vector transport) needs to be isometric.

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Isometric vector transport on the Stiefel manifold
[Zhu16] - eprint available on 4th Sep 2016

◮ In many optimization methods, one need to move tangent vectors.
◮ In the important BFGS method on manifolds, the motion (called

vector transport) needs to be isometric.

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

◮ Zhu [Zhu16, §3.3] has proposed an isometric vector transport on the
Stiefel manifold with an elegant compact formula:

TηX ξX = (I − 1

2
WηX )

−1(I +
1

2
WηX )ξX ,

where WηX := PXηXX
T − XηTXPX and PX = I − 1

2XX
T .

299



News flashes

An optimization-oriented introduction to optimization on manifolds
[HLWY19] - eprint available on 13th Jun 2019

Applications mentioned in:

◮ P-harmonic flow (image analysis)

◮ Max cut

◮ Nearest low-rank correlation matrix

◮ Phase retrieval

◮ Bose-Einstein condensates

◮ Cryo-EM

◮ Linear and nonlinear eigenvalue problems

◮ Batch normalization in deep learning

◮ Sparse PCA

◮ Low-rank matrix completion

◮ ...
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Data fitting on manifolds
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Data fitting on manifolds

Collaborations
◮ Nonparametric curve fitting on manifolds:

◮ Chafik Samir, PAA, Anuj Srivastava, Eric Klassen, A gradient-descent
method for curve fitting on Riemannian manifolds, Foundations of
Computational Mathematics, 12(1), pp. 49-73, 2012.

◮ Nicolas Boumal, PAA, Discrete regression methods on the cone of
positive-definite matrices, ICASSP 2011.

◮ Nicolas Boumal, PAA, A discrete regression method on manifolds and its
application to data on SO(n), IFAC World Congress 2011.

◮ Parametric curve fitting on manifolds:
◮ C. Samir, P. Van Dooren, D. Laurent, K. A. Gallivan, PAA, Elastic

morphing of 2D and 3D objects on a shape manifold, Lecture Notes in
Computer Science, Volume 5627/2009, pp. 563-572, 2009.

◮ Antoine Arnould, Pierre-Yves Gousenbourger, Chafik Samir, PAA, Fitting
Smooth Paths on Riemannian manifolds: Endometrial Surface
Reconstruction and Preoperative MRI-Based Navigation, GSI’15.

◮ PAA, Pierre-Yves Gousenbourger, Paul Striewski, Benedikt Wirth,
Differentiable piecewise-Bézier surfaces on Riemannian manifolds, SIAM
Journal on Imaging Sciences, 2016

◮ Pierre-Yves Gousenbourger, Estelle M. Massart, Antoni Musolas, P.-A.
Absil, Julien M. Hendrickx, Laurent Jacques, Youssef Marzouk,
Piecewise-Bézier C 1 smoothing on manifolds with application to wind field
estimation, submitted, 2016.

◮
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Data fitting on manifolds

Curve fitting on manifolds

M
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Data fitting on manifolds

Curve fitting on manifolds: Medical application
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Data fitting on manifolds

Curve fitting on manifolds: Application to morphing

Shape manifold
M

p0

p1

p2

γ(t2)γ(t1)

γ(t0)
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Data fitting on manifolds

Curve fitting on manifolds: Application to morphing

t = a t = b

z
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Data fitting on manifolds

Curve fitting on manifolds: Application to morphing

t = a t = b

z

t
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Data fitting on manifolds

Curve fitting on manifolds: Wind field estimation

building

(θi ,Ai )

Ci ∈ S+(r , n)



Data fitting on manifolds

Curve fitting on manifolds: Wind field estimation

building

(θi ,Ai )

Ci ∈ S+(r , n)
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Data fitting on manifolds

Curve fitting on manifolds: optimization approach

Γ
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Data fitting on manifolds

Curve fitting on manifolds: optimization approach

Γ

R

E

M
p0

p1

p2

γ(t2)γ(t1)

γ(t0)

γ

Goal: find the curve γ : [0, 1] 7→ M that minimizes

E2 : Γ2 → R : E2(γ) =
1

2

N∑

i=0

d2(γ(ti ), pi ) +
λ

2

∫ 1

0
〈D

2γ

dt2
,
D2γ

dt2
〉 dt,

where Γ2 is the Sobolev space H2([0, 1],M).
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Data fitting on manifolds

Illustrations on the sphere

Objective: E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.

λ = 10−4 λ = 10−3 λ = 100
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Data fitting on manifolds

Gradient-descent on set of curves: iterates

Figure: Iterates γk of gradient-descent for E2 whereM = sphere.

Objective:

E2 : Γ2 → R : E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.
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Data fitting on manifolds

C1-piecewise Bézier smoothing (in R
n)
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Data fitting on manifolds

C1-piecewise Bézier smoothing (in shape space)

VIDEO
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Manifolds in power system management

Manifolds in power

system management
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Manifolds in power system management

Economic Load Dispatch Problem

p1 [MW]

f1(p1) [EUR/h] f2(p2) [EUR/h] f3(p3) [EUR/h]

p2 [MW] p3 [MW]

Demand pD

Power balance: p1 + p2 + p3 = pD + pL(p)
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Manifolds in power system management

Economic Load Dispatch Problem: mathematical model

◮ Cost function:

fT(p) =
n∑

i=1

fi (pi ), p = [p1, p2, . . . , pn]
⊤

=

n∑

i=1

aip
2
i + bipi + ci +

∣∣di sin
[
ei
(
pmin
i − pi

)]∣∣

◮ Generator capacity constraints:

pmin
i ≤ pi ≤ pmax

i , i = 1, . . . , n

◮ Real power balance constraint:

n∑

i=1

pi = pD + pL(p),

pL(p) =
n∑

i=1

n∑

j=1

piBijpj +
n∑

i=1

b0i pi + b00
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Manifolds in power system management

Our first approach
Exploit the geometry of the problem

Reference: Borckmans et al. [BSBA13].
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Manifolds in power system management

Our first approach
Exploit the geometry of the problem

Reference: Borckmans et al. [BSBA13].
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Manifolds in power system management

New approach
Mixed Integer Programming formulation with guaranteed optimality

◮ Using a MIQP solver, compute the global optimum of a quadratic +
piecewise-linear under-approximation of the true quadratic +
piecewise-concave cost function.

◮ Refine the under-approximation by adding a new break point at the
computed global optimum, and repeat.

0

300
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Manifolds in power system management

New approach
Mixed Integer Programming formulation with guaranteed optimality

min
p,k,t,χ,η

∑

i


aip2i + bipi + ci +

mi∑

j=1

(αijχij + βijηij)




s.t.
∑

i

pi = D

pmin
i ≤ pi ≤ pmax

i

Xi ,jηi ,j ≤ χi ,j ≤ Xi ,j+1ηi ,j

pi =

mi∑

j=1

χi ,j ,

mi∑

j=1

ηi ,j = 1

χi ,j ∈ R
+, ηi ,j ∈ {0, 1}

pi ∈ R
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Manifolds in power system management

New approach
Mixed Integer Programming formulation with guaranteed optimality
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Outcomes:

◮ Master’s thesis of Michaël Azzam (2013-2014).

◮ Master 1 project of Benôıt Sluysmans and Nicolas Stevens (2015).

◮ Paper showing global convergence for any quadratic +
piecewise-concave cost function.

◮ Code publicly available.
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Conclusion

Conclusion: A Three-Step Approach

◮ Formulation of the computational problem as a geometric
optimization problem.
◮ Smooth constrained set.
◮ Invariances.

◮ Generalization of optimization algorithms on abstract manifolds.

◮ Exploit flexibility and additional structure to build numerically
efficient algorithms.
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Conclusion

A 2nd edition?

To be added:

◮ Trust-region method without Hessian:
Huang et al. [HAG14], Boumal [Bou15].

◮ Convergence analysis of Riemannian CG:
Sato [Sat16].

◮ Constructing retractions: Absil &
Malick [AM12].

◮ Constructing vector transports:
Zhu [Zhu16], Huang et al [HAG17].

◮ Low-rank manifold: see work by Bamdev
Mishra, Bart Vandereycken...
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THE END

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, R. Sepulchre
Princeton University Press, January 2008

1. Introduction
2. Motivation and applications
3. Matrix manifolds: first-order geometry
4. Line-search algorithms
5. Matrix manifolds: second-order geometry
6. Newton’s method
7. Trust-region methods
8. A constellation of superlinear algorithms
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