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Abstract— New breakthroughs have emerged in the 

framework of geometric Multivariate Statistical Data Processing, 

with many applications in Radar. We will introduce some of 

these basic tools from Geometric Science of Information, and 

more especially Radar applications based on Information 

Geometry and Fisher metric for Pulse Compression, CFAR, 

Anti-Jamming, STAP, NCTR and Tracking . We will also 

introduce new extensions based on Jean-Marie Souriau and 

Jean-Louis Koszul works, respectively on Geometric Statistical 

Physics and on Hessian Geometry. This paper will give references 

of THALES work for more than 10 years, with some parts 

funded by French MoD DGA/MRIS by PhDs.   
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I.  INTRODUCTION  

This paper is motivated by the new development of 
innovative tools based on differential geometry and Lie Group 
theory for Statistical Radar Processing. These new tools are not 
familiar for the Radar experts’ community who classically used 
methods from linear algebra. The main objectives of this paper 
are to introduce basic references related to principles of 
“Information Geometry” and their uses for radar applications 
(with different Use-Cases): robust Doppler CFAR processing 
coupling Ordered statistic and high-resolution Doppler 
Spectrum (based on geometry of Toeplitz Hermitian Positive 
Definite Matrices), robust Parametrized STAP processing 
(based on geometry of Toeplitz-Block-Toeplitz Hermitian 
Positive Definite Matrices), Anti-Jamming based on Geometric 
Mean/Median Covariance matrix, Phase Denoising with 
anisotropic Diffusion and Median filter, Clutter 
segmentation/mapping in Metric space and tracking for fast 
manoeuvers detections. References to extension for non-
stationary signal will be given where detection or NCTR 
problems are modeled as distance definition between paths on 
manifold. Main outcomes of this paper are better 
understandings of differential geometric tools available for 
Radar Signal Processing.  

    Since mid of last century, Radar Signal Processing 
problems have been formalized with linear functions on vector 
spaces and solved with classical Linear Algebra, and have used 

only a small part of tools that have been developed in 
mathematics. On the contrary in Physics, progresses have been 
accomplished by intensive adaptation of modern geometric 
theories. Differential manifolds could be naturally introduced 
in Radar Signal Processing by considering Information 
Geometry theory based on seminal paper of Rao and Fréchet, 
where the Fisher Matrix defines a metric in parameters space of 
density of probabilities. This Fisher differential metric defines 
a natural “information” manifold for raw radar data. These 
geometric tools lead to greater insight and better Radar signal 
algorithms performances due to their “intrinsic” properties to 
solve complex problems, where classically Linear Algebra uses 
ad-hoc projections approaches. The paper will give references 
to theses new geometries in the framework of Radar Signal 
Processing: Information Geometry for Radar statistical laws, 
Metric space and Cartan-Siegel Homogeneous Bounded 
domains Geometry for structured Radar covariance matrices 
and general framework of Koszul Hessian Geometry for 
Maximum Entropy estimation. Associate tools for these 
geometries will be given in references like Siegel metric for 
Hermitian Positive Definite matrices, Partial Iwasawa 
Decomposition for Toeplitz HPD matrices, Mostow/Berger 
fibration for Toeplitz-Block-Toeplitz Matrices, Karcher flow 
on manifold, p-mean barycenters on Fréchet metric spaces.  

   We will give generalized definition of Fisher Metric by 
Koszul’s hessian definition proposed in pure geometry and 
Souriau’s covariant definition proposed in Geometric 
Mechanics and Lie Group Thermodynamics (with notions of 
Geometric Temperature/Capacity and Euler-Poincaré-Souriau 
Equation). A general definition of Maximum Entropy Solution 
for Density of probabilities is linked for general case and for 
Hermitian Positive Definite Covariance matrices. 

II. GEOMETRIC SCIENCE OF INFORMATION 

A. Seminal work of  Fréchet and Koszul 

Based on his IHP Lecture of Winter 1939, Maurice Fréchet 
wrote a seminal paper introducing what was then called the 
Cramer-Rao bound. This paper contains in fact much more that 
this important discovery. In particular, Maurice Fréchet 
introduced "distinguished functions", densities with estimator 
reaching this Cramer-Rao-Fréchet bound. He has discovered 
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that this density depends of a function that should be solution 
of Clairaut’s equation. The solutions “envelope of the 
Clairaut’s equation” are equivalent to standard Legendre 
transform. This Fréchet-Clairaut equation can be revisited on 
the basis of Jean-Louis Koszul works as seminal foundation of 
“Information Geometry”. We have shown that Fréchet 
discovery and Information Geometry are founded on Koszul-
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We can observe the fundamental property that 
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Maurice Fréchet  that “distinguished functions” (densities with 

estimator reaching the Fréchet-Darmois bound) are solutions 

of the Alexis Clairaut Equation introduced by Clairaut in 

1734: 
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with Crouzeix relation established in 1977, 
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function are dual potential functions. 

B. General definition of Fisher Metric by J.M. Souriau 

   To recover the covariance of Gibbs equilibrium, Souriau has 

generalized this Fisher metric for Statistical Physics on 

Symplectic manifold, and interpreted the Fisher Metric as a 

Geometric Heat Capacity. Souriau has defined Gibbs 

canonical ensemble on Symplectic manifold M for a Lie group 

action on M. In classical statistical mechanics, a state is given 

by the solution of Liouville equation on the phase space, the 

partition function. As Symplectic manifolds have a completely 

continuous measure, invariant by diffeomorphisms,  the 

Liouville measure  all statistical states will be the product of 

Liouville measure by the scalar function given by the 

generalized partition function 
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K  is symmetric and positive (geometric heat 

capacity). Entropy s  is then defined by Legendre transform of 

 ,  Qs , . If this approach is applied for the group of 

time translation, this is the classical thermodynamic theory. 

But Souriau has observed that if we apply this theory for 

non-commutative group (dynamic groups in physics), the 

symmetry has been broken. Classical Gibbs equilibrium 

states are no longer invariant by this group. This symmetry 

breaking provides new equations, discovered by Souriau. 
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 These equations are universal, because they are not 

dependent of the symplectic manifold but only of the 

dynamical group G, the symplectic cocycle  , the 

temperature   and the heat Q . Souriau called this model “Lie 

Groups Thermodynamics”.  

     This metric introduced by Souriau in Statistical Physics is 

an extension of Fisher metric. As for classical Fisher Metric 
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We can observe that in the general definition of Souriau, the 

Fisher metric is then invariant with respect to the action of the 

group: 
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and the Entropy “s” is also invariant: 
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The model of Souriau and the Fisher-Souriau Metric is 

illustrated in these following figures: 

 

Fig. 1. Action of the group G on temperature  and heat Q.  

 
Fig. 2. Statistical Physic Model of Souriau and Fisher Metric.  

We have deduced from this Souriau Model, by reduction, the 

Euler-Poincaré equation describing geodesic: 
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Back to Koszul model, we can then deduce Euler-Poincaré 

equation: 
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We can then deduce an Euler-Poincaré-Souriau Variational 

Principle for Thermodynamics. The Poincaré Theorem in 

Souriau Lie Group Thermodynamics is then:  

The Euler-Poincaré-Souriau Variational Principle holds on g , 

for variations   ,  , where  )(t  is an arbitrary path 
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III. RADAR PROCESSING BASED ON GEOMETRIC SCIENCE 

A. Information Geometry for Ordered Statistics High 

Doppler Resolution CFAR 

We have defined a new CFAR using jointly robustness of 

OS (Ordered Statistics) and High Doppler Resolution 

(processing of covariance matrix). As there is no “total order” 

on covariance matrices, we use Fréchet idea of Metric Space 

to give a geometric definition of quantile and more especially 

of “median”. Median of matrices will be then defined as 

Geodesic L1-barycenter based on metric given by Information 

geometry. 

For Radar Processing, we will consider the parameterized 

density of probability  /.p  with the metric given by the 
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with 10  t  

   For the robust metric and distance requested to define 
geodesic median L1-barycenter, we propose to use Fisher 
metric. As the signal is assumed to be stationary in each burst 
of radar cells, we can apply the Trench theorem proving that 
THPD (Toeplitz Hermitian Positive Definite) Covariance 
matrix could be parameterized by Complex Auto-Regressive 
(CAR) model. All THPD matrices are diffeomorphic to (P0, 

1,…, n)R
+xD

n
 (P0  is a  real “scale” parameter, k are called 

reflection/Verblunsky coefficients of CAR model in D the 

complex unit Poincare disk, and are “shape” parameters). This 
Trench theorem is based on the Block Structure of THPD 
matrices given by: 
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This block structure also provides iteratively André-Louis 

Cholesky decomposition of 1
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 In the framework of Information Geometry, we can consider 
this covariance matrix as a parameter for a probability density 

of a multivariate random process of zero mean p(./). The 

fisher metric I() defines a Riemannian metric in the space of 
parameters:  
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For Exponential families, the Entropy is given by 
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We can then define a metric in dual space of )( E : 
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For Multivariate Gaussian Process of zero mean, Entropy is 

  ).log(detlog)( 1 eRRS nn   , developed by use of (23): 
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If we use the canonical vector of parameters:  

    T

n

T

n

n PEP 110110

)(

     (28)            

The dual metric of Information Geometry is finally given by: 
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The robust “Information Geometry” distance can be computed 
by integration in product space R

+xD
n
 : 
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The Lp-barycenter is computed by Karcher Flow to minimize: 
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This approach has been extended for the estimation of the 
scatter matrix of a scale mixture of Gaussian stationary 
autoregressive vectors, that is equivalent to the estimation of a 
structured scatter matrix of a Spherically Invariant Random 
Vector (SIRV) whose structure comes from an autoregressive 
modelization. We have proposed to adapt the approach by 
changing the energy functional minimized in the Burg 
algorithm. We minimize the new enrgy functional that depends 
on forward f and backward b prediction error: 
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The minimum of this empirical version of the energy is then : 
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As this estimator is not consistent, the bias is corrected: 
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We have then proved that it is useful to take into account the 
non-Gaussianity of the clutter for sub-exponential amplitude 
distributions, that considering medians instead of means in the 
Burg estimators furnishes a robustness for medium 
contamination (10% to 30% outlier samples), that 2-step 
procedures (consisting in a selection of secondary data) need a 
first estimation of the scatter matrix of the clutter that is robust 
enough in order to be efficient (in that case, high 
contamination close to 50% can be considered). We illustrate 
performances of this algorithm, called Poincaré Median-Burg, 
or 2-step Poincaré-Median if the algorithm is used with a 2 
step for data cells selection. Following figures illustrate 
robustness performances in case of abrupt Clutter Doppler 
variation, and in case of outliers in learning window. 

 

Fig. 3. Doppler/Range Spectrum in case of clutter discontinuity.  

 

Fig. 4. Probability of detection versus normalized frequency (10 

contaminating range cells with outliers at normalized frequency 0.3) 



B. Information Geometry for Ordered Statistics STAP 

We can extend previous approach for STAP by considering 

(Toeplitz-)Block-Toeplitz matrices. For this extension, 

Information metric will be introduced as previously as a 

Kähler potential defined by Hessian of multi-channel entropy 
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Paul Malliavin has proved that this form is a Kähler 

Potential of an invariant Kähler metric (Information Geometry 

metric in our case) that is given by matrix extension of 

previous metric (29) studied for CFAR: 
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 As we have defined a metric space, we can extend 

Karcher/Frechet flow in Unit Siegel Disk to compute the 

Median of N Toeplitz-Block-Toeplitz Hermitian Positive 

Definite matrices. These matrices are parameterized by Burg-

Like generalized Reflection matrices   n

k

k
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and Karcher/Frechet Flow in Siegel Disk will be solved by 

analogy of our scheme used in Poincaré unit Disk, by mean of 

Mostow Decomposition Theorem : every matrix M of  

),( CnGL  can be decomposed in SiAeUeM   where S  is 

symmetric:

   MMPPPPPPS     with log
2

1 2/12/12/1*2/12/1          (34) 

A  is antisymmetric  SS Pee
i

A  log
2

1
 and finally, 

iAS eMeU   is unitary. Median in Siegel disk could be then 

obtained by analogy with scheme developed for median in 

Poincaré’s disk. Numerical scheme of this algorithm has been 

recently studied by Raf Vandebril and Ben Jeuris. 

C. Information Geometry for NCTR by micro-Doppler  

Radar processing, as described previously, for non-stationary 
signal, corresponding to fast time variation of Doppler Spectrum 
in one burst, is no longer optimal. This phenomenon could be 
observed for high speed or abrupt Doppler variations of clutter or 
target signal but also in case of target migration during the burst 
duration due to the use of high range resolution mode. We 
propose new Radar Doppler processing assuming that each non-
stationary signal in one burst can be split into several short signals 
with less Doppler resolution but locally stationary, represented by 
time series of Toeplitz covariance matrices. In Information 
Geometry (IG) framework, these time series could be defined as a 
geodesic path (or geodesic polygon in discrete case) on 

covariance Toeplitz Hermitian Positive Definite matrix manifold. 
For this micro-Doppler analysis, we generalize the Fréchet 
distance between two curves in the plane to geodesic paths in 
abstract IG metric spaces of covariance matrix manifold. This 
approach could be used for robust detection of target in case of 
non-stationary Time-Doppler spectrum or for NCTR function 
based on micro-Doppler analysis and “Deep Learning”. 

We consider the Fréchet distance between two curves, that 
is defined as the minimum length of a leash required to connect 
a dog and its owner as they walk without backtracking along 
their respective curves from one endpoint to the other. The 
Fréchet metric takes the flow of the two curves into account; 
the pairs of points whose distance contributes to the Fréchet 
distance sweep continuously along their respective curves.  

 

Fig. 5. Fréchet Distance between two polygonal curves (  and   indexing 

all matching of points) 

Let P and Q be two given curves, the Fréchet distance 
between P and Q is defined as the infimum over all 
reparameterizations   and   of  1,0  of the maximum over 

all  1,0t  of the distance in between ))(( tP  and ))(( tQ  . In 

mathematical notation, the Fréchet distance  QPdFréchet ,  is:                     
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Classically, the free-space diagram is used to compute 
Fréchet distance between two curves for a given distance 
threshold ε is a two-dimensional region in the parameter space 
that consist of all point pairs on the two curves at distance at 
most ε: 

        ))(()),((/1,0,),(
2

tQtPdQPD Fréchet
  (36) 

The Fréchet distance  QPdFréchet ,  is at most ε if and only if 

the free-space diagram ),( QPD
contains a path which from the 

lower left corner to the upper right corner which is monotone 
both in the horizontal and in the vertical direction. Therefore, if 
there is a monotone increasing curve from the lower left to the 
upper right corner of the diagram (corresponding to a 
monotone mapping), it generates a monotonic path that defines 
a matching between point-sets P and Q. As we need a unique 
parametrisation for the Frechet distance, corresponding to 
unique matching between points, we will consider then the line 
with the smallest length. To compute this line from the Free 
Space Diagram we use ”Fast Marching” algorithm to solve the 
”eikonal equation” with the Free Space Diagram as background 

potential 



 dg ).(minarg*  with (.)

FdFIg   is the 

indicator function of the set B and 
FdF is the Free Space 



Diagram for the Frechet distance 
Fd . See Green Line in 

following Figure, solution of this shortest path problem. 

 

Fig. 6. Fréchet free-space diagram for 2 polygonal curves P and Q with 

monotonicity in both directions 

We have used a second approach based on shortest path 
declined from Fréchet distance, by considering: 
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   (37)               

We have replaced the ”Max” by ”Integral” along g in the 
Free Space Diagram, and consider the eikonal problem to find 
the shortest path in Free Space Diagram considering that the 
metric is weighted by distance  ))((),( 21 sgCsCd  between 

matched points )(1 sC  and ))((2 sgC . 

One drawback of the Fréchet distance is that it cannot be 
written as a product space; therefore we cannot compute the 
distance between curves as the distance between each curve 
component in Product space parameterization 
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It can be easily proved that: 
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Even if the distance does not separate the space as a 
product space, it is still useful to use this as an approximation 
because we will work only with curves in the Poincare disk (of 
reflection coefficients) to sum up the contributions. We will 
also neglect the reflectivity term P0 since we are only interested 
in the shape of the Doppler Spectrum. Before explaining 
Karcher Flow to compute Median Paths, we will introduce 
Karcher Flow to compute barycenter in metric space. Maurice 
Frechet introduced in a notion of barycentre of a set of points 

  Nixi ,1,   in a generic metric space E with distance d: 

medianfor   1 andmean  for   2with   

(x)minarg),(minarg
1










pp

fxxdm p
Ex

N

i

i

p

Ex
p                       (38)   

In particular, for a riemannian manifold of negative 
curvature (M; d) (the Poincare disk for reflection coefficients), 
with d the geodesic distance on M, the previous optimisation 

problem is strictely convex and differential if  *

0 ,rxBx  for 

a Mx 0
, where *r is the injectivity radius of M. This has been 

proved by Elie Cartan. The Karcher Flow is given by: 
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where 

  


nmexp : is ”exponential map” operator, that provides the 

point reached from point 
nm  by following geodesic path 

on the manifold M in the direction of the tangent vector 


 

at a geodesic distance equal to 


. 

 )(exp 1

im x
n

 : is the inverse operator, that provides tangent 

vector on M at point 
nm  of the geodesic between point 

nm  

and point 
ix .  

   Inspired by the Karcher flot algorithm for the 
mean/median of points on M , we introduce the Karcher flot for 

curves on M. Let C  be a curve on M and let  K

K

set CCC ,...,1  

be a set of curves on the same manifold. For every pair  iCC, , 

Optimal path in Free Space Diagram ,obtained by Fréchet 
distance or Eikonal distance computation, will provide pair of 

parameterization on each curve, and matching C

Ci
  between 

points of C  and 
iC . Then if C  is parametrised by its 

normalized arc length )(sC , the point )(sC  is matched with 

the point ))(( sC C

Ci i
  for  1,0s . We define the Karcher flot 

for the curves as follows: 

1. Select )0(C as an arbitrary curve on M 

2. Compute Optimal Path in Free Space Diagram of 

 in CC ,)(  for Fréchet or Eikonal distance  Optimal 

matching 
)( n

i

C

C and  in

Fréchet CCd ,)(  or 

 i
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Eikonal CCd ,)(  

3. Move each point of curve )()( sC n , according to 

Karcher Flow to compute barycenter of its matching 

point  KisC C
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and re-parameterized points of )1( nC  according to its 

normalized arclength. 

4. Iterate step 2 until   threshold

nn

Fréchet SCCd  )1()( ,  

Using short sliding window in one burst, we parameterized the 
non-stationary Radar signal as a time series of reflection 
coefficients represented as geodesic paths in Poincaré unit disk 
(deduced from Information Geometry metric). Fréchet distance 
and median barycenter of paths are used for target detection in 
case of non-stationarity of signal.  

 



 

Fig. 7. Example on Ground clutter of paths in Poincaré unit disk for the 4 

first reflection coefficients estimated on a sliding window in one burst 

 

Fig. 8. Median computation but with Eikonal distance for 3 curves (in blue). 

At each iteration, the evolution of the curve C (in red) driven by Karcher Flow 
and the Free Space Diagram corresponding to matching of C with C1/C2/C3 

D. CFAR and STAP based on Kernel Density Estimation, 

Riemannian Mean-Shift and Statistical Depth  

To improve CFAR and STAP performance in highly non-
stationary clutters, we propose new methods based on last 
progress in multivariate statistics and their extension in metric 
spaces. First, we introduce a kernel density estimation on the 

elements of the product  (P0, 1,…, n)R
+
xD

n
, to estimate 

density for Doppler Spectrum.  The specificity of the 
hyperbolic space enables to adapt the different density 

estimation methods at a reasonable cost.  Let   RRK : be 

a map which verifies the following properties: 
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Given a point 
nHp (the hyperbolic space of dimension n; 

H2=D), the exponential map 
pexp  defines a new injective 

parametrization of 
nH . The Lebesgue measure of the tangent 

space is noted 
pLeb . The function  RH np :  defined by: 
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is the density of the Riemannian measure with respect to the 

image of the Lebesgue measure of 
np HT  by 

pexp . Given K 

and a scaling parameter λ, the estimator of f proposed by 

Pelletier is defined by:  
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Given 
nref Hp  , k the empirical measure and “*” the 

natural convolution on homogeneous spaces, let: 
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One still needs to obtain an explicit expression of 
p . 

Given a reference point p, the point of polar coordinates (r, α) 
of the hyperbolic space 

nH  is defined as the point at distance r 

of p on the geodesic with initial direction 1 nS . Since 
nH  

is isotropic the expression the length element in polar 
coordinates depends only on r. Expressed in polar coordinates 

the hyperbolic metric expression is: 
1.)sinh( 22
 n

n SH grdrg                                     

The polar coordinates are a polar expression of the 
exponential map at p. In an adapted orthonormal basis of the 
tangent plane the metric takes the following form: 
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where G is the matrix of the metric and 
1nI  is the identity 

matrix of size n−1. The volume volume dvol  is given by: 
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where r = d(p, q). Finally, one obtains:
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Fig. 9. Estimation of density estimation by kernel methof in Poincaré Unit 

Disk for the first 3 reflection coefficient (atmospheric clutter) 



Based on this density estimation, we can apply 
segmentation in homogeneous clutter area by Riemannian 
Mean-Shift algorithm. The original mean shift algorithm is 
widely applied for nonparametric clustering of data in vector 
spaces. We generalize it to data points lying on Riemannian 
manifolds of reflection coefficients. This allows us to extend 
mean shift based clustering to Clutter data mapping for 
segmentation of area with homogeneous Doppler content. 
Mean shift is provided by following gradient equation where 
the   terms lie in the tangent space, and the kernel terms K are 
scalars. The mean shift vector is a weighted sum of tangent 
vectors, and is itself a tangent vector. The mean shift iteration 
is:   )(exp1 jyj ymy
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 with (.)'(.) Kg   : 

)(log
),(),(

)(
1

1

1

iy

n

i

i
n

i

i x
xyd

g
xyd

gym 



































         (44) 

After segmentation by Riemannian Mean-Shift, we have to 
optimize detection by adaptive threshold. For this task, we use 
“Statistical depth” functions that provide from the "deepest" 
point a "center-outward ordering" of multidimensional data. In 
this sense, depth functions can measure the "extremeness" or 
"outlyingness" of a data point with respect to a given data set. 
Statistical Depth can detect targets that appear extreme relative 
to the rest of the observations.  

E. Information Geometry for Robust Tracking by maneuver 

detection based on Geodesic Shooting 

The development of fixed antenna radars enables to adapt the 

update rate of the radar. It is then necessary to decide when to 

generate more pulses, like during a maneuver. An efficient 

Maneuver detection is thus needed. Most detectors (CUSUM, 

GLR) measure only filtered normalized innovation. We 

propose a new detector based on Information geometry that 

compute a distance by geodesic shooting and monitor jointly 

bias and covariance changes for the innovation vector. 
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