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Abstract. In 1969, Jean-Marie Souriau has introduced a “Lie Groups Thermo-
dynamics” in Statistical Mechanics in the framework of Geometric Mechanics.
This Souriau’s model considers the statistical mechanics of dynamic systems in
their "space of evolution" associated to a homogeneous symplectic manifold by
a Lagrange 2-form, and defines thanks to cohomology (non equivariance of the
coadjoint action on the moment map with appearance of an additional cocyle) a
Gibbs density (of maximum entropy) that is covariant under the action of dy-
namic groups of physics (eg, Galileo's group in classical physics). Souriau
model is more general if we consider another Souriau theorem, that we can as-
sociate to a Lie group, an homogeneous symplectic manifold with a KKS 2-
form on their coadjoint orbits. Souriau method could then be applied on Lie
Groups to define a covariant maximum entropy density by Kirillov representa-
tion theory. We will illustrate this method for homogeneous Siegel domains and
more especially for Poincaré unit disk by considering SU(1,1) group coadjoint
orbit and by using its Souriau’s moment map. For this case, the coadjoint action
on moment map is equivariant.
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1 Lie Groups Thermodynamics and Covariant Gibbs Density

We identify the Riemanian metric introduced by Souriau based on cohomology, in
the framework of “Lie groups thermodynamics” as an extension of classical Fisher
metric introduced in information geometry. We have observed that Souriau metric
preserves Fisher metric structure as the Hessian of the minus logarithm of a partition
function, where the partition function is defined as a generalized Laplace transform on
a sharp convex cone. Souriau’s definition of Fisher metric extends the classical one in
case of Lie groups or homogeneous manifolds. Souriau has developed this “Lie
groups thermodynamics” theory in the framework of homogeneous symplectic mani-
folds in geometric statistical mechanics for dynamical systems, but as observed by
Souriau, these model equations are no longer linked to the symplectic manifold but



equations only depend on the Lie group and the associated cocycle. This analogy with
Fisher metric opens potential applications in machine learning, where the Fisher met-
ric is used in the framework of information geometry, to define the “natural gradient”
tool for improving ordinary stochastic gradient descent sensitivity to rescaling or
changes of variable in parameter space. In machine learning revised by natural gradi-
ent of information geometry, the ordinary gradient is designed to integrate the Fisher
matrix. Amari has theoretically proved the asymptotic optimality of the natural gradi-
ent compared to classical gradient. With the Souriau approach, the Fisher metric
could be extended, by Souriau-Fisher metric, to design natural gradients for data on
homogeneous manifolds. Information geometry has been derived from invariant geo-
metrical structure involved in statistical inference. The Fisher metric defines a Rie-
mannian metric as the Hessian of two dual potential functions, linked to dually cou-
pled affine connections in a manifold of probability distributions. With the Souriau
model, this structure is extended preserving the Legendre transform between two dual
potential function parametrized in Lie algebra of the group acting transentively on the
homogeneous manifold. Classically, to optimize the parameter 6 of a probabilistic
model, based on a sequence of observations y,, is an online gradient descent:

al (v, !
0t<_gt—1_77t lggt) I
with learning rate 7,, and the loss function | =—log p(y, / §,)- This simple gradient

descent has a first drawback of using the same non-adaptive learning rate for all pa-
rameter components, and a second drawback of non invariance with respect to param-
eter re-encoding inducing different learning rates. Amari has introduced the natural
gradient to preserve this invariance to be insensitive to the characteristic scale of each
parameter direction. The gradient descent could be corrected by [(@)™" where | is

the Fisher information matrix with respect to parameter @, given by:

|(6‘) :[gii} with 9i :lz_Ey/p(y/H) {w:ﬂ @)

06,06,

.
with natural gradient: g < g, —7,,1(0)™ o (¥) 3)
- oo

Amari has proved that the Riemannian metric in an exponential family is the Fisher
information matrix defined by:

g, =— 82_(1) with CD(H):—IogJe’w‘”dy @)
ij aeiaé?j i R

and the dual potential, the Shannon entropy, is given by the Legendre transform:

_(0.9)— ith 1, = 22©) _05(m) 5
S(n)=(0,n)- () with n, = g and 6, on ©®)



In geometric statistical mechanics, Souriau has developed a “Lie groups thermody-
namics” of dynamical systems where the (maximum entropy) Gibbs density is covari-
ant with respect to the action of the Lie group. In the Souriau model, previous struc-
tures of information geometry are preserved:

|(ﬁ)=—gzﬂq§ with () =-log [e"*“'de and U:M —g’ ©)
= - oA V) I _8(Q ,
$(Q)=(8.Q)-(p) with Q= At and Q. -

In the Souriau Lie groups thermodynamics model, 3 is a “geometric” (Planck)
temperature, element of Lie algebra g of the group, and Q is a “geometric” heat,
element of dual Lie algebra " of the group. Souriau has proposed a Riemannian
metric that we have identified as a generalization of the Fisher metric:

1(8)=[9,] with 9,((5.2.].[8.2,])=6,(2.[5.2.)) ®)
with ©,(2,,2,)=6(2,,2,)+(Q,ad,, (Z,) ) where ad, (Z,)=(Z,,Z,] )
Souriau has proved that all co-adjoint orbit of a Lie Group given by
oF={Ad;|:=g‘1Fg,geG}subsetofg*,Feg* carries a natural homogeneous

*

symplectic structure by a closed G-invariant 2-form. If we define K = Ad; = (Adg,l)

K.(X)=—(ady)" with (Ad.FY) =<F,Adg,1Y>,Vg €G,Y eq F cg Where if
X eg, Ad,(X)= gXg " en, the G-invariant 2-form is given by the following expres-
sion o, (K F,KF) =B (X,Y)=(F,[X,Y]),X,Y eg. Souriau Foundamental

Theorem is that « every symplectic manifold is a coadjoint orbit ». We can observe
that for Souriau model (8), Fisher metric is an extension of this 2-form in non-

cauivariant cas g, (5,2,[.2.]) =0(2.[5.2.])+ ([ 2.[5.2.]] )
The Souriau additional term @(zl,[/;, zz]) is generated by non-equivariance through

Symplectic cocycle. The tensor ® used to define this extended Fisher metric is de-
fined by the moment map J(x), application from M (homogeneous symplectic man-

ifold) to the dual Lie algebra g*, given by: &(X,Y) = Iy {3, 9y} (10)
with J(x):M —ga" suchthat J, (x) =(J(X),X), X eg (11)
This tensor @ is also defined in tangent space of the cocycle e(g)eg" (this

cocycle appears due to the non-equivariance of the coadjoint operator Ad;, action of
the group on the dual lie algebra): Q(Adg (ﬂ)) =Ad;(Q)+6(9) (12)
O(X,Y):axg >R with O(X) =T,0(X(e))

(13)
XY - (6(X),Y)



In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization

in information geometry has been replaced by invariance with respect to the action of
the group. When an element of the group g acts on the element g eg of the Lie

algebra, given by adjoint operator Ad, . Under the action of the group Ad,(B), the
entropy S(Q) and the Fisher metric I(ﬂ) are invariant:

s[Q(Ad,(8))]=5(Q) (14)
I[Ady(B)]=1(B)

In the framework of Lie group action on a symplectic manifold, equivariance of
moment could be studied to prove that there is a unique action a(.,.) of the Lie group
G onthe dual g” of its Lie algebra for which the moment map J is equivariant, that
means for each x e M : J ((Dg (x))=a(g, I(x)) = Ad - (3(x))+6(9) (15)
When coadjoint action is not equivariant, the symmetry is broken, and new “cohomo-
logical” relations should be verified in Lie algebra of the group. A natural equilibrium
state will thus be characterized by an element of the Lie algebra of the Lie group,
determining the equilibrium temperature 4. The entropy s(Q), parametrized by Q
the geometric heat (mean of energy U , element of the dual Lie algebra) is defined by
the Legendre transform of the Massieu potential @ () parametrized by g (@(p) is
the minus logarithm of the partition function y,(43)). Souriau has then defined a
Gibbs density that is covariant under the action of the group:

o (&) _ -0 _ e (PUE)
Gibbs J.eiw’u(é»da) ’

Bes—Ad (p)=

with ®(p) =_|ogjef<ﬂ,0(5)>dw
M

M (16)
U(&)e P9
Q-2 e ~ [uE©pEMe
aﬁ J‘e*</3,U(§)>da) .
M
We will illustrate computation of this covariant Souriau-Gibbs density for the Lie
group SU(1,1) and the unit disk considered as an homogeneous symplectic manifold.

2 Souriau Moment map

i, is the (p-1)-formon M obtained by inserting V (x) as the first argument of o :
Interior product iva)(vz,---vp) = a)(V (X),Vv ,---,vp) 17)
O Aw isthe (p +1)-formon X where @ isap-formand @ isa 1-formon M :

. P i R
Exterior product QAW(Voa"‘va)=Z(—1) 9(Vi)a)(v0,---,vi,---,vp) (where the hat
i=0
indicates a term to be omitted).
L,@ isap-formon M, and L, =0 if the flow of V consists of symmetries of o :



. S d

Lie derivative Vo V)= — (18)
L\/a)( 1 p) dt o

dw is the (p+1)-form on M defined by taking the ordinary derivative of » and then

antisymmetrizing:

. . . p .
Exterior derivative da)(vo oV, ) = Z(_1)' Z—f (V) Vo, .0+, V) (19)
i=0

e‘V*w(v1,~-~,vp)

p=0,[do] =0 ; p =ZL[da)]ij =0,0,-0;m ; p= 2,[da)]ijk = 0,0y + 0,0, +0,@;
The properties of the exterior and Lie Derivative are the following:
L, o=di,w+i,dw (E. Cartan), i[U v@= i, L,@—L,i,» (H.Cartan) (20)

L[U ,V]a): LV Lua)— LU Lva) (S LIE) (21)

Let (|v| ,g) be a connected symplectic manifold. A vector field » on M is called
symplectic if its flow preserves the 2-form : L,o=0. If we use Elie Cartan's formula,
we can deduce that L,o=dioc+ido=0 butas do =0 then di,oc=0. We observe
that the 1-form i, is closed. When this 1-form is exact, there is a smooth function
x> H on M with: i & =—dH . This vector field 7 is called Hamiltonian and could
SympH :

Let a Lie group G that acts on M and that also preserve & . A moment map exists if
these infinitesimal generators are actually hamiltonian, so that a map J: M —q

exists with i, o=—dH, where H, =(J(x),Z) (22)
We define also the Poisson bracket of two functions H, H' by :
{HH}=0o(n.n")= O'(VsympH " VemH ) with i o=-dH and i o=-dH'  (23)

be defined as symplectic gradient =V

3 Coadjoint orbits and Moment Map for SU(1,1)

3.1  Poincaré Unit Disk and SU(1,1) Lie Group

The group of complex unimodular pseudo-unitary matrices SU (1,1), is the set of

elements u such that: uMu* =M with M :[Jrl OJ (22)
0 —
We can show that the most general matrix U belongs to the Lie group given by:
a b
G=5SU (1,1):{[5 *]/|a|2—|b|2 =1, a,be(C} (23)
a

Its Cartan decomposition is given by:

a b 1 z a/|a| 0 . -1 ,\-1/2
(b* a*]=|a|[z* J( 0 a*/aJ with z=b(a’) " [a|=(1-[z[") (24)




'=bz" +a
a b)Yl z 1 z"\(aYa] 0 ] a
—la’ h (25)
(Y (e Y L A R S

bz+a
SU (11) is associated to group of holomorphic automorphisms of the Poincaré unit

disk D={z :x+iye(C/|z|<l} in the complex plane, by considering its action on

the disk as g (z) = (az +b)/(b*z +a*)- The following measure on Unit disk:

. 1 dzadz
duo(27) =g = (26)
is invariant under the action of SU (1,1) captured by the fractional holomorphic trans-
formation: dz'Adz”  dzadz @

12\2 2\2
(L-l2f) (2-12)
The complex unit disk admits a Kahler structure determined by potential function:
®(z',2")=-log(1-2'7") (28)
o*d(z,7" N *
]T_ ( } ) 7 A dz 21 dZ/\dZ2 (29)
I 0201 i (1—|z|2)
which is closed dQ=0. This group SU (1,1)is isomorphic to the group SL(2,R) as
a real Lie group, and the Lie algebra g = su(Ll) is given by:

g={_if _77jlreR,77e<C} (30)
noir

with the bases (ul,uz,u3)egi U, :1{0 _IJ y Uy :1[0 1} y Uy :l(ﬂ OJ

The invariant 2-form is: ¢ _

21 0 21 0 2{0 i
with the commutation relation: [u,,u, | =u,,[u,, U, | = —u,,[u,, u, ] = —u, (31)
Dual base on dual Lie algebra is named (u;,u;,u;)eg*. The dual vector space

o =su’(1,1) can be identified with the subspace of sl(2,C) of the form:

g*:{[ z x+iyjzx[0 1J+y[9 i)+z(1 OJ/X,y,ZER} (32)
—X+1ly -z -1 0 i 0 0 -1

Coadjoint action of g € G on dual Lie algebra & eg” is written g.&.
3.2 Coadjoint Orbit of SU(1,1) and Souriau Moment Map

We will use results of C. Cishahayo and S. de Biévre [7] and B. Cahen [8,9] for com-
putation of moment map of SU(1,1). Let r e R™, orbit O(ru;) of ru; for the coad-
joint action of geG could be identified with the upper half sheet x,>0 of

{f = XUy + XUy + XUy /=X =X + X = r2} , the two-sheet hyperboloid. The stabilizer



O e—iU
rotations of the unit disk, and leaves 0 invariant. The stabilizer for the origin 0 of unit
disk is maximal compact subgroup K of SU(1,1). We can observe [8] that
O(ru;) =G/ K. On the other hand O(ru;) =G/ K is diffeomorphic to the unit disk

io
of ru, for the coadjoint action of G is torus K :{e 0 J’QGR}. K induces

D= {z eCl|7| <1} , then by composition, the moment map is given by:
J:D—-0(ry;)

33
2+7 . z-7 . L+l . (33)

u, + u, + u
2\ 1. 2\ 2 2\ 73
(1-f2f) " i(aefef) (1)
J is linked to the natural action of G on D (by fractional linear transforms) but also
the coadjoint action of G on O(rug) =G /K. J™ could be interpreted as the stereo-

- J(2)=r

graphic projection from the two-sphere S? onto Cuoo. In case r:% where
neN',n>2 then the coadjoint orbit is given by O, =0(¢,) Wwith & =gu; eq’,

i0
with stabilizer of £ for coadjoint action the torus K :{[e O,O}ge R} with
0 e’

Lie algebra Ru,. O, = o(;n) is associated with a holomorphic discrete series repre-
sentation 7, of G by the KKS (Kirillov-Kostant-Souriau) method of orbits.
J:D->0,

215 3(2) =" +7 U 71-7 U 1+|7f o (34)
Y 1 2 3
2 (1=l2f) " ifa-f) (2l
Group G acton D by homography g.z= % b* Z= ?”b* . This action corre-
b a bz+a

sponds with coadjoint action of G on O, . The Kirillov-Kostant-Souriau 2-form of

0, is given by:

Q,()(X(£).Y(¢))=(¢.[X.Y]) . X.Y egand £ €O, (35)

and is associated in the frame by J with: o, = in — dz Adz” (36)
(1)

with the corresponding Poisson Bracket: {flg} =i (1—|z|2)2 (ﬂa_g*_iﬁ_gj (37)
0Loz 01 01



It has been also observed that there are 3 basic observables generating the SU (1,1)
symmetry on classical level:
DR D—>R DR

217 0 =122 e k@ = 2L
1-[f S if T

With the Poisson commutation rule: {k;,k } =k,,{ks,k,} ==k, {k ,k,} ==k, ~ (39)

(38)

z>Kk,(2) =

(., k,, ks ) vector points to the upper sheet of the two-sheeted hyperboloid in R®

given by kZ —k —kZ =1, whose the stereographic projection onto the open unit
(K, k. k) e H" — D

disk is: o ik [ _1eiargz (40)
1+k, k,+1

. b
Under the action of geG=SU(l= {[s a*)”a'z —|b|2 =1 abe (C} :

(k k3j:(k2+ikl K j: 1 22 14| ) s yransformin:

k, K, Ky k—ik ) 1-[zf 14| 27

[k'_ ké]: k_(gfl,z) k3(g’1.z) :gl[k ks](gl)t (41)
ki k) |k(972) Kk, (g72) ky K,

This transform can be viewed as the co-adjoint action of SU (1,1) on the coadjoint
orbit identified with k2 —k> —kZ =1.

4 Covariant Gibbs Density by Souriau Thermodynamics

Representation theory studies abstract algebraic structures by representing their
elements as linear transformations of vector spaces, and algebraic objects (Lie groups,
Lie algebras) by describing its elements by matrices and the algebraic operations in
terms of matrix addition and matrix multiplication, reducing problems of abstract
algebra to problems in linear algebra. Representation theory generalizes Fourier anal-
ysis via harmonic analysis. The modern development of Fourier analysis during XXth
century has explored the generalization of Fourier and Fourier-Plancherel formula for
non-commutative harmonic analysis, applied to locally compact non-Abelian groups.
This has been solved by geometric approaches based on “orbits methods” (Fourier-
Plancherel formula for G is given by coadjoint representation of G in dual vector
space of its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold,
Berezin, Kostant, Souriau, Duflo, Guichardet, Torasso, Vergne, Paradan, etc.).

For classical commutative harmonic analysis, we consider the following groups :



G=T"=R"/Z" for Fourier series, G =R" for Fourier Transform
G group character (linked to e*): 7 :G —»U with U ={zeC/|z|=1}
G={x!1-2,(9) = %(9)x,(9)} and Fourier transform is given by:
p:G>C #:G>C
9 0(0)=[o02@ dr ™ 1 6(2)= (@) 2(0)dg
G G

For non-commutative harmonic analysis, Group unitary irreductible representation is
U:G —U (H) with H Hilbert space and character by 4, (g) =trU,. Fourier trans-

(44)

form for non-commutative group is u, ZI(/’(g)Ugdg with character y,(g) =trU,.
G

If we describe group element with exponential map U, = J‘l/,(x)u dXx , we have:

exp(X)
g
i o U ¢ Liouville meas.on O =G.f, f eq’
trU, =dimz.ug [l//.j j with (45)

" . Hg ¢ [;{/.j‘lj: Integral of y.j ™ wrt 4
w.j e —a, Four. Transf.

where j(x)=(dets(adx))l/2 with s(x):im(gj n=sh[;j/[;j (46)
Kirillov Character formula is: Z (exp(X)) :7trUexp(X) _ j(X)_lfei<"X>dﬂo(f) 47)

ady /2

i . ; . e e N
J‘e <f’x>dﬂo( )= J(X)trU ) with J (X ) = [det(WjJ (48)
X

(¢]
We will use Kirillov representation theory and his character formula [10-19] to
compute Souriau covariant Gibbs density in the unit Poincaré disk. For any Lie group

G, a coadjoint orbit O —g” has a canonical symplectic form @, given by KKS 2-

form. As seen, if G is finite dimensional, the corresponding volume element defines
a G -invariant measure supported on O, which can be interpreted as a tempered dis-
tribution. The Fourier transform (where d is the half of the dimension of the orbit O) :

iy 1 . .
3I(x) = _[ e <">mda)od with 1 eg” and xeq (49)
Ocg” "
is Ad G -invariant. When O —q” is an integral coadjoint orbit, Kirillov formula, given
previously, expresses Fourier transform J(x) by Kirillov character 4 :

o ) [ sinh(ad(x/2)) 50
30 = §(X) 10 (") where j(x) =det {W] *

Xo s, as defined previously, the “Kirillov character” of a unitary representation
associated to the orbit. We will consider the universal covering of PSU(1,1), the Lie
algebra is:
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g =suLl) = {[iE P J/ EcR,pe c} (51)
p -iE

As observed in [8], the Ad-invariant form m? = E?2 —|p|2 allows to identify the fol-

lowing operator Ad and Ad”, m could be considered analogously as rest mass, E
as energy, and P = p, +ip, as the momentum vector. The coadjoint orbits are the

rest mass shells. Let D = {We C/w] <1} Poincaré unit disk, for any m> 0, there is a

corresponding action of the universal covering of PSU (1,1) on k™% (with x the
holomorphic cotangent bundle of unit disk), with the invariant symplectic form
dw A dw” (52)

The moment map is an equivariant isomorphism (O; coadjoint orbit for m? >0 and

ol
2

(1)

In case m > 1, the Kirillov character formula is given by:

Zn (exp[{% —'sz j(x)loglei«% A TED% (54

where j(x) = det"? {sinh [ad [X/ g jj/ad [X/ 2 H _sinh(9) (55)
—x/2 —x/2 X

w=curv(x)=-id0" log |dw|2 =2i

E>0): 3:we(D,curv(x™)) i (p,E) = 2iw,1+|w|2)eo; (33)

. mx (m-1)x 5
which reduces to : _€ _j(x)= J‘e - 1 _dw A dw’ (56)
1-e S (1—|W|Z)
Finally, the Souriau-Gibbs density is given by:
. im% Zm#
ix -n W —|w|
S e (HHJ
T T 1w
e (57)
Pgibbs (W) = ( X iryj [ X i'l]
0z, " 0z, e"

5 Extension from Poincaré to Siegel Homogeneous Domains

V. Bargmann has proposed the covering of the general symplectic group Sp(ZN,R):
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A B 0 |1
Sp(ZN’R):{g :[C D]/gJZNgT :JZN’JZTN =—Jdons oy :(_IN ONJ} (58)
AB" =BA",AC" =CA",BD' =DB',CD"' =DC",AD" -BC' =1, (59)

Bargmann has observed that although Sp(2N,R) is not isomorphic to any pseudo-
unitary group, its inclusion in U(N,N) will display the connectivity properties
through its unitary U(N) maximal compact subgroup, generalizing the role of
U (1)=S0(2) in Sp(2,R): Wy, =W ®1,, ,2N x2N matrix

\E _wﬂ/4 a)/r/4
o _1([A+D]-i[B-C] [A-D]+i[B+C]) (a & 61
u(g) =W, gWN_E[[A—D]—i[B+C] [A+D]+i[B-C]) \f o oy
with aa™ - BB" =1, a’a- ' =1, and o' —fa’ =0,a' B —f'a=0  (62)
The symplecticity property of g becomes:

= =
where =W, :i( Wra ‘0;;/4] With g — girl4 — %(1+ i) (60)
2

l, O
UM, U" =My, My, =W, W, :(3 . j (63)
N

[0 5o -mam<[pete ) et
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