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Abstract. When performing statistics on elements of sets that possess
a particular geometric structure, it is desirable to respect this structure.
For instance in a Lie group, it would be judicious to have a notion of
a mean which is stable by the group operations (composition and in-
version). Such a property is ensured for Riemannian center of mass in
Lie groups endowed with a bi-invariant Riemannian metric, like compact
Lie groups (e.g. rotations). However, bi-invariant Riemannian metrics do
not exist for most non compact and non-commutative Lie groups. This
is the case in particular for rigid-body transformations in any dimen-
sion greater than one, which form the most simple Lie group involved in
biomedical image registration.
In this paper, we propose to replace the Riemannian metric by an affine
connection structure on the group. We show that the canonical Cartan
connections of a connected Lie group provides group geodesics which
are completely consistent with the composition and inversion. With such
a non-metric structure, the mean cannot be defined by minimizing the
variance as in Riemannian Manifolds. However, the characterization of
the mean as an exponential barycenter gives us an implicit definition of
the mean using a general barycentric equation. Thanks to the properties
of the canonical Cartan connection, this mean is naturally bi-invariant.
We show the local existence and uniqueness of the invariant mean when
the dispersion of the data is small enough. We also propose an itera-
tive fixed point algorithm and demonstrate that the convergence to the
invariant mean is at least linear.
In the case of rigid-body transformations, we give a simple criterion
for the global existence and uniqueness of the bi-invariant mean, which
happens to be the same as for rotations. We also give closed forms for the
bi-invariant mean in a number of simple but instructive cases, including
2D rigid transformations. For general linear transformations, we show
that the bi-invariant mean is a generalization of the (scalar) geometric
mean, since the determinant of the bi-invariant mean is the geometric
mean of the determinants of the data.
Finally, we extend the theory to higher order moments, in particular
with the covariance which can be used to define a local bi-invariant Ma-
halanobis distance.
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1 Introduction

Over the last 30 years, there was an explosion of imaging modalities which al-
lows observing both the anatomy in vivo and in situ at multiple spatial scales
(from cells to the whole body), multiple time scales (beating heart, growth, ag-
ing, evolution of species), and on multiple subjects. The combination of these
new observation means with the computerized methods is at the heart of compu-
tational anatomy, an emerging discipline at the interface of geometry, statistics
and image analysis which aims at developing algorithms to model and analyze
the biological shape of tissues and organs. The goal is to estimate representative
organ anatomies across diseases, populations, species or ages, to model the organ
development across time (growth or aging), to establish their variability, and to
correlate this variability information with other functional, genetic or structural
information.

Understanding and modeling the shape of organs is made difficult by the
absence of physical models for comparing different subjects, the complexity of
shapes, and the high number of degrees of freedom implied. The general method
is to identify anatomically representative geometric features (points, tensors,
curves, surfaces, volume transformations), and to describe and compare their
statistical distribution in different populations. Although anatomical features
are embedded in Euclidean spaces, the extracted geometric features most of-
ten belong to manifolds. For instance, the spine shape can be characterized by
the relative position and orientation of each vertebra with respect to the pre-
vious one [2, 14]. Considering the degrees of freedom of an articulated object
amounts to work in a subspace of a product of Lie groups (here rigid-body
transformations) rather than in a Euclidean space. Likewise, in order to model
biological shapes, D’Arcy Thompson proposed in 1917 to assume that there is a
template object which represents the reference shape, and to encode the shape
variations as deformations of this template [20]. With this approach, we perform
statistics on deformations which naturally belong to continuous transformation
groups, i.e. Lie groups. As the deformation of a smooth object should be a
smooth object, the most general transformation group to consider is the group
of diffeomorphisms (invertible, one-to-one mappings with smooth inverses). This
formalism was developed in particular by Grenander and Miller [31, 48] based
on advanced mathematical tools to compute on infinite dimensional groups of
diffeomorphisms [64, 70].

Among statistics, the most fundamental is certainly the mean, which extracts
from the data a central point, minimizing in some sense the dispersion of the data
around it. In this work, we focus on a generalization of the mean to connected
Lie groups. Classically, in a manifold endowed with a Riemannian metric, the
natural choice of mean is called the Riemannian center of mass or Fréchet mean.
The Riemannian structure proves to be a powerful and consistent framework
for computing simple statistics [72, 50, 53, 11–13, 55] and can be extended to
an effective computing framework on manifold-valued images [57]. On a Lie
group, this Riemannian approach is consistent with the group operations if a bi-
invariant metric exists, which is for example the case for compact groups such as
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rotations [54, 49]. In this case, the bi-invariant Fréchet mean has many desirable
invariance properties: it is invariant with respect to left- and right-multiplication,
as well as inversion. Unfortunately, bi-invariant Riemannian metrics do not exist
for most non compact and non-commutative Lie groups. In particular, such
metrics do not exist in any dimension for rigid-body transformations, which form
the most simple Lie group involved in biomedical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for
general Lie groups, we propose in this work to rely on a convenient affine con-
nection structure. We first recall in Section 2 the basic properties of connected
Lie groups and the notion of affine connection spaces. Among the connections
that are left-invariant on a Lie group, the Cartan-Schouten connections are de-
fined as the ones for which one-parameter subgroups are geodesics. The unique
symmetric Cartan-Schouten connection is called the canonical Cartan connec-
tion of the group. We show that it provides group geodesics which are completely
consistent with composition and inversion.

We turn to the definition of means in Lie groups in Section 3. In order to
define bi-invariant Fréchet means, we investigate the existence conditions of bi-
invariant metrics on Lie groups. It turns out that most non compact and non
commutative Lie groups do not posses any bi-invariant Riemannian metric. We
show that this is the case for rigid-body transformations, which constitutes one of
the simplest Lie groups of interest in image analysis. However, a weaker structure
of bi-invariant affine connection space exists for all connected Lie groups thanks
to the canonical Cartan connection. With such a non-metric structure, the mean
can obviously not be defined by minimizing the variance as there is no distance.
However, the characterization of the mean as an exponential barycenter is still
valid and gives us an implicit definition of the mean using a general barycen-
tric equation. Thanks to the properties of the canonical Cartan connection, this
mean is naturally equivariant with respect to left- and right-translations as well
as inversions. We show the existence and uniqueness of the mean when the dis-
persion of the data is small enough by defining a mapping whose fixed point is by
definition the mean. Moreover, the mapping being a contraction, it is converging
to the mean at least linearly.

Section 4 focuses on the bi-invariant mean in selected matrix Lie groups. We
show that a closed form can be obtained in the case of the group of scaling and
translations, which constitutes one of the simplest examples of non-compact and
non-commutative Lie groups which do not possess a bi-invariant Riemannian
metric. There is also a closed form of the bi-invariant mean for the Heisenberg
group, which can be generalized to the scaled unitriangular matrix group. For
general rigid-body transformations, there is no closed form but we determine a
simple criterion for the general existence and uniqueness of the bi-invariant mean,
which happens to be the same as the bi-invariant Fréchet mean for rotations.
For general linear transformations, we show that the bi-invariant mean is a
generalization of the geometric mean of scalars, in the sense that the determinant
of the mean is equal to the geometric mean of the determinants of the data.
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Finally, Section 5 investigates some open points, such as the characterization
of global existence and uniqueness conditions for the bi-invariant mean. It also
extends the theory to higher order moments, in particular with the (2-covariant)
covariance tensor which can be used to define a local bi-invariant Mahalanobis
distance.

Related works The intuition behind such a bi-invariant mean on matrix Lie
groups was present in [66] along with a practical iterative algorithm to com-
pute it. However, no precise definition nor proof of convergence was provided.
The barycentric definition of bi-invariant means on Lie groups based on one-
parameter subgroups was developed in the the PhD of Vincent Arsigny [7] and
in the research report [8]. In this preliminary work, the ’group geodesics’ were
simply defined as left translations of one-parameters subgroups without fur-
ther justification. This paper extends this work by reformulating and rigorously
justifying ’group geodesics’ as the geodesics of the canonical Cartan-Schouten
connections [17]. This allows better distinguishing the properties that are re-
lated to the connection itself (bi-invariance) from the ones that are related to
the definition of the mean as an exponential barycenter in an affine connection
space. A number of proofs were added or adapted in consequence.

The barycentric fixed point iteration on Lie groups that we investigate in this
paper to compute the bi-invariant mean is close to the Gauss-Newton gradient
descent iteration that is used on Riemannian manifolds to compute the Fréchet
mean, studied in depth in [44, 45] or [32] for a generalization to zeros of vector
fields on Riemannian manifolds. Indeed, both algorithms do correspond when
the Lie group is provided with a bi-invariant metric. However, they differ when
the Lie group is non compact and non commutative: since the canonical Cartan
connections are not metric, there does not exist a Riemannian metric for which
the group geodesics are Riemannian geodesics. Thus, in the general case, this
algorithm does not enter into the type of iterations that are studied in [32].

In the context of optimization on Riemannian manifolds, many Newton-like
methods were proposed and their convergence studied in depth, e.g. in [62, 65,
32, 21, 1] to cite just a few. The iteration we investigate in this paper does not
enter into this family as it does not use the covariant derivative of the vector
field of which we are trying to find the zeros, Moreover, we cannot recast it as
an optimization problem on a Riemannian manifold, as stated above. Very few
works deal with Newton iterations on Lie groups or affine connection spaces.
Notable exceptions are [51, 47] which propose Newton algorithms to optimize
general functions on non compact Lie groups based on Cartan-Schouten con-
nections. In terms of the geometric tools used, these papers are the closest to
what is present in the first Section of this paper. However, they only focuses on
the optimization of functions on Lie groups without investigating any notion of
bi-invariant mean.
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2 Lie groups

2.1 Basics of Lie Groups

A Lie group G is a smooth manifold provided with an identity element e, a
smooth associative composition rule (g, h) ∈ G × G 7→ g.h ∈ G and a smooth
inversion rule Inv : f 7→ f (-1) which are both compatible with the manifold
structure. In the sequel of this paper we always assume that the Lie group is
finite dimensional and connected. Classical examples of Lie groups are vector
spaces (with their commutative addition as multiplication), multiplicative ma-
trix groups: GL(n), O(n), SO(n), etc., with the usual matrix multiplication;
and geometric transformation groups such as rigid-body transformations, simi-
larities, affine transformations which can anyway also be looked upon as matrix
groups via their ‘faithful’ representation based on homogeneous coordinates.
Infinite-dimensional Lie groups of diffeomorphisms have also been recently gain-
ing a considerable importance in computational anatomy [64, 70]. However, we
concentrate here only on finite dimensional Lie groups.

Many details on differential geometry can be found in classical books like [63,
29, 41, 22]. Specific details on Lie groups can be found in [34]. Most results of this
section can be found in the more modern (and quite comprehensive) presentation
of differential geometry and Lie groups of Postnikov [58].

Lie Bracket We denote by TgG the tangent space at g ∈ G and by TG the
tangent bundle. A section X : G 7→ TG is a vector field whose value at g is
denoted X|g. The set of vector fields Γ (G) is the algebra of derivations of smooth
functions φ ∈ C∞(G). Recall that a derivation δ is a linear map from Γ (G) to
Γ (G) that satisfies Leibniz’s law: δ(fX) = (df)X+f(δX) for any f ∈ C∞(G) and
X ∈ Γ (G). In a local coordinate system, we can indeed write Xφ|g = ∂Xφ|g =
d
dt (φ(g + tX|g)).

When composing the derivations, we can see that XY φ = ∂X∂Y φ is a second
order differential and is thus not a derivation. However, we can remove the
second order terms by subtracting ∂Y ∂Xφ (this can be checked by writing these
expression in a local coordinate system). We obtain the Lie bracket

[X,Y ](φ) = ∂X∂Y φ− ∂Y ∂Xφ.

which is also called the Lie derivative LXY because it is conceptually the deriva-
tive of the vector field X in the ‘direction’ generated by Y . The Lie bracket is a
bilinear operator from ΓG×ΓG to ΓG. It is obviously skew symmetric ([X,Y ] =
−[Y,X]), and verifies the Jacobi identity [X, [Y, Z]]+[Z, [X,Y ]]+[Y, [Z,X]] = 0.
As it is a derivation, it also verifies [X,φY ] = φ[X,Y ]+∂X(φY ) for any function
φ.

Lie Algebra Thanks to the group structure, we can define two canonical dif-
feomorphisms of G called the left and the right translations: Lg(f) = g.f and
Rg(f) = f.g in addition to the inversion map Inv(f) = f (-1). A fourth important
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diffeomorphism of G is the conjugation Cg(f) = g.f.g(-1) = Lg◦Rg(-1) = Rg(-1)◦Lg
(this is actually an inner automorphism).

The differential DLg of the left translations maps the tangent space ThG to
the tangent space Tg.hG. In particular, Lg maps any vector x ∈ TeG to the vector

DLg.x ∈ TgG, giving rise to the vector field X̃|g = DLg.x. One verifies that this

vector field is left-invariant: X̃ ◦ Lh = DLhX̃. Conversely, every left-invariant
vector field is determined by its value at identity. Moreover, the bracket of two
left-invariant vector fields X̃ = DL.x and Ỹ = DL.y is also left-invariant. Thus,
it is determined by the vector [x, y] = [X̃, Ỹ ]|e ∈ TeG. This allows to identify
the sub-algebra of left-invariant vector fields with the tangent vector space at
identity provided with the additional bracket operation: g = (TeG,+, ., [., .]) is
called the Lie algebra of the group G.

Simple examples of Lie brackets are given by GL(n) and its multiplicative
subgroups, like SL(n) or SO(n). In these cases, the Lie algebra is a vector space
of square matrices, and the Lie bracket between two elements M and N of this
algebra is the commutator of these two matrices, i.e. [M,N ] = M.N −N.M . In
particular, the Lie algebra of GL(n) is M(n), the vector space of square matrices,
that of SL(n) is the vector subspace of M(n) of trace-free matrices, and the Lie
algebra of SO(n) is the vector space of skew symmetric matrices.

By symmetry, we can also define the sub-algebra of right-invariant vector
fields X̄|g = DRgX and identify it with the tangent vector space at identity.
However, one should be careful that the right-bracket is the opposite of the
left-bracket.

Adjoint Group The adjoint is the automorphism of the Lie algebra obtained
by differentiating the conjugation Cg(f) = g.f.g(-1) with respect to f . More
precisely, an element g of G acts on an element x of g by

Ad(g).x = DLg|g(-1) .DRg(-1) |e.x = DRg(-1) |g.DLg|e.x.

In the matrix case, we have the (simple this time) formula: Ad(R).M = R.M.R(-1),
which only uses two matrix multiplications and one matrix inversion.

Thus, one can map each element of the group to a linear operator which acts
on the Lie algebra: G can be ‘represented’ by the adjoint operators acting on
g. Thist is a representation in the sense of representation theory (see [42] for a
complete treatment) as this mapping is a Lie group homomorphism from G to
GL(g). This means that Ad : G → GL(g) is a smooth map from G to GL(g)
which is compatible with the group structure: Ad(e) = Id, ∀g ∈ G, Ad(g(-1)) =
Ad(g)(-1) and ∀g, h ∈ G, Ad(g.h) = Ad(g).Ad(h). The subgroup Ad(G) of the
general linear group GL(g) is called the adjoint group. The properties of this
representation and the existence of bi-invariant metrics for the group G are
highly linked.

2.2 Lie Group Exponential and Logarithm
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The Matrix Case Before we present the general group exponential and log-
arithm, let us recall the fundamental properties of the matrix exponential and
logarithm, which correspond to the group exponential and logarithm of the Lie
group of n×n invertible matrices, GL(n). They are the generalization to matrices
of the well-known scalar exponential and logarithm. The exponential exp(M) of
a matrix M is given by exp(M) =

∑∞
n=0M

k/k!. Let G ∈ GL(n). If there exists
M ∈M(n) such that G = exp(M), then M is said to be a logarithm of G.

In general, the logarithm of a real invertible matrix may not exist, and it
may not be unique if it exists. The lack of existence is a general phenomenon in
connected Lie groups. One generally needs two exponentials to reach every ele-
ment [67]. The lack of uniqueness is essentially due to the influence of rotations:
rotating of an angle α is the same as rotating of an angle α+ 2kπ where k is an
integer. Since the logarithm of a rotation matrix directly depends on its rotation
angles (one angle suffices in 3D, but several angles are necessary when n > 3),
it is not unique.

When a real invertible matrix has no (complex) eigenvalue on the (closed)
half line of negative real numbers, then it has a unique real logarithm whose
(complex) eigenvalues have an imaginary part in ] − π, π[ [39, 28]. In this case
this particular logarithm is well-defined and called the principal logarithm. We
will write log(M) for the principal logarithm of a matrix M whenever it is
defined.

Thanks to their remarkable algebraic properties, and essentially their link
with one-parameter subgroups, matrix exponential and logarithms can be quite
efficiently numerically computed. In practice, we have used in this work the
popular ‘Scaling and Squaring Method’ [35] to compute numerically matrix ex-
ponentials, as well as the ‘Inverse Scaling and Squaring Method’ [18] to compute
matrix logarithms.

One Parameter Subgroups and Lie Group Exponential Let us now define
the general group exponential and logarithm in Lie groups. These properties
are very similar to those of the matrix exponential and logarithm, which are a
particular case of such mappings. One should note that this particular case is
actually quite general, since most classical Lie groups can be looked upon as
matrix Lie groups anyway [33].

The flow γx(t) of a left-invariant vector field X̃ = DL.x starting from e exists
for all times. Its tangent vector is γ̇x(t) = DLγx(t).x by definition of the flow.
Now fix s ∈ R and observe that the two curves γx(s + t) and γx(s).γx(t) are
going through point γx(s) with the same tangent vector. By the uniqueness of
the flow, they are the same and γx is a one parameter subgroup, i.e. a group
morphism from (G, e, .) to (R, 0,+):

γx(s+ t) = γx(s).γx(t) = γx(t+ s) = γx(t).γx(s).

The group exponential is defined from these one-parameter subgroups with
Exp(x) = γx(1).
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Definition 1. Let G be a Lie group and let x be an element of the Lie Algebra
g. The group exponential of x, denoted Exp(x), is given by the value at time 1
of the unique function γx(t) defined by the ordinary differential equation (ODE)
γ̇x(t) = DLγx(t).x with initial condition γx(0) = e.

Very much like the exponential map associated to a Riemannian metric, the
group exponential is diffeomorphic locally around 0. More precisely, since the
exponential is a smooth mapping, the fact that its differential map is invertible
at e allows for the use of the ‘Inverse Function Theorem’, which guarantees that it
is a diffeomorphism from some open neighborhood of 0 to an open neighborhood
of Exp(0) = e [58, Proposition 1.3, p.13].

Theorem 1. The group exponential is a diffeomorphism from an open neigh-
borhood of 0 in g to an open neighborhood of e in G, and its differential map at
0 is the identity.

This theorem implies that one can define without ambiguity a logarithm in an
open neighborhood of e: for every g in this open neighborhood, there exists a
unique x in the open neighborhood of 0 in g, such that g = Exp(x). In the
following, we will write x = Log(g) for this logarithm, which is the (abstract)
equivalent of the (matrix) principal logarithm. The absence of an inverse function
theorem in infinite dimensional Fréchet manifolds prevents the straightforward
extension of this property to general groups of diffeomorphisms [40].

Baker-Campbell-Hausdorff Formula the Baker-Campbell-Hausdorff formula
(or BCH formula) is a fundamental property of the group exponential and loga-
rithm. Intuitively, this formula shows how much Log( Exp(x). Exp(y)) deviates
from x + y due to the (possible) non-commutativity of the multiplication in
G. Remarkably, this deviation can be expressed only in terms of Lie brackets
between x and y [30, Chap. VI].

Theorem 2 (Series form of the BCH formula). Let x, y be in g. If they
are small enough, then the logarithm of the product Exp(x). Exp(y) is always
well-defined and we have the following development:

BCH(x, y) = Log( Exp(x). Exp(y))
= x+ y + 1/2([x, y]) + 1/12([x, [x, y]] + [y, [y, x]])

+1/24([[x, [x, y]], y]) +O((‖x‖+ ‖y‖)5).
(1)

A fundamental property of this function is the following: it is not only C∞ but
also analytic around 0, which means that BCH(x, y) (near 0) is the sum of
an absolutely converging multivariate infinite series (the usual multiplication is
replaced here by the Lie bracket). This implies in particular that all the (partial)
derivatives of this function are also analytic.

2.3 Affine Connection Spaces

For each tangent vector x ∈ g ' TeG, the one parameter subgroup γx(t) is a
curve that starts from identity with this tangent vector. One could question if
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this curve could be seen as a geodesic. To answer this question, we first need to
define what are geodesics.

Affine Connections When one wants to compare data in the tangent space
at one point of the group with data in the tangent space at another point of
the group, one needs to define a specific mapping between these two different
tangent spaces: this is the notion of parallel transport. As there is generally no
way to define globally a linear operator Πh

g : TgG → ThG which is consistent

with the composition (i.e. Πh
g ◦Π

g
f = Πh

f ), one has to specify the path by which
we connect the two points.

An (affine) connection is the specification of the parallel transport for in-
finitesimal displacements. It is a bilinear map ∇ from ΓG ×ΓG to ΓG such that
for all smooth functions φ ∈ C∞(G):

– ∇φXY = φ∇XY , that is, ∇ is smooth and linear in the first variable;
– ∇X(φY ) = ∂XφY+φ∇XY , i.e.∇ satisfies Leibniz rule in the second variable.

In a local chart, the connection is determined by its coordinates on the basis
vector fields: ∇∂i∂j =

∑
k Γ

k
ij∂k. The n3 coordinates Γ kij of the connection are

functions called the Christoffel symbols. They encode how the projection from
one tangent space to the neighboring one modifies the standard derivative of a
vector field in a chart:

∇XY = ∂XY +
∑
i,j,k

xiyjΓ kij∂k.

Geodesics Geodesics can be defined in affine connection spaces as the general-
ization of straight lines: these are the curves that remain parallel to themselves
(auto-parallel curves). Thus, γ(t) is a geodesic if its tangent vector γ̇(t) remains
parallel to itself, i.e. if the covariant derivative ∇γ̇ γ̇ = 0 of γ is zero. In a local
coordinate system where γ̇ =

∑
i γ̇

i∂i, the equation of the geodesics is thus (in
Einstein notations): γ̈k + Γ kij γ̇

iγ̇j = 0.
We retrieve here the standard equation of the geodesics in Riemannian geom-

etry without having to rely on any particular metric. However, what is remark-
able is that we still conserve many properties of the Riemannian exponential
map in affine connection spaces: as geodesics are locally defined by a second
order ordinary differential equation, the geodesic γ(p,v)(t) starting at any point
p with any tangent vector v is defined for a sufficiently small time, which means
that we can define the exponential map Expp(v) = γ(p,v)(1) for a sufficiently
small neighborhood. Moreover, the strong Whitehead theorem still holds.

Theorem 3 (Strong Form of Whitehead Theorem). Each point of an
affine connection space has a normal convex neighborhood (NCN) in the sense
that for any couple of points (p, q) in this neighborhood, there exists a unique
geodesic γ(t) joining them that is entirely contained in this neighborhood. More-
over, the geodesic γ(t) depends smoothly on the points p and q.
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The proof of this theorem essentially involves the non-singularity of the differ-
ential of the map Φ(p, v) = (p, Expp(v)) and the inverse function theorem, with
the use of an auxiliary Euclidean metric on the tangent spaces around the point
of interest. We refer to [58, Proposition 1.3, p.13] for the detailed proof.

As geodesics control many properties of the space, it is interesting to know
which affine connections lead to the same geodesics. Intuitively, a geodesic for
a connection ∇ will remain a geodesic for another connection ∇̄ if the parallel
transport of the tangent vector in the direction of this tangent vector remains
unchanged, i.e. if ∇XX = ∇̄XX for any vector field X. However, the parallel
transport of other vectors of a frame can change, hence the notion of torsion of
a connection which is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] = −T (Y,X).

It measures how the skew-symmetric part differ from the Lie derivative LXY =
[X,Y ]. The connection is called torsion free if the torsion vanishes. One can show
that two connections have the same geodesics if they have the same symmetric
part (∇XY +∇YX)/2. i.e. if they only differ by torsion. Thus, at least for the
geodesics, we can restrict our attention to the torsion free connections.

2.4 Canonical Cartan Connection and Group Geodesics

Cartan-Schouten Connections Let us now consider left-invariant connec-
tions, i.e. verifying ∇DLgXDLgY = DLg∇XY for any vector fields X and Y
and any group element g ∈ G. As the connection is completely determined by its
action on the sub-algebra of left-invariant vector fields, we can restrict to this
sub-algebra. Let X̃ = DL.x and Ỹ = DL.y be two left-invariant vector fields.
Stating that the covariant derivative of Ỹ along X̃ is left-invariant amounts to
say that the field ∇X̃ Ỹ = DL(∇X̃ Ỹ |e) is determined by its value at identity

α(x, y) = ∇X̃ Ỹ |e ∈ g. Conversely, each bilinear operator of the Lie algebra
α : g × g → g uniquely defines the connection at the identity and thus on all
left-invariant vector fields: ∇α

X̃
Ỹ = α̃(x, y). The connection is then uniquely ex-

tended to all vector fields using the linearity in the first variable and the Leibniz
rule.

Definition 2 (Cartan-Schouten and Bi-invariant Connections). Among
the left-invariant connections, the Cartan-Schouten connections are the ones for
which geodesics going through identity are one parameter subgroups. Bi-invariant
connections are both left- and right-invariant.

The definition of Cartan-Schouten connection used here [58, Def. 6.2 p.71] gen-
eralizes the three classical +, − and 0 Cartan-Schouten connections [17] (see
below for their definition).

Theorem 4. Cartan-Schouten connections are uniquely determined by the prop-
erty α(x, x) = 0 for all x ∈ g.
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Bi-invariant connections are characterized by the condition:

α([z, x], y) + α(x, [z, y]) = [z, α(x, y)] ∀x, y, z ∈ g. (2)

The one dimensional family of connections generated by α(x, y) = λ[x, y] satisfy
these two conditions.

Moreover, there there is a unique symmetric Cartan-Schouten bi-invariant
connection called the canonical Cartan connection of the Lie group (also called
mean or 0-connection) defined by α(x, y) = 1

2 [x, y] for all x, y ∈ g, i.e. ∇X̃ Ỹ =
1
2 [X̃, Ỹ ] for two left-invariant vector fields.

Indeed, let us consider the one-parameter subgroup γx(t) starting from e with
initial tangent vector x ∈ g. As this is the integral curve of the left-invariant
vector field X̃ = DL.x, its tangent vector is γ̇x(t) = DLγx(t).x = X̃|γx(t). The
curve is a geodesic if and only if it is auto-parallel, i.e. if

∇γ̇x γ̇x = ∇X̃X̃ = α̃(x, x) = 0.

Thus, the one-parameter subgroup γx(t) is a geodesic if and only if α(x, x) = 0.
This condition implies that the operator α is skew-symmetric. However, if any

skew-symmetric operator give rise to a left-invariant connection, this connection
is not always right-invariant. The connection is right-invariant if∇DRgXDRgY =
DRg∇XY for any vector fields X and Y and any group element g. As we have

(dRgX̃) = ˜Ad(g−1).x for any left-invariant vector field X̃ = DL.x, the right-
invariance is equivalent to the Ad-invariance of the operator α:

α
(
Ad(g−1)x,Ad(g−1)y

)
= Ad(g−1).α(x, y),

for any two vectors x, y ∈ g and g ∈ G. We can focus on the infinitesimal version
of this condition by taking the derivative at t = 0 with g−1 = Exp(tz). Since
d
dtAd(exp(tz)).x = [z, x] we obtain the requested characterization of bi-invariant
connections: α([z, x], y) + α(x, [z, y]) = [z, α(x, y)] .

The well known one-dimensional family of connections generated by α(x, y) =
λ[x, y] obviously satisfy this condition (in addition to α(x, x) = 0). It was shown
by Laquer [43] that this family basically describes all the bi-invariant connections
on compact simple Lie groups (the exact result is that the space of bi-invariant
affine connections on G is one-dimensional) except for SU(n) when n > 3: in the
case of SU(n) there is a two-dimensional family of bi-invariant affine connections.

The torsion of a connection can be expressed in the basis of left-invariant

vector fields: T (X̃, Ỹ ) = α̃(x, y) − α̃(y, x) − [̃x, y]. This is itself a left-invariant
vector field characterized by its value at identity T (x, y) = α(x, y) − α(y, x) −
[x, y]. Thus, the torsion of a Cartan-Schouten connection is T (x, y) = 2α(x, y)−
[x, y] and we are left with a unique torsion-free Cartan connection characterized
by α(x, y) = 1

2 [x, y].

Curvature of the Cartan-Schouten Connections As for the torsion, the
curvature tensor R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z can be expressed
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in the basis of left-invariant vector fields and since it is left-invariant, it is char-
acterized by its value in the Lie algebra:

R(x, y)z = α(x, α(y, z))− α(y, α(x, z))− α([x, y], z).

For Cartan connections of the form α(x, y) = λ[x, y], the curvature becomes
R(x, y)z = λ(λ − 1)[[x, y], z]. For λ = 0 and λ = 1, the curvature is obvi-
ously null. These two flat connections are called the left and right (or + and -)
Cartan connections. For the canonical Cartan connection (often called mean or
0-connection), the curvature is R(x, y)z = − 1

4 [[x, y], z], which is generally non
zero.

Among the Cartan-Schouten connection, the +, − and 0 (or left, right and
mean) connections have special properties and are often called the three canon-
ical Cartan connections. As all the Cartan connections of the form α(x, y) =
λ[x, y], these three connections have exactly the same geodesics (left or right
translations of one-parameter subgroups) because they share the same symmet-
ric part ∇XY +∇YX = ∂XY + ∂YX. However, the − connection is the unique
connection for which all the left-invariant vector fields are covariantly constant;
the + connection is the only connection for which all the right-invariant vector
fields are covariantly constant; and the 0-connection is the only one which is
torsion-free (it has curvature, but its curvature tensor is covariantly constant).
Since we will only focus on geodesics in the sequel and not on the parallel trans-
port (which differ for the three connections), we only consider from now on the
(mean or 0) canonical Cartan connection, but the results would be the same for
the + and − connections.

Group Geodesics We call group geodesics the geodesics of the canonical Cartan
connection. We already know that the geodesics going through identity are the
one-parameter subgroups (by definition of the Cartan-Schouten connections).
The canonical Cartan connection being left-invariant, the curve γ(t) = g.Exp(tx)
is also a geodesic. We have indeed γ̇ = DLg.γ̇x and ∇γ̇ γ̇ = DLg∇γ̇x γ̇x = 0. As
γ(0) = DLg.x, we finally obtain that:

Theorem 5. The group geodesic starting at g with tangent vector v ∈ TgG is
γ(g,v)(t) = g. Exp(t.DLg(-1) .v). Thus, the (group) exponential map at point g is:

Expg(v) = γg,v(1) = g. Exp(DLg(-1) .v).

As noted in Theorem 3, there exists for each point g of G a normal con-
vex neighborhood (NCN) in the sense that for any coupe of points (f, h) in
this neighborhood, there exists a unique geodesic of the form Expf (t.v) joining
them which lies completely in this neighborhood. Furthermore, a NCN Ve of the
identity is transported by left-invariance into a NCN g.Ve of any point g ∈ G.

Of course, we could have defined the geodesics using the right translations to
obtain curves of the form Exp(t.DRg(-1) .v).g. In fact, those two types of group
geodesic are the same and are related by the adjoint operator, as shown below.
However, we should be careful that the left and right transport of the NCN at
the identity lead to different NCN of a point g: g.V 6= V.g.
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G

g ∈ G

Vg
γ(0) = f

γ(t) = f. exp(t.x)

h = γ(1)

Fig. 1. Group geodesic convexity. For any point g of G, there exists an open neigh-
borhood Vg of g, such that any couple of points f and h in Vg can be joined by a unique
group geodesics of the form γ(t) = f. Exp(t.x) satisfying f. Exp(x) = h and which is
entirely contained in Vg.

Theorem 6. Let x be in g and g in G. Then we have:

g. Exp(x) = Exp(Ad(g).x).g.

For all g in G, there exists an open neighborhood Wg of e ∈ G (namely Wg =
Ve ∩ g.Ve.g(-1) where Ve is any NCN of e) such that for all m ∈ Wg the quanti-
ties Log(m) and Log(g.m.g(-1)) are well-defined and are linked by the following
relationship:

Log(g.m.g(-1)) = Ad(g). Log(m).

Notice that in general the NCN Wg depends on g unless we can find a NCN Ve
that is stable by conjugation.

These equations are simply the generalization to (abstract) Lie groups of the
well-known matrix properties:

G. exp(V ).G(-1) = exp(G.V.G(-1)) and G. log(V ).G(-1) = log(G.V.G(-1)).

Corollary 1. For all g in G, there exists an open neighborhood Vg of g such that
the local Exponential and Logarithmic maps of the canonical Cartan connection
are well defined and the inverse of each other. Moreover, their left and right
expressions are:

Expg(v) = g. Exp(DLg(-1) .v) = g. Exp(DRg(-1) .v) for v ∈ TgG;

Logg(x) = DLg. Log(g(-1).x) = DRg. Log(x.g(-1)) for x ∈ Vg.

3 Bi-invariant Means in Lie Groups

Lie groups are not vector spaces in general but have a more complicated struc-
ture: instead of a (commutative) addition ‘+’ and a scalar multiplication ‘.’,
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they only have a (non-commutative in general) multiplication ‘×’ and an inver-
sion operator (which corresponds to the scalar multiplication by −1 for vector
spaces). In the case of vector spaces, the arithmetic mean is obviously consis-
tent with the translation and the multiplication by a scalar of input data points
(equivariance rather than invariance). This means that the arithmetic mean is
compatible with the algebraic structure of vector spaces. In the case of groups,
the compatibility with the group structure requires the invariance with respect
to left and right multiplications (the group can be non-commutative) and the
inversion operator. When we translate (or inverse) a given set of samples or a
probability measure, it is reasonable to desire that their mean be translated (or
inversed) exactly in the same way.

Since one-parameters subgroups and their relationship with the Lie algebra
are key properties in a Lie group, one could expect to define a mean using
these features. For instance, the Log-Euclidean mean proposed in [7] maps the
data points {xi} for which the logarithm is well defined to the Lie algebra;
takes the Euclidean mean with (non-negative and normalized) weights wi and
exponentiates the result:

x̄LE = Exp (
∑
i wi. Log(xi)) . (3)

This definition is consistent with conjugation as h.x̄LE .h
(-1) is the log-Euclidean

mean of the points h.xi.h
(-1) thanks to Theorem 6. However, this definition fails

to be invariant under left and right translation!
A well-established approach to define a notion of mean compatible with al-

gebraic operations is to define first a distance (or metric) compatible with these
operations and then to rely on this distance to define the mean. Indeed, one
can generalize the classical notion of arithmetic mean by relying on the minimal
variance or dispersion in the general setting of metric spaces [27]: the Fréchet
mean (also called Riemannian center of mass) of the data points xi with the
non-negative weights wi is the set of points:

arg min
y∈E

∑
i wi.dist(xi, y)α. (4)

The case α = 2 corresponds in vector spaces to the arithmetic mean, the case
α = 1 to the median. The existence and uniqueness of these means on Rieman-
nian manifolds has been studied first by Karcher (who relax the definition to
local minima) [37] and then in [38, 44, 45, 3, 68, 69]. Thus, it seems natural to
investigate if we can define a Riemannian metric compatible with the Lie group
operations.

3.1 Bi-invariant Metrics on Lie Groups

A Riemannian metric is a smooth collection of positive definite bilinear forms
on tangent spaces of the manifold. In the case of Lie groups, we can require the
metric to be left-invariant (invariant by the left translation), or right-invariant.
The left-invariance requires that for any two points g and h of G and any vectors v
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and w of TgG, we have: < DLh.v,DLh.w >Th.gG=< v,w >TgG . In other words, a
metric is left-invariant if all left translations are isometries. It is easy to see that
all left-invariant metrics on a Lie group are determined by the inner product
at the identity: they are thus in bijective correspondence with the Euclidean
structures on the Lie algebra g.

The right-invariance case is obviously similar. In fact, all right-invariant met-
rics can be obtained from left-invariant metrics by ‘inversion’, and vice versa.
This comes from the fact that for any two elements g, h of G, we have g.h =
(h(-1).g(-1))(-1). This shows that the left-translation can be obtained smoothly from
one right-translation and two inversions. Using the operator Inv : f 7→ f (-1), we
have: Lg = Inv ◦Rg(-1) ◦ Inv. We put forward this fact here to simplify the com-
parisons between the geodesics of the left- and right-invariant metrics in Section
4.

Proposition 1. Let <,> be a left-invariant Riemannian metric defined on G.
Then the ‘inverted’ metric �,�

� v, w �g
def
= < DInv|g.v,DInv|g.w >T

g(-1)G
.

is right-invariant with <,>e=�,�e.

Proof. Differentiating the equalities (h.g)(-1) = g(-1).h(-1) givesDInv|h.g◦DLh|g =
DRh(-1) |g(-1) ◦DInv|g, which shows directly that:� DRh|g.v,DRh|g.w �Th.gG=
� v, w �TmG , i.e. �,� is right-invariant. The equality <,>e=�,�e comes
from the fact that DInv|e = −Id, where Id is the identity operator in TeG. This
can be easily seen from the classical result DExp|e = (D Log|0)(-1) = Id and the
equality g(-1) = Exp(− Log(g)) which is valid in an open neighborhood of e.

Riemannian metrics which are simultaneously left- and right-invariant are
called bi-invariant. For these special metrics, we have the very interesting result:

Theorem 7. A left-invariant metric on a Lie group is bi-invariant if and only
if for all g ∈ G, the adjoint operator Ad(g) is an isometry of the Lie algebra g,
or equivalently if and only if for all elements x, y, z ∈ g:

〈 [x, y] , z〉+ 〈 y , [x, z]〉 = 0. (5)

Moreover, a bi-invariant metric is also invariant w.r.t. inversion. Group geodesics
of G (including one-parameter subgroups) are the geodesics of such metrics.

The proof is given in [63, Chap. V] and [58, Chap. 25]. Equation 5 is the infinites-
imal version of Ad(g) being an isometry. It actually specifies that the Levi-Civita
connection of the metric considered is the canonical symmetric Cartan connec-
tion of the Lie group.

An interesting consequence is that any Lie group with a bi-invariant metric
has non-negative sectional curvature. Indeed, the sectional curvature in the two-
plane span(x, y) for x, y ∈ g can be computed using left-invariant vector fields:
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K(x, y) =
〈R(x, y)y , x〉

‖x‖2‖y‖2 − 〈 x , y〉2
=

1

4

‖[x, y]‖2

‖x‖2‖y‖2 − 〈 x , y〉2
, (6)

where we used the expression R(x, y)z = − 1
4 [[x, y], z] of the Riemannian curva-

ture and Eq. 5 to move one bracket from left to right in the inner product. Thus,
taking two orthonormal vectors of the Lie algebra, the section curvature reduces
to K(x, y) = 1

4‖[x, y]‖2 which is non-negative.
Since the metric inducing the notion of mean is bi-invariant, so is the mean,

which is then fully compatible with the algebraic properties of the Lie group. As
a consequence, this notion of mean is particularly well-adapted to Lie groups.
However, contrary to left- or right-invariant metrics, which always exists, bi-
invariant metrics fail to exist for some Lie groups.

Compactness, Commutativity and Bi-invariant Metrics From Theorem
7, we see that if a bi-invariant metric exists for the Lie group, then Ad(g) is
an isometry of g and can thus be looked upon as an element of the orthogo-
nal group O(n) where n = dim(G). As O(n) is a compact group, the adjoint
group Ad(G) = {Ad(g)/g ∈ G} is necessarily included in a compact set, a sit-
uation called relative compactness. This notion actually provides an excellent
criterion, since the theory of differential forms and their integration can be used
to explicitly construct a bi-invariant metric on relatively compact subgroups [63,
Theorem V.5.3.].

Theorem 8. The Lie group G admits a bi-invariant metric if and only if its
adjoint group Ad(G) is relatively compact.

In the case of compact Lie groups, the adjoint group is the image of a compact
set by a continuous mapping and is thus also compact. Thus, Theorem 8 implies
that bi-invariant metrics exist in such a case. This is the case of rotations, for
which bi-invariant Fréchet means have been extensively studied and used in
practical applications, for instance in [53, 54, 49]. In the case of commutative
Lie groups, left and right translations are identical and any left-invariant metric
is trivially bi-invariant. Direct products of compact Abelian groups obviously
admit bi-invariant metrics but Theorem 8 shows that in the general case, non-
compact and non-commutative Lie groups which are not the direct product of
such groups may fail to admit a bi-invariant metric.

3.2 There is No Bi-invariant Metric for Rigid Transformations

In biomedical imaging, the simplest possible registration procedure between two
images uses rigid-body transformations which are characterized by a rotation
matrix and a translation vector. Since there exists bi-invariant metrics on rota-
tions and on translations, one could hope for the existence of bi-invariant metrics.
We show below that this is not the case.

The Lie group of rigid-body transformations in the n-dimensional Euclidean
space, written here SE(n), is the semi-direct product of (SO(n),×) (rotations)
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and (Rn,+) (translations). An element of SE(n) is uniquely represented by a
couple (R, t) ∈ SO(n) n Rn with the action on a point x of Rn being defined
by (R, t).x = R.x + t. The multiplication is then (R′, t′).(R, t) = (R′.R,R′.t +
t′), the neutral element (Id, 0) and the inverse (RT ,−RT .t). The fact that the
product between rotations and translations is semi-direct and not direct (there
is a coupling between rotation and translation multiplication) is at the heart of
the the non-existence of a bi-invariant metric on the product group.

We obtain a faithful representation of SE(n) and its Lie algebra using ho-
mogeneous coordinates:

(R, t) '
(
R t
0 1

)
and (Ω, v) '

(
Ω v
0 0

)
,

where Ω is any skew n × n matrix and v any vector of Rn. In the homoge-
neous representation, the Lie bracket [., .] is simply the matrix commutator,
which gives the following Lie bracket for the Lie algebra se(n) = so(n) n Rn:
[(Ω, v), (Ω′, v′)] = (Ω.Ω′ −Ω′.Ω,Ω.v′ −Ω′.v).

Proposition 2. The action of the adjoint operator Ad of the group of rigid-
body transformations SE(n) at the point (R, t) on an infinitesimal displacement
(Ω, v) ∈ se(n) is given by:

Ad(R, t).(Ω, v) = (R.Ω.RT , −R.Ω.RT .t+R.v).

As a consequence, no bi-invariant Riemannian metric exists on the space of
rigid-body transformations (for n > 1, of course).

Such a result was already known for SE(3) [71]. It is established it here for all
dimensions. In the case of matrix Lie groups, we have the following formula [33]
Ad(M).X = M.X.M (-1) for X ∈ g. Using the classical faithful representation of
rigid-body transformations in homogeneous coordinates, we get the announced
expression of the adjoint: the translation ‘t’ introduces a unbounded term which
prevents the adjoint group from being bounded. Following Theorem 8, it is clear
that no bi-invariant metric exists for rigid-body transformations in n-D (n > 1),
and a fortiori for affine transformations. Other examples of non-compact and
non-commutative groups with no bi-invariant metrics can be found in Section 4.

Our result contradicts a statement of [66] which claimed that a bi-invariant
metric exists on affine transformations when n = 2. The reference backing this
claim was [60], in which it is only stated that though SE(2) is non-compact, it
has a bi-invariant measure (Chapter 7, page 92). But whereas the existence of
an invariant metric determines an invariant measure (see e.g. [55, p.131]), the
converse is false.

3.3 A Barycentric Definition of the Mean?

Since bi-invariant Riemannian metrics can fail to exist on Lie groups, we have
to rely on a different basis to define a general notion of bi-invariant means.
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Let us recall the classical definition of a mean in an affine space: the mean (or
barycenter) of a set of points {xi} with (non-negative and normalized) weights

wi is the unique point m that verifies the barycentric equation Σiwi
−−→mxi =

−→
0 .

Since the space is ’flat’, we get the closed form expression: m = x1 +Σiwi.
−−→x1xi.

At the mean, the sum of the weighted displacements to each of the sample points
is null, i.e. the mean is at the center of the data.

In a Riemannian manifold with Riemannian metric ‖.‖m at point m, the
Fréchet mean of a set of points {xi} with non-negative normalized weights {wi}
are the absolute minima of the variance (the Karcher means being the local
minima):

σ2(m) =
∑
i

wi. dist(m,xi)
2 =

∑
i

wi.‖ logm (xi) ‖2m,

where logm is the Riemannian logarithmic map at the point m. The existence of
Karcher means is ensured when the variance is finite at one point. The uniqueness
of the Fréchet/Karcher mean was investigated by Karcher, Kendall and more
recently by Le, Afsari and Yang [37, 38, 45, 3, 69]. We give here a simplified result
of [38] revisited by [3]:

Theorem 9 (Local uniqueness of the karcher mean [3]). Let κ be an
upper bound of sectional curvatures and inj(M) be the radius of injection (which
can be infinite) of the Riemannian manifold. When the point set is contained in
a geodesic ball B(x, r) with r ≤ r∗ = 1

2 min{inj(M), π/
√
κ}, then there exists a

G

TmG

m xj

xi ∈ G

logm(xi) ∈ TmG

logm(xj)

m satisfies:
∑

i wi logm(xi) = 0.

Fig. 2. Geometric Property of the Karcher mean. When well-defined, the
Karcher mean of a set of points {xi} with non-negative (normalized) weights wi sat-
isfies a barycentric equation. This has a geometric interpretation: in the tangent space
at the mean m, 0 (i.e. m) is precisely the barycenter of the vectors logm(xi) associated
to the weights wi. In this geometrical sense, m is at the center of the points {xi}.
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unique Karcher mean which lies in this ball. Moreover, it is characterized by:

N∑
i=1

wi. logm (xi) = 0. (7)

This ’critical condition’ equation can also be taken as the definition of the mean,
which leads to the notion of exponential barycenter [23, 19].

3.4 A Fixed Point Iteration to Compute the Karcher Mean

An efficient iterative strategy to optimize in Riemannian manifolds is to use
a Newton-like gradient descent algorithm. Newton algorithms on Riemannian
manifolds were first proposed in the general context of optimization on manifolds
[62, 65]. Their convergence has been studied in depth in [47, 32, 1] to cite just a
few of the important works.

However, when the goal is to compute the Karcher mean, which is a non-linear
least-squares problem, it is more efficient to use the Gauss-Newton variant which
does not require the computation of the Hessian function of the Riemannian
distance: this avoids implementing the connection. Although the Gauss-Newton
algorithm is often presented as an approximation of the Newton method, it is
more interesting to see it as the exact minimization of approximated criteria
obtained at each step by linearizing the residuals [52, 2]. When applied to the
variance to compute the Karcher mean, this leads to the very simple iteration
which does not require the implementation of the connection:

mt+1 = expmt

(
1

N

N∑
i=1

wi. logmt(xi)

)
. (8)

This algorithm has been regularly used in the literature with varying justifica-
tions but always excellent numerical efficiency (see e.g. [53, 55] for homogeneous
manifolds including SO(3) and SE(3), [44] for shape spaces). The study of the
convergence of this specific algorithm was performed in [44, 45] in the context
of the Fréchet mean, while [32] investigated more generally the convergence of
algorithms of the type mt+1 = expmt(Y (mt)) to the zeroes of the vector field Y
on a Riemannian manifold.

Theorem 10 (Convergence of the Gauss-Newton Iteration on Rieman-
nian Manifolds [45]). Assuming that the support of the the probability is con-
tained in a geodesic ball B(x, r) with r ≤ r∗ as in Theorem 9. Then the iterates
define at Eq. 8 starting at any point in B(x, r) converges to the unique Karcher
mean lying within the ball.

In the particular case of Lie groups provided with a bi-invariant metric (but
only in this case), the metric geodesics correspond to group geodesics and the
group logarithm and Riemannian logarithm are the same. Equation (7) can thus
be simplified to:

N∑
i=1

wi. Log(m(-1).xi) = 0.
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Moreover, this equation is left-, right- and inverse-invariant, since it derives from
a bi-invariant metric. The corresponding Gauss-Newton iteration can be be writ-
ten as follows.

Algorithm 1 (Barycentric Fixed Point Iteration on Lie Groups.)

1 Initialize m0, for example with m0 := x1.
2 Update the estimate of the mean by:

mt+1 := mt. Exp

(∑
i

wi. Log(mt
(-1).xi)

)
. (9)

3 Test convergence: if ‖ Log(m(-1)

t .mt+1)‖e > ε.σ(mt), go to step 2.

The properties of this algorithm for general Lie groups without a bi-invariant
metric will be studied in depth in Section 3.5. Notice that for such Lie groups,
the group geodesics generally cannot be seen as Riemannian geodesics (as the
canonical Cartan connection is non metric) so that this algorithm cannot be
written mt+1 = expmt(Y (mt)) for some Riemannian metric. Thus, it does not
enter into the type of iterations that are studied in [32].

It was suggested in [66] to compute empirically bi-invariant means of invert-
ible matrices with the same algorithm, even though no bi-invariant Riemannian
metrics exist for such transformations. This works well in practice, but no precise
definition of bi-invariant means was given in this work. Furthermore, the exis-
tence and uniqueness of bi-invariant means was not established, and no proof of
convergence of the iterative strategy was given.

A similar algorithm was proposed to compute the Karcher mean on the Lie
group of similarity transformations in dimension 3 in [25, Algorithm 1]. However,
the algorithm was based on a confusion between the Riemannian and the group
logarithm functions when defining the Riemannian distance [25, Eq. 9]. The same
confusion was made in [25, Section 3] for the definition of the principal geodesic
curves. Since similarity transformations include rigid body transformations (for
which we know that there does not exist a bi-invariant metric), left- or right-
invariant Riemannian geodesics generally differ from group geodesics. Actually,
the proposed algorithm was computing a bi-invariant mean as we will see below
instead of a Karcher mean! The confusion was later corrected in [26] with the
proper use of Riemannian logarithms.

3.5 Bi-invariant Means with Exponential Barycenters

The key idea developed in this work is the following: although bi-invariant met-
rics may fail to exist, the group geodesics always exists in a Lie group and one
can define a bi-invariant mean implicitly as an exponential barycenter, at least
locally. As will be shown in the sequel, this definition has all the desirable in-
variance properties, even when bi-invariant metrics do not exist. Moreover, we
can show the existence and uniqueness of the bi-invariant mean provided the
dispersion of the data is small enough.
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Definition 3 (Bi-invariant Means). Let {xi} be a finite set of data points
belonging to the an open set V such that Log(g(-1).xi) and Log(xi.g

(-1)) =
Ad(g). Log(g(-1).xi) exists for any point g ∈ V, and {wi} be associated (nor-
malized) non-negative weights. The points m ∈ Vg which are solutions of the
following group barycentric equation (if there are some) are called bi-invariant
means. ∑

i

wi. Log(m(-1).xi) = 0 (10)

This definition is close to the Riemannian center of mass (or more specifically
the Riemannian average) of [32] but uses the group logarithm instead of the
Riemannian logarithm. As in [32], the definition implicitly depends on the open
set V. Using the convex hulls of the points as proposed in [32, 3] could be a
solution to solve this issue.

Theorem 11 (Left, Right and Inverse Invariance of Bi-invariant Means).
The bi-invariant means are left-, right- and inverse-invariant: if m is a mean of
{xi} and h ∈ G is any group element, then h.m is a mean of {h.xi}, m.h is a
mean of the points {xi.h} and m(-1) is a mean of {x(-1)

i }.

Proof. If m is a mean of the points {xi} and h ∈ G is any group element, then
Log((h.g)(-1).h.xi) = Log(g(-1).xi) obviously exists for all points h.xi and the
point h.m ∈ Vh.g = h.Vg is a solution of the barycentric equation∑

i

wi. Log((h.m)(-1).h.xi) = 0,

which shows that h.m is a mean of the points {h.xi}. For the right-invariance,
we have to apply Theorem 6:

Ad(m).

(∑
i

wi. Log(m(-1).xi)

)
=
∑
i

wi. Log(xi.m
(-1)).

Since Ad(m) is invertible, the usual barycentric equation, which is left-invariant,
is equivalent to a right-invariant barycentric equation, and the same argument
as for left-invariance can be used to show that m.h is a mean of the points
{xi.h}. Now, to prove the invariance with respect to inversion, note that since
Log(x(-1)) = − Log(x):

(−1)×

(
N∑
i=1

wi. Log(m(-1).xi))

)
=

N∑
i=1

wi. Log(x(-1)

i .(m(-1))(-1)).

This shows that whenever m is a bi-invariant mean of {xi}, m(-1) is a mean of
{x(-1)

i }.

Since there exists a normal convex neighborhood of each point in which the
logarithmic map is well defined in any affine connection space (and in particular
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in a Lie group equipped with the canonical Cartan connection, see Sec. 2.4),
this definition is well posed locally. In fact we have much more: the bi-invariant
mean is locally unique. To define the ’locality’ we rely in the following any
norm ‖.‖ on g such that for all x, y in g, we have: ‖[x, y]‖ ≤ ‖x‖.‖y‖. Since
Logx(y) = Log(x−1.y) is well defined for all x, y in a NCN of m, the function
d(x, y) = ‖ Log(x−1.y)‖ can be used to measure distances in this neighborhood.

Theorem 12 (Local Existence and Uniqueness of the Bi-invariant Mean).
If the data points {xi} belong to a sufficiently small normal convex neighborhood
V of some point g ∈ G, then there exists a unique solution of Eq. (10) in V.
Moreover, the iterated fixed point strategy of Algorithm 1 converges at least at
a linear rate towards this unique solution, provided the initialization is close
enough to g.

The proof will be given in Sections 3.6 and 3.7.
As in the case of the Karcher mean, there is a closed form for the bi-invariant

mean of two points since this point is on the geodesic joining them.

Proposition 3. Let x be in G and y be in a normal convex neighborhood of x.
Then the bi-invariant mean of x and y (with weights 1− α and α) is given by:

m = x. Exp (α Log(x(-1).y)) = x.(x(-1).y)α. (11)

Notice that the explicit formula given by Eq. (11) is quite exceptional. In
general, there will be no closed form for the bi-invariant mean, as soon as there
are more than 2 points. However, there are some specific groups where a closed
form exists for the bi-invariant mean in all cases, and we will detail in Section 4
some examples of this rare phenomenon.

3.6 Existence of the Bi-invariant Mean

Let us now turn to the proof of Theorem 12. Taking yi = g(-1).xi, we can focus
on the proof of this theorem only around the identity e. The fixed point mapping

Φ(m) = m. Exp
(∑N

i=1 wi. Log(m(-1).xi)
)

of Algorithm 1 plays a central role in

our approach.

Proposition 4. Let {wi} be a set of fixed non-negative weights. Then the map-
ping Ψ : gN+1 → g defined by

Ψ(v1, ..., vN , z) = Log

(
Exp(z). Exp

(
N∑
i=1

wi. Log( Exp(−z). Exp(vi))

))
is analytic near 0.

Proof. This comes from the fact that Ψ is a composition of other analytic map-
pings: namely the BCH mapping defined in Subsection 2.2, the mapping v 7→ −v
and the weighted sum (v1, ..., vN ) 7→

∑
i wi.vi. This suffices to ensure that near

0, Ψ is the sum of an absolutely converging infinite multivariate series whose
variables are the v1, ..., vN and z.
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Corollary 2. If the points xi and m belong to a sufficiently small neighborhood
of e, we have the following development:

Log(Φ(m)) =
∑
i

wi. Log(xi) +O((

N∑
i=1

‖ Log(xi)‖+ ‖ Log(m)‖)2). (12)

Proof. Successive applications of the BCH formula (Section 2.2) yield the first
term of the infinite series of Ψ , which is intuitively the usual arithmetic mean
obtained when all the data and m commute. The bound obtained is a direct
consequence of the fact that Ψ is analytic: the order of any remaining term of
the infinite series is equal or larger to two and as a consequence the other terms
can be bounded by a O((

∑N
i=1 ‖ Log(xi)‖+ ‖ Log(m)‖)2).

Corollary 3. For all α in ]0, 1[, there exists a R > 0 such that whenever
‖ Log(xi)‖ ≤ α.R and ‖ Log(m)‖ ≤ R then we also have ‖ Log(Φ(m))‖ ≤ R.

Proof. Notice in Eq. (12) that the norm of the first order term is less than or

equal to α.R. Since the second-order term is ofO((
∑N
i=1 ‖Log(xi)‖+‖Log(m)‖)2),

there exists a constant C such that the second-order term is bounded in the fol-
lowing way:

O

( N∑
i=1

‖ Log(xi)‖+ ‖ Log(m)‖

)2
 ≤ C.(N.αN + 1).R2.

Since R2 is a O(R), C.(N.αN + 1).R2 ≤ (1−α).R provided that R is sufficiently
small. From this we obtain ‖Log(Φ(m))‖ ≤ α.R+(1−α).R = R, which concludes
the proof.

Corollary 3 shows that provided the xi and m are close enough to e, we can
iterate indefinitely Φ over the successive estimates of the ‘mean’ of the xi. This
shows that the barycentric fixed point iteration of Algorithm 1 is stable and
remains indefinitely well-defined when the data is close enough to e.

Existence of the Bi-invariant Mean Let α be in ]0, 1[ and R > 0 such that
for all i ‖ Log(xi)‖ ≤ α.R and ‖ Log(m)‖ ≤ R. Then, we know from Corollary
3 that ‖ Log(Φ(m))‖ ≤ R. Now, let us define BR = {m ∈ G : ‖ Log(m)‖ ≤ R}.
From Corollary 3, we know that Φ defines a mapping from BR to BR. A point
m̃ ∈ BR is a solution of Eq. (10) if and only if m̃ is a fixed point of Φ, i.e.
Φ(m̃) = m̃.

Theorem 13 (Brouwer’s Fixed Point Theorem [59]). Let Ψ : Bn → Bn

be a continuous mapping, where Bn is the n-dimensional Euclidean closed ball,
i.e. Bn = {x ∈ Rn :

∑
i(xi)

2 ≤ 1}. Then Ψ has at least one fixed point.

Corollary 4. With the assumptions made at the beginning of this subsection,
Eq. (10) has at least one solution in BR.
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Proof. Let us define Ψ : Log(BR)→ Log(BR) by Ψ(v) = Log(Φ(Exp(v))). Since
Log(BR) is precisely a closed ball, and thus homeomorphic to the Euclidean
closed ball, then Brouwer’s theorem applies and guarantees the existence of at
least one fixed point of Ψ , which is also a fixed point of Φ and therefore a solution
of Eq. (10).

3.7 The Barycentric Fixed Point Iteration is Converging

In order to prove the convergence of the iterative strategy to a fixed point of Φ,
we need a more powerful fixed point theorem.

Theorem 14 (Banach Fixed Point Theorem [9]). Let (E, d) be a com-
plete metric space and f : E → E be a K−contraction, i.e. for all x, y of E,
d(f(x), f(y)) ≤ K.d(x, y), with 0 < K < 1. Then f has a unique fixed point p
in E and for all sequence (xn)n>0 verifying xn+1 = f(xn), then xn → p when
n→ +∞, with at least a K−linear speed of convergence.

Here, (BR, d) is the complete metric space in which the successive evaluations
of the ‘mean’ live. The distance d is simply given by d(m,n) = ‖ Log(m) −
Log(n)‖. To obtain the existence, uniqueness of a solution of Eq. (10) and linear
convergence of our iterative scheme to this point, it only remains to show that
Φ is a contraction. This leads to the following Proposition:

Proposition 5. When the R in Corollary 3 is chosen small enough, Φ is a
contraction.

Proof. Let us consider E = Log(BR) with Θ : E → E defined as in the proof of
Corollary 4 by Θ(v) = Log(Φ( Exp(v))). The key idea is to see that Θ is smooth
with respect to Log(m) and the ( Log(xi)), with the property that the norm of
the differential of Θ is uniformly bounded in the following way:

‖D Log(m)Θ‖ ≤ O(‖ Log(m)‖+
∑
i

‖ Log(xi)‖). (13)

In fact, Eq. (13) is a simple consequence of the fact that Ψ is analytic: the partial
derivative D Log(m)Θ is therefore also analytic. Its value at 0 is precisely 0, and
therefore all the terms of its infinite series are of order one or larger, which yields
the bound in O(‖ Log(m)‖+

∑
i ‖ Log(xi)‖).

With the bound given by Eq. (13), we can ensure that when R is small
enough, there exists β in ]0, 1[ such that ‖D Log(m)Θ‖ ≤ β for all m. Then we
have the classical bound:

‖Θ(v)−Θ(w)‖ ≤ (sup
z∈E
‖DzΘ‖)‖v − w‖ ≤ β‖v − w‖.

Since β < 1, Θ is by definition a contraction, and so is Φ.
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Corollary 5. As a consequence, when the data {xi} are given close enough to
e, there exists an open neighborhood of e in which there exists a unique solu-
tion to Eq. (10). Moreover, the iterative strategy given above always converges
towards this solution, provided that the initialization to this algorithm is chosen
sufficiently close to the data (so that Corollary 2 can apply). Last but not least,
the speed of convergence is at least linear.

Proof. Simply apply the Banach fixed point theorem to Φ and recall that being
a fixed point of Φ is equivalent to being a solution of Eq. (10).

We have rigorously generalized to any real Lie group the notion of bi-invariant
mean normally associated to bi-invariant Riemannian metrics, even in the case
where such metrics fail to exist. This novel mean has all the desirable invari-
ance properties, and can be iteratively computed in a very efficient way. From
a theoretical point of view, the methods used in this Section, based on con-
traction theorems to show the convergence of an iteration strategy, are quite
close to the ones used in [45, 32] to analyze the existence and uniqueness of
the Fréchet/Karcher mean in Riemannian manifolds. However, the use of the
canonical Cartan connection brings additional properties since we can treat the
problem in the Lie algebra only. It would be interesting to carefully compare the
proofs to better understand what is specific to the use of a Riemannian metric,
what is due to the use of the canonical Cartan connection, and what is generic
for affine connection spaces.

As usual with means in manifolds, the bi-invariant mean is unique only if the
data are close enough to one another: the dispersion should not be too large. In
the next section, we will see more precisely in various situations which practical
limitation is imposed on the dispersion of the data. One does not seem to lose
much in this regard with respect to existing Riemannian bi-invariant means: we
will show for example that the bi-invariant mean of rigid-body transformations
exists if and only if the bi-invariant mean of their rotation parts exists.

4 Bi-invariant Means in Selected Matrix Lie Groups

Let us now detail several insightful cases where the algebraic mean can be ex-
plicitly or directly computed, without using an iterative scheme.

4.1 Scalings and Translations in n-D

Here, we will devote some time to a very instructive group: the group of scalings
and translations in n-D. The study of this (quite) simple group is relevant in the
context of this work, because it is one of the most simple cases of non-compact
and non-commutative Lie groups which does not possess any bi-invariant Rie-
mannian metric. This group has many of the properties of rigid-body or affine
transformations, but with only n+1 degrees of freedom, which simplifies greatly
the computations, and allows a direct 2D geometric visualization in the plane
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for n = 1. For these reasons, this is a highly pedagogical case. In the rest of this
Subsection, we will let this group be written ST (n).

Following the notations of Section 3.2, an element g of ST (n) can be uniquely
represented by a couple (λ, t) in R?+ n Rn where λ corresponds to the scaling
factor and t to the translation part. We define the action of (λ, t) ∈ ST (n) on a
vector of x ∈ Rn by: (λ, t).x = λ.x + t. Accordingly, the composition in ST (n)
is: (λ′, t′).(λ, t) = (λ′.λ, λ′.t + t′) and inversion is (λ, t)(-1) = (1/λ,−t/λ). The
commutator is [(µ, t), (µ′, t′)] = (0, µ.v′ − µ′.v). This example shows that the
semi-direct product of two commutative groups may lead to a non-commutative
one.

The elements of the Lie algebra are of the form (µ, v), where µ ∈ R and
v ∈ Rn and the group exponential Exp(µ, v) has the form

Exp(µ, v) = (eµ, v.(eµ − 1)/µ) ,

where eλ is the scalar exponential of λ. The Taylor expansion (ex − 1)/x =
1+x/2+O(x2) shows that the formula is well posed for µ close or equal to zero.
Thus, we see that the group exponential is simply given by the scalar exponential
on the scaling part, whereas the translation part mixes the multiplicative and
additive influences of both components. Moreover, we see geometrically that in
the upper half space R+×Rn, the curve given by Exp(s.(µ, v)) with s varying in R
is on a straight line, whose equation is t = v.(λ− 1)/µ (µ and v are parameters).

The entire space ST (n) is a normal convex neighborhood: any two points
can be joined by a unique group geodesic. In particular, the group logarithm is
always well-defined and given by:

Log(λ, t) =

(
ln(λ), t.

ln(λ)

1− λ

)
where ln(λ) is the natural (scalar) logarithm of λ. The Taylor expansion ln(λ)/(λ−
1) = 1 + (1− λ)/2 + O((1− λ)2) shows that the above formula and the follow-
ing ones are numerically stable around λ = 1. As for the exponential, we get
the classical logarithm on the scaling part and a mixture of the multiplicative
and additive logarithms on the translation part. We recall that in the case of
an additive group such as (Rn,+), both additive exponential and logarithm are
simply the identity, which is also what we get here when there is no scaling.

The unique group geodesic joining (λ, t) and (λ′, t′) has the form γ(s) =
(λ, t). Exp(s.(µ, v)) with s in [0, 1], where the parameters (µ, v) are given by:

(µ, v) =

(
ln

(
λ′

λ

)
,

(
t′ − t
λ

)
.

(
ln(λ′/λ)

λ′/λ− 1

))
. (14)

Absence of Bi-invariant Metrics. ST (n) is one of the most simple non-
compact and non-commutative Lie groups. As expected for such Lie groups, it
has no bi-invariant metric. To show this, we have to analyze the boundedness
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of the adjoint group of ST (n). The group can be faithfully represented by the

subgroup of triangular matrices of the form

(
λ.Idn t

0 1

)
. The adjoint is:

Ad((λ, t)).(µ, v) ∼
(
λ.Idn t

0 1

)
.

(
µ.Idn v

0 0

)
.

(
1
λ .Idn −

t
λ

0 1

)
= (µ, λ.v − t.µ).

Both factors ‘t’ and ‘λ’ in λ.v− t.µ are not bounded and thus Ad(ST (n)) cannot
be bounded. As a consequence, ST (n) has no bi-invariant metric. Both (R+

?,×)
and (Rn,+) are commutative and thus have bi-invariant metrics, but their semi-
direct product has no such metric.

A Closed Form for the Bi-invariant Mean. Here, since we have explicit
formulas for the group exponential and logarithm, one can use these formulas to
try to solve directly the barycentric Equation (10).

Proposition 6. Let {(λi, ti)} be a set of points in ST (n) and {wi} be associated
non-negative (normalized) weights. Then the bi-invariant mean (λ̄, t̄) is given
explicitly by:

λ̄ = exp(
∑
i

wi. ln(λi)), (weighted geometric mean of scalings),

t̄ =
1

Z

∑
i

wi.αi.ti, (scalings reweighed arithmetic mean of translations),

with αi =
ln(λi/λ̄)
λi/λ̄−1

= 1+ 1
2

(
1− λi/λ̄

)
+O

((
1− λi/λ̄

)2)
and Z =

∑
i wi.αi.

Proof. Just replace in the barycentric equation the exponentials and logarithms
by the formulas given above. Since the scaling component is independent from
the translation one, we simply obtain the geometric mean, which is the bi-
invariant mean for positive numbers. The translation part can be handled simply
by using directly Eq. (14), which yields this simplified expression for the barycen-
tric equation: ∑

i

wi

(
ti − t̄
λ̄

)
.

(
ln(λi/λ̄)

λi/λ̄− 1

)
= 0.

Comparison Between Group and Metric Geodesics. In Figure 3, one can
visually compare the group geodesics to some of their left-invariant and right-
invariant (metric) counterparts for the group ST (1). Interestingly, one of the left-
invariant metrics induces an isometry between this group and the Poincaré half-
plane model for hyperbolic geometry. The scalar product of this scalar metric
is the most simple at the point (1, 0): it is the usual Euclidean scalar product.
Geodesics take a very particular form in this case: they are the set of all the
semicircles perpendicular to the axis of translations and of all (truncated below
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the axis of translations) lines perpendicular to the axis of translations (these
lines can be seen as semicircles of infinite diameter anyway).

Thanks to Proposition 1, we know that the right-invariant Riemannian metric
whose scalar product at (1, 0) is the same as the previous metric can be obtained
simply by ‘inverting’ this left-invariant metric. As a consequence, its geodesics
can be computed simply by inverting the initial conditions, computing the as-
sociated left-invariant geodesic and finally inverting it. As a consequence, the
geodesics of the right-invariant metric visualized in Fig. 3 are somehow ‘inverted
semicircles’. In fact, simple algebraic computations show that these geodesics
are all half hyperbolas.

The simple form taken by left-invariant geodesics is exceptional. In general,
there are no closed form solutions for neither the left- nor the right-invariant
geodesics, and group geodesics are simpler to compute, since in most practical
cases they only involve the computation of a matrix exponential and a matrix
logarithm, for which very efficient methods exist [35, 18].

Fig. 3. Examples of geodesics in the group of scalings and translations in 1D.
In each of the sub-figures, we plot the left-invariant geodesic (red), the right-invariant
geodesic (green) and the group geodesic (blue) starting from the same point with the
same tangent vector. Top row: two examples of one left-invariant, one right-invariant
and one group geodesic starting from two different points. Bottom row: two examples
of left-invariant, right-invariant and group geodesics with three different initial tangent
vectors. Note the particular form taken by group geodesics, which are parts of straight
lines and of the left-invariant geodesics, which are semicircles perpendicular to the
horizontal axis. Right-invariant geodesics are also given in a closed form and are in fact
half hyperbolas.
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4.2 The Heisenberg Group

This is the group of 3D upper triangular matrices M of the form:

M =

1 x z
0 1 y
0 0 1

 .

To simplify notations, we will write an element of this group (x, y, z). The mul-
tiplication is (x1, y1, z1).(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1.y2). Thus
the first two parameters live in a 2D additive group which is independent of the
third parameter, whereas the third additive parameter is influenced by the first
two. The Heisenberg group is thus a semi-direct product of (R2,+) and (R,+),
which is not commutative. The inversion is (x, y, z)(-1) = (−x,−y,−z+x.y) with
neutral element (0, 0, 0).

As in the ST (n) case, the entire Heisenberg group is a normal convex neigh-
borhood and we have:{

Exp(u, v, w) = (u, v, w + 1
2 .u.v),

Log(x, y, z) = (x, y, z − 1
2x.y).

The unique group geodesic joining (x, y, z) and (x′, y′, z′) is of the form γ(s) =
(x, y, z). Exp(s.(u, v, w)), s ∈ [0, 1] where the parameters (u, v, w) are given by:

(u, v, w) =

(
x′ − x, y′ − y, z′ − z +

1

2
.(x.y − x′.y′ + x.y′ − x′.y)

)
. (15)

Bi-invariant Metrics and Bi-invariant Means. As in the ST (n) case, no
bi-invariant metric exists and one has the closed form for the bi-invariant mean.
Interestingly, the bi-invariant mean yields a simple arithmetic averaging of the
first two parameters. The third parameter is also averaged arithmetically, except
that this arithmetic mean is ‘corrected’ by a quadratic function of the first two
parameters of the data.

Proposition 7. The action of the adjoint operator Ad of the Heisenberg group
at a point (x, y, z) on an infinitesimal displacement (u, v, w) is given by:

Ad(x, y, z).(u, v, w) = (u, v,−y u+ x v + w).

As a consequence, no bi-invariance metric exists for the Heisenberg group.

Proof. The last coordinate is unbounded, which prevents compactness.

Proposition 8. Let {(xi, yi, zi)} be a finite set of points in the Heisenberg group
and {wi} be associated non-negative (normalized) weights. Then the bi-invariant
mean (x̄, ȳ, z̄) is given explicitly by:

(x̄, ȳ, z̄) =
(∑

i wixi,
∑
i wiyi,

∑
i wizi + 1

2 ((
∑
i wixi) . (

∑
i wiyi)−

∑
i wixi.yi)

)
.
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Proof. Just replace in the barycentric equation the exponentials and logarithms
by the formulas given above. Since the first two components are additive and
independent from the third one, their bi-invariant mean is simply their arithmetic
mean. The third coefficient case can be handled simply using directly Eq. (15),
which yields this simplified expression for the barycentric equation:∑

i wi
(
zi − z̄ + 1

2 .(x̄.ȳ − xi.yi + x̄.yi − xi.ȳ)
)

= 0.

4.3 Scaled Upper Unitriangular Matrix Group

We can generalize the results obtained on the Heisenberg group to the following
subgroup of triangular matrices:

Definition 4. Let UT (n) be the group of n× n scaled upper unitriangular ma-
trices (upper triangular with scaled unit diagonal). Such matrices have the form:

M = λ.Id+N,

where λ is any positive scalar, Id the identity matrix and N an upper triangular
nilpotent matrix (Nn = 0) with only zeros in its diagonal.

The Heisenberg group is the subgroup of matrices of UT (3) whose λ is always
equal to 1. The situation in this case is particularly nice, since thanks to the fact
that N is nilpotent, one can perform exactly all the usual algebraic operations
in UT (n). The group multiplication and inversion are:

M ′.M = (λ′.Id+N ′).(λ.Id+N) = (λ′.λ).Id+ (λ′.N + λ.N ′ +N ′.N).

M (-1) = (λ.Id+N)(-1) = λ(-1).

(
Id+

N

λ

)(-1)

= λ(-1).

n−1∑
k=0

(−1)k.
Nk

λ

k

.

The group exponential and logarithm are:

Exp(X) = exp(µ.Id+ Y ) = exp(µ.Id). exp(Y ) = eµ.

n−1∑
k=0

(Y )k

k!
.

Log(M) = Log

(
(λ.Id).

(
Id+

1

λ
.N

))
= ln(λ).Id+

n−1∑
k=1

(−1)k+1

k

Nk

λk
.

Using these closed forms, one can derive the following equation:

Log(M ′.M) = ln(λ′.λ).Id+

n−1∑
k=1

(−1)k+1

k
.

(
1

λ
.N +

1

λ′
.N ′ +

1

λ′.λ
.N.N ′

)k
,

which in turn allows to compute the equation satisfied by the bi-invariant mean
M̄ = λ̄.Id+ N̄ in UT (n):

0 =
∑
i wi Log(M̄.Mi

(-1)) = −
∑
i wi Log(M̄ (-1).Mi)

0 =
∑
i wi

(
ln(λ̄.λi

(-1)).Id
)

+
∑
i wi

(∑n−1
k=1

(−1)k+1

k .
(

1
λi(-1)

.Ni
(-1) + 1

λ̄
.N̄ + 1

λ̄.λi(-1)
.Ni

(-1).N̄
)k)

,
(16)
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where Ni
(-1) is the nilpotent part of Mi

(-1). From Eq. (16), we see that λ̄ is simply
the geometric mean of the λi, and that the coefficient of N̄ can be recursively
computed, starting from coefficients above the diagonal. The key idea is that the
kth power of a nilpotent matrix N will have non-zero coefficients only in its kth

upper diagonal.
As a consequence, to compute the coefficients of M̄ above the diagonal, one

only needs to take into account the following terms: Ni
(-1)/λi

(-1) + N̄/λ̄. These
coefficients will simply be a weighted arithmetic mean of the coefficients in the
data, the weights being equal to (wi.λi/λ̄)/S with S =

∑
j wj .λj/λ̄. Using this

result, then one can compute the coefficients above, which are a weighted arith-
metic mean of the corresponding coefficients in the data, with a quadratic correc-
tion involving the previous coefficients. The same phenomenon appears for the
next set of coefficients above, with an even more complex correction involving
all the previously computed coefficients. One can continue this way until all the
coefficients of the mean have been effectively computed.

4.4 General Rigid-Body Transformations

We use in this section the notations previously introduced in Section 3.2. The
group exponential can be computed using directly the matrix representation, or
by identifying the one-parameter subgroups of SE(n). It is given by:

Exp(Ω, v) =

(
eΩ , eΩ .

(∫ 1

0

e−u.Ωdu

)
.v

)
,

where eΩ is the matrix exponential of Ω.

Decomposition of n-D Rotations into 2-D Rotations From classical linear
algebra, we know that the spectral decomposition of a rotation matrix R has a
very special form. Indeed, the characteristic polynomial P (λ) = det(R− λ.Idn)
is a real polynomial of degree n. Thus the n complex eigenvalues are actually
conjugate by pairs (or real) and the polynomial can be factored into at most
bn/2c quadratic terms (potentially with multiplicity) and real linear terms. The
conservation of the norm by the rotation (‖R.x‖ = ‖x‖) shows that the modulus
of all the eigenvalues is 1. Thus, eigenvalues are e±iθj or 1. Since a rotation is
a normal matrix, it can be diagonalized and we conclude that every rotation
matrix, when expressed in a suitable coordinate system, partitions into bn/2c
independent 2D rotations [36]:

R(θj) =

(
cos(θj) − sin(θj)
sin(θj) cos(θj)

)
= exp

(
θj

(
0 −1
1 0

))
.

Conversely, each skew symmetric matrix Ω decomposes the space Rn in a
direct sum of mutually orthogonal subspaces, which are all invariant under Ω
[36]. The decomposition is of this form:
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– k (possibly equal to zero) 2-dimensional vector subspaces Ej on which Ω
acts non trivially.

– A single subspace F of dimension n−2.k (the orthogonal complement of the
span of other subspaces), which is the kernel of Ω.

For any Ej , there exists an orthonormal basis of Ej such that Ω restricted to

Ej is in this basis of the following matrix form: θj

(
0 −1
1 0

)
where θj ( 6= 0) is the

jth angle of rotation of the n−dimensional rotation eΩ .

Existence of the Logarithm. Since we have a faithful representation of SE(n)
in terms of matrices, we can use the matrix criterion for the existence of the
principal logarithm: from Subsection 2.2, we know that an invertible matrix
with no (complex) eigenvalue on the closed half-line of negative real numbers
has unique matrix logarithm with eigenvalues having imaginary parts in ]−π, π[.
This means that the angles of the previous bn/2c 2D rotations decomposing the
rotation R should not go outside ] − π, π[ if we want the logarithm of R to be
well-defined. Otherwise, one cannot define a unique logarithm. This is only the
case for 2D rotations of 180 degrees, whose two ‘smallest’ real logarithms are the
following: (

0 −π
π 0

)
and

(
0 π
−π 0

)
.

Going back to SE(n), we have the following result:

Proposition 9. The logarithm of a rigid-body transformation (R, t) is well-
defined if and only if the logarithm of its rotation part R is well-defined, i.e.
if the angles of the 2D rotations of its decomposition are less than π in absolute
value.

Proof. The logarithm of (R, t) is well-defined if and only if the matrix repre-
senting (R, t) has a principal logarithm, which is equivalent to the fact that it
has no eigenvalue on the closed negative line. Then, this is equivalent to the
fact that R has no eigenvalue on the closed negative line, since the eigenvalues

of the upper triangular matrix (in terms of blocks)

(
R t
0 1

)
depend only on the

blocks in its diagonal, i.e. only on R, and not t. As a consequence, the logarithm
of a rigid-body transformation is well-defined if and only if the logarithm of its
rotation part is well-defined.

Criterion for the Existence of the Bi-invariant Mean. We have seen in
Section 3.2 that no bi-invariant metric exists in the rigid-body case. One may
now ask the question: is there a simple criterion for the existence/uniqueness of
the bi-invariant mean of rigid-body transformations? When bi-invariant metrics
exist, one has the criterion given by Theorem 9: the mean exists and is unique
as long as the data are include in a geodesic ball of radius strictly less than
r∗ = 1

2 min{inj(M), π/
√
κ}.
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Let us investigate first the n-D rotations part with the bi-invariant Froebenius
metric 〈X , Y 〉 = 1

2Tr(XY T ), which lead to the Riemannian (squared) distance
dist(Idn, exp(Ω))2 = 1

2Tr(ΩΩT ) for any skew-symmetric matrix Ω ∈ se(n).
Since any rotation can be decomposed into independent 2D rotations and since
the trace does not depend on the basis in which we express our rotation, the
Riemannian (squared) distance of a rotation R to the identity is the sum the
squares of the 2D angles: dist(R, Id)2 =

∑
i θ

2
i . The minimal distance to the cut

locus is obtained for each 2D rotation independently, so that we have inj(Id) =
inj(SO(n)) = π.

The sectional curvature in the two-plane spanned by two orthonormal vectors
x, y ∈ g is K(x, y) = 1

4‖[x, y]‖2 according to Eq. 6. We can get the sectional
curvature everywhere else by left or right translation. Let Eij = eie

T
j − ejeTi be

the matrix with 1 for the coefficient ij, −1 for the coefficient ji and 0 everywhere
else. One verifies that the n(n−1)/2 vectors Eij with j > i form an orthonormal
basis of the Lie algebra of skew-symmetric matrices. Now, the commutator of
these basis vectors

[Eij , Ekl] = δjkEil + δilEjk + δjlEki + δkiElj ,

is non-zero if one of the indices i, j is equal to one of the indices k, l. In the case
j = l for instance then we get [Eij , Ekj ] = Eki and thus the sectional curvature
is K(Eij , Ekj) = 1/4. We obtain the same result for the other cases where the
commutator is non-zero. As a conclusion, the sectional curvature is bounded
above by κ = 1/4, and the maximal radius is r∗ = 1

2 min{π, 2π} = π/2.
Thus, if all the data are included in a geodesic ball of radius r < r∗ = π/2,

then the largest 2D angle of rotation of Rj
(-1).Ri (and thus all of them) is less

than 2r < π for any couple of data Ri and Rj . In consequence, the principal
logarithm of Rj

(-1).Ri is well-defined. Thus, in the general conditions of existence
and uniqueness of the Riemannian mean of rotations, the rotation part of the
bi-invariant mean is well-defined. Remarkably, this is sufficient to guarantee the
existence and uniqueness of the bi-invariant mean of rigid-body transformations.

Theorem 15. Let {Ri, ti} be a set of rigid-body transformations belonging to a
geodesic ball of radius r < π/2. Then (according to Theorem 9) the bi-invariant
Riemannian mean of their rotation parts is well-defined and there exists a unique
bi-invariant mean for on SE(n).

Proof. Let R̄ be the bi-invariant Riemannian mean of the rotation parts of the
data. The bi-invariant mean of the data is necessarily of the form (R̄, t), since
in an open neighborhood of the rotation parts, R̄ is the only solution of the
rotation part of the bi-invariant barycentric equation, which does not depend
on translations. R̄ is included in the same geodesic ball as the rotations and
therefore, for any Ri of the data, the 2D angles of rotation of R̄(-1).Ri are all
smaller than or equal to π − C, where C is a positive constant smaller than π.

Let us now check whether there exists a unique translation t̄, which satisfies
the barycentric equation of bi-invariant means, which writes here:∑

i

wi. Log((R̄, t̄).(Ri, ti)
(-1)) = 0. (17)
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From Proposition 9, we know that the logarithm of (R̄, t).(Ri, ti)
(-1)) is well-

defined for any value of t, since the logarithm of R̄.Ri
T is well-defined for all i.

Now, does there exist a unique value of t (by definition t̄) satisfying Eq. (17)?
We have: (R̄, t).(Ri, ti)

(-1) = (R̄.RTi , R̄.(−RTi .ti) + t). Let us write M(Ω) =

eΩ .
∫ 1

0
e−u.Ωdu. In terms of translations, Eq. (17) writes:

∑
i wi.M

(
log(R̄.RTi )

)(-1)
.
(
R̄.(−RTi .ti) + t̄

)
= 0.

⇐⇒(∑
i wi.M

(
log(R̄.RTi )

)(-1))
.t̄ =

∑
i wi.M

(
log(R̄.RTi )

)(-1)
.RTi .ti.

(18)

Thus, we see that the existence and uniqueness of t̄ resorts to the invertibility
of the matrix

∑
i wi.M

(
log(R̄.RTi )

)(-1)
. Under the assumptions described above

on rotations, this matrix is invertible by Lemma 1 below, which concludes the
proof.

Lemma 1. Let {Ωi} be a set of skew symmetric matrices such that the norm
of their largest (complex) eigenvalue is smaller than π − C, with C > 0. Let

M(Ω) be equal to eΩ .
∫ 1

0
e−u.Ωdu for any skew symmetric matrix. Then for all

Ωi, M(Ωi) is invertible, and for any non-negative weights {wi},
∑
i wi.M(Ωi)

(-1)

is also invertible.

Proof. In an appropriate orthonormal basis, the skew symmetric matrix Ω can
be decomposed into a zero matrix in the kernel of Ω and k (possibly equal to

zero) 2-dimensional matrices of the form θj

(
0 −1
1 0

)
, in the mutually orthogonal

subspaces Ej , where θj ( 6= 0) is the jth angle of rotation of the n−dimensional
rotation eΩ .

We can explicitly compute M(Ω) in the above subspaces. First, in the kernel
F of Ω, M(Ω) is simply the identity. In the subspace Ej , we have:

exp(Ω)|Ej ∼
(
cos(θj) −sin(θj)
sin(θj) cos(θj)

)
.

A few extra manipulations yield:

M(Ω)|Ej =

(
exp(Ω).

∫ 1

0

exp(−u.Ω)du

)
|Ej ∼

(
sin(θj)
θj

cos(θj)−1
θj

− cos(θj)−1
θj

sin(θj)
θj

)
.

Thus M(Ω) is invertible whenever 0 < |θj | < 2.π for all j(which is more than
we need), since the determinant of the latter matrix is equal to 2(1−cos(θj))/θ

2
j ,

which is positive for |θj | < 2.π. Furthermore, a direct computation shows that
the inverse of M(Ω) takes the following form in Ej :

M(Ω)(-1)|Ej ∼

(
θj . sin(θj)

2.(1−cos(θj)
θj
2

− θj2
θj . sin(θj)

2.(1−cos(θj)

)
.
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For |θj | < π − C, some elementary calculus shows that there exists a constant

K > 0, such that
θj . sin(θj)

2.(1−cos(θj)
> K. As a consequence, we have:

M(Ω)(-1)|Ej ∼
(
a b
−b a

)
,

with a > K > 0. Under the assumption that |θj | < π − C for all j, this implies
that M(Ω)(-1) = S+A, where S is a symmetric positive-definite matrix with all
its eigenvalues larger than K and A is a skew symmetric matrix. Then let us
take a set of skew symmetric matrices {Ωi} whose eigenvalues are smaller than
π − C. Any convex combination of the M(Ωi)

(-1) writes:

∑
i

wi.M(Ωi)
(-1) =

(∑
i

wi.Si

)
+

(∑
i

wi.Ai

)
= S̃ + Ã,

where S̃ is still symmetric positive-definite and Ã is skew symmetric. To see that
this quantity is invertible, remark that (S̃+Ã).x = 0 implies xT .S̃.x+xT .Ã.x = 0.
But since xT .Ã.x = (xT .Ã.x)T = −xT .Ã.x = 0, then (S̃ + Ã).x = 0 implies
xT .S̃.x = 0, which is equivalent (S̃ is symmetric positive-definite) to x = 0.
Consequently S̃ + Ã is invertible and this ends the proof.

4.5 2D Rigid Transformations

Contrary to the general case, the bi-invariant mean of 2D rigid-body transfor-
mations have a closed form. The underlying reason is that SO(2), the group
of 2D rotations, is commutative. As a consequence, one can compute explicitly
the bi-invariant mean of the rotation parts of the data and deduce from it the
translation part using the barycentric equation, like in the proof of Theorem 15.
More precisely, we have:

Proposition 10. Let {(Ri, ti)} be a set of 2D rigid-body transformations, such
that the angles of rotation of the rotations Ri.R

T
j are all strictly less than π. Then

the bi-invariant mean (R̄, t̄) associated to the weights {wi} is given explicitly by:{
R̄ = R1. exp

(
+
∑
i wi. log

(
RT1 .Ri

))
,

t̄ =
∑
i wi.Z

(-1).M
(
log
(
R̄.RTi

))(-1)
.RTi .ti,

(19)

with the following formulas for M and Z:

M

((
0 −θ
θ 0

))(-1)
def
=

(
θ. sin(θ)

2.(1−cos(θ)
θ
2

− θ2
θ. sin(θ)

2.(1−cos(θ)

)
, Z

def
=
∑
i

wi.M
(
log(R̄.RTi )

)(-1)
.

Example of Bi-invariant Mean. Let us take a look at the example chosen
in [56, p.31]. Let T1 =

(
R(π/4) , [−

√
2/2,
√

2/2)]T
)
, T2 = (Id2 , [

√
2, 0]T ) and

T3 = (R(−π/4) , [−
√

2/2,−
√

2/2]T ) be three rigid-body transformations in 2D.
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We can compute exactly the bi-invariant mean of these rigid-body trans-
formations with Eq. (19). A left-invariant Fréchet mean can also be computed
explicitly in this case thanks to the simple form taken by the corresponding
geodesics. And finally, thanks to Proposition 1, the analogous right-invariant
Fréchet mean can be computed by inverting the data, computing their left-
invariant mean and then inverting this Fréchet mean. The log-Euclidean mean
can also easily be computed in closed form. This yields (after a number of simple
but tedious algebraic manipulations):

– Left-invariant Fréchet mean: (Id2 , [0, 0]T ),

– Log-Euclidean mean:
(
Id2 , [

√
2−π4
3 , 0]T

)
'
(
Id2 , [0.2096, 0]T

)
,

– Bi-invariant mean:
(
Id2 , [

√
2−π4

1+π
4 .(
√

2+1)
, 0]T

)
' (Id2 , [0.2171, 0]T ),

– Right-invariant Fréchet mean:
(
Id2 , [

√
2

3 , 0]T
)
' (Id2 , [0.4714, 0]T ).

Interestingly, we thus see that the mean rotation angle is exactly the same in
all cases. But the mean translations are different, and the bi-invariant mean
is located nicely between the left- and right-invariant Fréchet means. This is
quite intuitive, since the bi-invariant mean can be looked upon as an in-between
alternative with regard to left- and right-invariant Fréchet means.

Although the Log-Euclidean mean is not left- nor right-invariant, it is actually
quite close to the bi-invariant mean. In fact both means do correspond when
the mean transformation is the identity, but differ at other points due to the
curvature of the canonical Cartan connection.

4.6 General Linear Transformations

In the linear group GL(n), the determinant of the bi-invariant mean is equal
to the scalar geometric mean of the determinant of the data. Our bi-invariant
mean can thus be looked upon as a generalization of the geometric mean to
invertible linear transformations. This generalization is not the only possible
one. For instance, the Log-Euclidean mean has the same property. However, the
Log-Euclidean mean is neither left- nor right-invariant (and is restricted to linear
transformations whose principal logarithm is well-defined), which is not the case
for the bi-invariant mean.

Proposition 11. Let {Ti} be a set of linear transformations in GL(n) and let
{wi} be (normalized) non-negative weights, such that their bi-invariant mean T̄
uniquely exists. Then, we have:{

if det(Si) > 0, for all i, then det(T̄ ) = exp (
∑
i wi. ln(det(Si))) ,

if det(Si) < 0, for all i, then det(T̄ ) = − exp (
∑
i wi. ln(−det(Si))) ,

Proof. Here, we extend the scope of our work to a Lie group which has two
distinct sheets (positive or negative determinant) and it is thus not connected.
The mean obviously does not exist when there are some data on both sheets
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as there is no curve (thus no geodesic) to join the points on both sides. When
the bi-invariant mean is well-defined, then all of the determinants of the data
have the same sign, which is also the sign of T̄ , and we can actually restrict the
analysis to this connected leaf of the manifold.

To prove our result, we will rely only on two ingredients: the barycentric
equation (10) and the property: det(M) = exp(Trace(log(M))), which holds for
any square matrix with a principal logarithm. This (classical) equality can be
shown for example using the Jordan (or Schur) decomposition of the matrix M .
Taking the trace of the barycentric equation and then the (scalar) exponential,
we get:

1 = Πi exp
(
wi.Trace

(
ln
(
det
(
T̄ (-1).Ti

))))
.

Then, using det(A.B) = det(A).det(B) and det(T̄ (-1).Ti) = |det(T̄ )|(-1).|det(Si)|,
we get the geometrical interpolation of determinants:

1 =
∣∣det

(
T̄
)∣∣(-1) . exp

(∑
i

wi. ln (|det(Si)|)

)
,

which yields the result.

Symmetric Positive Definite (SPD) Matrices. SPD matrices are called
tensors in medical image analysis. They are used for instance to encode the
covariance matrix of the Brownian motion (diffusion) of water in Diffusion Tensor
Imaging (DTI) [10, 46] or to encode the joint variability at different places (Green
function) in shape analysis [24].

A number of teams in medical image processing proposed independently to
endow this space with the affine-invariant metric 〈X , Y 〉Σ = Tr(V.Σ−1.W.Σ−1)
which is completely independent of the choice of the coordinate system. This
allowed to generalize to SPD-valued images a number of image processing algo-
rithms [57]. The same metric was previously introduced in statistics to model
the geometry of the multivariate normal family (the Fisher information metric)
[15, 61, 16]. We showed in [56] that there is actually a one-parameter family of
such affine-invariant metrics

〈X , Y 〉Σ = Tr(V.Σ−1.W.Σ−1) + β.Tr(V.Σ−1).Tr(W.Σ−1) with β > − 1

dim

that share the same invariant connection ∇XY | = − 1
2 (V.Σ−1.W +W.Σ−1.V ).

The SPD manifold can be seen as a sub-manifold of GL(n), but it is not
a subgroup. Interestingly, the Fréchet mean associated to affine-invariant Rie-
mannian metrics on the SPD space coincides with the bi-invariant mean of SPD
matrices, looked upon as elements of GL(n). Indeed, the affine-invariant Fréchet
mean Σ̄ of a set of SPD matrices Σ1, ..., ΣN is defined implicitly by the following
barycentric equation: ∑

i

wi. Log(Σ̄−
1
2 .Σi.Σ̄

− 1
2 ) = 0, (20)
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which happens to be exactly equivalent to our general equation (10) for bi-

invariant means (just multiply (20) on the left by Σ̄−
1
2 and on the right by Σ̄+ 1

2

to obtain (10)). Intuitively, this means that our bi-invariant mean naturally
unifies into a very general framework a number of well-established notions of
means for various types of data living in geometric spaces (e.g, tensors, rotations,
translations). The underlying reason is that tensors are normal matrices.

5 Perspectives

In this paper, we have presented a general framework to define bi-invariant means
in Lie groups as exponential barycenters of the canonical Cartan connection.
This new mean is invariant with respect to left- and right-multiplication, as well
as inversion. We provided an iterative fixed point algorithm which converges at
least linearly to this mean. From this optimization point of view, it would be
interesting to extend the barycentric fixed point iteration into a Newton iteration
on Lie groups [47], although the computation of the covariant derivative of the
vector field could be a computational issue.

Global Uniqueness Conditions? In this work, we only showed the local exis-
tence and uniqueness of the bi-invariant mean for sufficiently concentrated data.
However, we have no clear way to identify whenever data are sufficiently concen-
trated or not, contrarily to Riemannian manifolds where we now have fairly tight
conditions to ensure the existence and uniqueness of the Riemannian barycenter
[3, 68, 69]. Given an inner product on the Lie algebra of the group, we have two
canonical Riemannian metrics which are respectively left- and right-invariant.
One could conjecture that whenever the Fréchet mean is unique for some left- or
right-invariant metric, then the bi-invariant mean exists and is unique as well,
as we showed here for the particular case of rigid-body transformations.

An idea to investigate this link is the following. The bi-invariant mean defined
in this work is a special instance of the exponential barycenters proposed in [23,
5, 6] for Riemannian manifolds. The existence and uniqueness of the exponential
barycenters was recently established in affine connection manifolds which are
convex with semi-local convex geometry (CSLCG) by Arnaudon and Li [4]. In
our case, the whole group equipped with the canonical Cartan connection cannot
be CSLCG, but it should be possible to define a separating function using left- or
right-invariant Riemannian metrics such that the regular geodesic balls ensuring
the uniqueness of the Fréchet mean actually define CSLCG neighborhoods with
the canonical Cartan connection.

Higher Order Moments The mean is an important statistic which indicates
the location of the distribution in the group, but higher order moments are
also needed to characterize the dispersion of the population around this central
value. The existence of a unique bi-invariant mean m of N samples {xi} is based
on the existence of a convex normal neighborhood of m containing the data
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points. In this neighborhood, there exists a unique group geodesic joining any
point x to each data point xi, parameterized by its tangent vector Logx(xi) =
DLx|e.Log(x(-1).xi) at x. Thus, exactly as in Riemannian manifolds [55], we can
locally linearize the Lie group around the mean using the map Logx and define
the 2-covariant tensor:

Σ(x) =
1

N

∑
k

Logx(xk)⊗ Logx(xk) ∈ TxG ⊗ TxG,

where the direct product ⊗ means that in any basis of TxG, the coordinates are
[Σ(x)]ij= 1

N

∑
k[ Logx(xk)]i.[ Logx(xk)]j . Higher order empirical moments could

be computed in the same way.
However, one should be careful that this definition is not the equivalent of

the empirical covariance matrix without an auxiliary (Riemannian) metric to
lower the indices of the tensor and turn it into a bi-linear form (an element
of T ∗xG ⊗ T ∗xG). In particular, the usual interpretation of the coordinates of
the covariance matrix using the scalar products of data with the basis vectors
(Σij = E[〈 x , ei〉 . 〈 x , ej〉]) is valid only if we have a reference metric that allows
us to define the orthonormality of the basis vectors ei. Likewise, diagonalizing
the Σ to extract the main modes of variability only makes sense with respect to
a local metric: changing the metric of TmG will not only change the eigenvectors
and the eigenvalues but also potentially the order of the eigenvalues. This means
that Principle Component Analysis (PCA) cannot be generalized to the affine
connection space setting.

Bi-invariant Mahalanobis Distance Despite the absence of a canonical ref-
erence metric, some interesting tools can be defined from the 2-covariant tensor
in a bi-invariant way without having to rely on an auxiliary metric. One of them
is the Mahalanobis distance of a point y (in the normal convex neighborhood
specified above), which can be defined as:

µ2
(m,Σ)(y) = [ Logm(y)]iΣ

(−1)
ij [ Logm(y)]j . (21)

In this formula, m is the bi-invariant mean and Σ
(−1)
ij are the coefficients of the

inverse of Σij in a given basis. One verifies that this definition does not depend
on the basis chosen for TmG. Furthermore, the Mahalanobis distance is invariant
by left and right translation. Indeed, if we have x′i = g.xi and y′ = g.y, then we
have m′ = g.m. Using the equality Logm′(x′) = DLg|m.Logm(x), we see that the
left translation just amounts to jointly change the coordinate system of both the
covariance Σ′ and the coordinates of Logm′(y′). Thus, we have the left-invariance
of the Mahalanobis distance: µ2

(m′,Σ′)(y
′) = µ2

(m,Σ)(y). The invariance by right
translation is obtained similarly from the right expression of the local logarithmic
map (Corollary 1). This simple extension of the Mahalanobis distance suggests
that it might be possible to extend much more statistical definitions and tools
on Lie groups in a consistent way.
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