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Abstract
Symmetric positive definite (SPD) matrices are geometric data that appear in many applica-
tions. They are used in particular in Diffusion tensor Imaging (DTI) as a simple model of the
anisotropic diffusion of water in the tissues. This chapter extends the Riemannian comput-
ing statistical estimation framework of Chapter 1 and 2 to manifold-valued images with the
example of SPD matrices. SPD matrices constitutes a smooth but non-complete manifold
with the classical Euclidean metric on matrices. This creates important computational prob-
lems for image processing since one easily passes the boundaries to end-up with negative
eigenvalues.
This chapter describes how we can give this space more interesting properties thanks to
invariance: asking the Riemannian metric on covariance matrices to be invariant by affine
changes of coordinates of the space leads to a one-parameter family of affine-invariant met-
rics that share the same affine connection. The geodesics are thus the same for all these
metrics, even if the distance in the direction of scaling is different. With this structure, SPD
matrices with null eigenvalues are at an infinite distance of any SPD matrix so that they
cannot be reached in finite time. The space which is obtained is a typical example of a
Hadamard space of non-positive curvature. It is also a symmetric Riemannian space of non-
constant curvature. This can be seen thanks to the explicit computation of the Riemannian,
sectional and Ricci curvatures.
Thanks to the relative simplicity of the geodesic equation, we can work out in detail the algo-
rithms need for statistical estimation, for instance the Fréchet mean computation. Moreover,
the knowledge of the Ricci curvature allows to see clearly what is controlling the difference
between tangent PCA and Principal geodesic Analysis (PGA). Building on the reformulation
of the mean value in manifolds as the minimization of an intrinsic functional, we also gener-
alize many important image processing algorithms such as interpolation, filtering, diffusion
and restoration of missing data to manifold-valued images.
We illustrate this framework on diffusion tensor image processing and on the modeling of the
brain variability from a dataset of lines on the cerebral cortex. We also discuss alternative
choices to the affine-invariant metrics. Log-Euclidean metrics, for instance, provide a very
fast approximation when the data are concentrated with respect to the curvature. Other
metrics give to the SPD space a positive curvature with a boundary at finite distance for
rank-deficient matrices. Since the metric determines the main properties of the space, one
should carefully review the assumptions that one can do on our data. Once the metric is
chosen, the implementation of the geodesics (Exp and Log) provides once again the basis
for all our manifold-valued image processing algorithms.

c© Elsevier Ltd.
All rights reserved. 1
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Manifold-valued image processing with SPD matrices 3

1. Introduction

Symmetric positive definite (SPD) matrices are geometric data that appear in many
applications. In medical imaging, SPD matrices are called tensors when they model
the covariance matrix of the Brownian motion of water in Diffusion Tensor Imaging
(DTI) [BMB94, LBMP+01]. They were also used to encode the joint variability at
different places in shape analysis [FAP+05, FAP+07], and they are classically used in
computer vision and image analysis to guide the segmentation, grouping and motion
analysis [MLT00, WB02, BWBM06, WH06]. SPD matrices are also used as local
metrics in numerical analysis to drive the size of adaptive meshes to solve PDEs in
3D more efficiently [BGM97]. In echo-Doppler or radar images, circular complex
random processes with a null mean are characterized by Teoplitz Hermitian positive
definite matrices [MSH05]. In brain-computer interfaces (BCI), the time-correlation
of electro-encephalogram (EEG) signals are encoded through positive definite matri-
ces and the choice of the metric on this space has been shown to drastically impact
classification algorithms on these extremely low signal-to-noise ratio data [BBCJ12].

The space of SPD matrices is a smooth manifold which is not a vector space with
the usual additive matrix structure. Indeed, a classical result in linear algebra states
that P is SPD if and only if all its symmetric sub-matrices (including P itself) have non-
negative determinant [Rao65]. Symmetric sub-matrices are obtained by removing at
most dim(P) − 1 rows and the corresponding columns. The space of SPD matrices is
thus a subset of symmetric matrices delimited by multiple polynomial constraints on
the coefficients. Since all these constraints are homogeneous (invariant under the mul-
tiplication by a positive scalar), this defines a convex half-cone in the vector space of
symmetric matrices. Thus, convex operations like the mean are stable, but many other
classical operations on SPD matrices are non convex and lead to matrices that are not
positive definite. Gradient descent with the classical Froebenius (Euclidean) norm, for
instance, amounts to evolve along a line in the vector space of symmetric matrices:
one side of this line inevitably hit the boundary of the cone. When performing reg-
ularization of DTI images, there is thus almost inevitably a point in the image where
the time step is not small enough and where we end-up with negative eigenvalues. A
large part of the literature before 2006 was trying to get around these problems using
the spectral decomposition of SPD matrices (e.g. [Tsc02, CTDF02]). However, pro-
cessing independently the rotation (eigenvectors basis trihedron) and the eigenvalues
is creating a continuity problem around equal eigenvalues.

To cope with that problem in the context of Diffusion Tensor Images (DTI), several
authors proposed concurrently to consider Riemannian metrics on the space of SPD
matrices which are invariant by affine change of the underlying space coordinates.
The family of all affine-invariant metrics (up to a global scaling factor) induce the
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Riemannian distance:

dist2(P,Q) = Tr
(
L2

)
+ βTr(L)2 with L = log(P−1/2QP−1/2), (0.1)

where log stands for the matrix logarithm and β > −1/n is a free real parameter. The
space of SPD matrices becomes a very regular Hadamard manifold structure (a space
without cut-locus globally diffeomorphic to a Euclidean space). This considerably
simplifies the computations compared to other non-invariant metrics. With this struc-
ture, symmetric matrices with null and infinite eigenvalues are both at an infinite dis-
tance of any SPD matrix: the cone of SPD matrices is mapped to a homogeneous space
of non-constant curvature without boundaries. Moreover, there is a unique geodesic
joining any two SPD matrices, the mean of a set of SPD matrices exists and is unique,
and we can even define globally consistent orthonormal coordinate systems of tan-
gent spaces. Thus, the structure obtained has many properties of Euclidean spaces
even if it remains a manifold because of the curvature. The drawback with respect to
the Euclidean case is the important increase of computational complexity due to the
use matrix exponential and logarithms (computed through series or diagonalization of
symmetric matrices) in the Riemannian distance / geodesics.

The affine-invariant metric with β = 0 has been put forward independently for sev-
eral applications around 2005. [FJ07] used it for the analysis of principal modes of
sets of diffusion tensors; [Moa05] analyzed its mathematical properties which were
exploited in [BMA+05] for a new anisotropic DTI index; [PFA06] suggested it as the
basis to develop the SPD matrix-valued images processing algorithms presented in
this Chapter; [LRDF06] came to the same metric by looking for a natural metric on
the space of Gaussian distributions for the segmentation of diffusion tensor images.

In statistics, this metric has been introduced in the 1980ies to model the geometry
of the multivariate normal family [BR82, Sko84, CO91]. In this field, it is known as
the Fisher-Rao metric. This metric is well known in other branches of mathematics
[Bha03]. In computer vision, the metric was rediscovered to compute with covariance
matrices [FM99]. The Levi-Civita connection of that metric was used in [HM94] to
develop geometric integrators for flows of dynamic systems on the space of symmet-
ric matrices. The geodesic walk along the geodesics of this metric was used for the
anisotropic regularization of diffusion tensor images in [CTDF04] and [Bie04]. It is
noticeable that so many different approaches lead to the same metric on the SPD space.

Although this affine-invariant Riemannian metric is often thought to be unique, a
slightly different but still invariant metric was proposed in [LMO00] using a geometric
embedding construction. It turns out that both metrics actually share the same affine
invariant connection, so that there is an isometry between the two SPD spaces. The
uniqueness of that affine invariant connection on SPD matrices is well known in dif-
ferential geometry [Nom54, KN69, Hel78, Gam91]. However, the family of all affine
invariant metrics was apparently not described before [Pen06b, Pen08].
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Manifold-valued image processing with SPD matrices 5

Other metrics on SPD matrices with different properties can be constructed. By
trying to put a Lie group structure on SPD matrices, Vincent Arsigny discovered the
Log-Euclidean metrics [AFPA06, AFPA07, AFPA05]. These metrics give a vector
space space structure to the SPD matrix manifold while keeping most of the interesting
affine-invariant properties (Section 6.1). This drastically simplifies the algorithms and
speeds up computations. Other Riemannian or non Riemannian metrics were also
proposed. We briefly present some of them for completeness in Section 6.

Chapter organization
In Section 2, we first describe the matrix exponential and logarithm function on sym-
metric matrices and their differential. Then we turn in Section 3 to the determination
of Riemannian metrics that are invariant with respect to the natural action of the linear
group on covariance matrices. We explicitly construct one affine-invariant Rieman-
nian metric on SPD matrices, determine its geodesics and explicit formulas for the
Riemannian exp and log maps. Then, we turn to the description of all the affine-
invariant metrics. We show that there exists a one-parameter family of such metrics
(up to a global scaling factor) which are sharing the same Levi-Civita connection. Es-
tablishing a globally orthonormal coordinate system for each of these metrics allows
to compute explicitly the sectional, Ricci and scalar curvature. They are shown to be
non-positive and bounded from below. Moreover, the expression of the curvatures is
identical at all the points of the manifold although it is not constant in all directions.
This is a feature of symmetric (and more generally homogeneous) spaces.

Section 4 illustrates how the statistical setting of Chapter 2 can be implemented on
SPD matrices endowed with an affine-invariant metric. Because the space is Hadamard,
the Fréchet mean is unique. However, the negative curvature has an important impact
on the gradient descent algorithms and we illustrate cases where the time-step has to be
adapted. The discussion of the generalized Gaussian distribution also illustrates how
the Ricci curvature modifies the classical inverse relationship between the covariance
matrix and the concentration parameter of the Gaussian.

We turn in Section 5 to the generalization of these statistical tools to more general
manifold-valued image processing algorithms. Using weighted Fréchet means, we
generalize many different types of interpolation, convolutions, isotropic and anisotropic
filtering algorithms to manifold-valued images.

Because our manifold-valued image processing algorithms only depend on the cho-
sen metric, they can also be used with other families of Riemannian and extrinsic
metrics. We detail in Section 6 some of the metrics on SPD matrices that were pro-
posed in the literature. Certain metrics like the log-Euclidean metrics do not display
the full affine-invariance but conserve many of the good properties while providing a
Euclidean structure to the space that considerably simplifies the computational frame-
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work. Other metrics also give a symmetric space structure but of positive curvature:
matrices with zero eigenvalues are then again at a finite distance of SPD matrices.
There is indeed no canonical metric on SPD matrices that is suited to all applications:
the choice of the metric should be guided by the invariance and computational proper-
ties that are important for the application.

Finally, the use of our manifold-valued image processing algorithms is illustrated
in Section 7 with an application to the joint estimation and anisotropic smoothing
of diffusion tensor images of the brain, and in Section 8 with the modeling of the
variability of the brain anatomy.

2. Exponential, logarithm and square root of SPD matrices

Since we work with matrices in this chapter, we use capital letters like P and Q (instead
of p and q or x and y in previous chapters) to denote the points on the manifold of n × n
SPD matrices, and V and W for symmetric matrices (tangent vectors). The number of
free parameters of symmetric and SPD matrices (the dimension of the manifold Sym+

n )
is d = n(n + 1)/2.

In the sequel, we will extensively use the matrix exponential and logarithm func-
tions. The exponential of a matrix W is defined through the convergent series exp(W) =∑+∞

k=0
Wk

k! . We have drastic simplifications in the symmetric case thanks to the diago-
nalization W = UDU>, where U is an orthonormal matrix and D = DIAG(di) is the
diagonal matrix of eigenvalues. Indeed, powers of W can be written in the same basis:
Wk = UDkU> and the rotation matrices can be factored out of the series. We are left
with the exponential of each eigenvalue on the diagonal:

exp(W) =

+∞∑
k=0

Wk

k!
= U DIAG(exp(di)) U>. (0.2)

For the inverse of the matrix exponential (the matrix logarithm), we may diago-
nalize any SPD matrix as P = U DIAG(di) U>, with (strictly) positive eigenvalues di.
Thus, the function

log(P) = U
(
DIAG(log(di))

)
U>

is always well defined and realizes the inverse of the exponential of symmetric ma-
trices. Moreover, the series defining the usual matrix log converges for small enough
eigenvalues (|di − 1| < 1):

log(P) = U
(
DIAG

(∑+∞
k=1

(−1)k+1

k (di − 1)k
))

U> =
∑+∞

k=1
(−1)k+1

k (P − Id)k. (0.3)

Classically, one defines the (left) square root of a matrix B as the set {B1/2
L } =

{A ∈ GL(n)/AA> = B}. One could also define the right square root: {B1/2
R } = {A ∈
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Manifold-valued image processing with SPD matrices 7

GL(n)/A>A = B}. For SPD matrices, we define the symmetric square root as:

P1/2 = {Q ∈ Sym+
n /Q

2 = P}.

The symmetric square root of a SPD matrix is always defined and moreover unique: let
P = UD2U> be a diagonalization (with positives values for the di’s). Then there exists
one symmetric positive definite square root Q = UDU>. To prove that it is unique, let
us consider two symmetric positive square roots Q1 and Q2 of P. Then, their square
Q2

1 = P and Q2
2 = P obviously commute (because they are equal) and thus they can be

diagonalized in the same basis: this means that the diagonal matrices D2
1 and D2

2 are
equal in this common basis. As the elements of D1 and D2 are positive, they are also
equal and Q1 = Q2.

More generally, one can define any power of a SPD matrix by taking the power of
its eigenvalues or using the formula:

Pα = exp
(
α(log P)

)
.

2.1. Differential of the matrix exponential
The matrix exponential and logarithm realize a one-to-one mapping between the space
of symmetric matrices to the space of SPD matrices. Moreover, one can show that
this mapping is diffeomorphic, since the differential has no singularities. Using the
Taylor expansion of the matrix power (W + εV)k = Wk + ε

∑k−1
i=0 W iVWk−i−1 + O(ε2)

for k ≥ 1, we obtain by identification the directional derivative ∂V exp(W) by gathering
the first order terms in ε in the series exp(W + εV) =

∑+∞
k=0 (W + εV)k/k!:

∂V exp(W) = (d exp(W))(V) =

+∞∑
k=1

1
k!

k−1∑
i=0

W iVWk−i−1 (0.4)

In order to simplify the formula, we insert the diagonalization W = RS R> in the series
to obtain:

∂V exp(W) = R
(
∂(R>VR) exp(S )

)
R>.

Thus, we are left with the computation of ∂V exp(S ) for S diagonal. As [S lVS k−l−1]i j =

sl
ivi jsk−l−1

j , we have

[∂V exp(S )]i j =
{∑+∞

k=1
1
k!

∑k−1
l=0 sl

is
k−l−1
j

}
vi j = vi j

exp(si)−exp(s j)
si−s j

. (0.5)

The value ai j =
exp(si)−exp(s j)

si−s j
is numerically unstable for almost equal eigenvalues si

and s j. However, we can rewrite this value as:

ai j =
exp(si)−exp(s j)

si−s j
=

∑+∞
k=1

1
k!

sk
i −sk

j

si−s j
= exp(s j)

(
1 +

(si−s j)
2 +

(si−s j)2

6 + O
(
(si − s j)3

))
.
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The Taylor expansion on the right hand side gives a numerically stable method to
compute ai j for equal eigenvalues. Moreover, since exp(si) > exp(s j) whenever si >

s j, we have ai j > 0, so that we can conclude that d exp(S ) is a diagonal linear form
that is always invertible: the exponential of a symmetric matrix is a diffeomorphism.

2.2. Differential of the matrix logarithm
To compute the differential of the logarithm function, we can simply inverse the differ-
ential of the exponential as a linear form: as exp(log(P)) = P, we have (d log(P)(V) =

(d exp(log(P))−1V . Using D = exp(S ), the inverse is easily expressed for a diagonal
matrix: [(d exp(S ))−1V]i j = vi j/ai j. Thus we have:

[∂V log(D)]i j = vi j
log(di)−log(d j)

di−d j
. (0.6)

Like for the exponential, we can expand the value of a−1
i j for close eigenvalues:

a−1
i j =

log(di)−log(d j)
di−d j

= 1
d j

(
1 − di−d j

2d j
+

(di−d j)2

3d2
j

+ O
(
(di − d j)3

))
.

The Taylor expansion of the right hand side provides a numerically stable formulation
for almost equal eigenvalues. Finally, using the identity log(P) = R> log(RPR>) R for
any rotation R, we have:

∂V log(RDR>) = R
(
∂R>VR log(D)

)
R>.

Using this formula, we may compute the differential at any point P = RDR>.
From the expression above, we can establish two very useful identities implying

the differential of the log:

∂log(P) log(P) = P−1 log(P) = log(P)P−1 (0.7)〈
∂V log(P),W

〉
=

〈
∂W log(P),V

〉
(0.8)

3. Affine invariant metrics

Let us consider the action (A, t) � x = Ax + t of an element (A, t) of the affine group
Aff(n) = GL(n) n Rn on a point x ∈ Rn. The symbol n denotes a semi-direct product
since the linear part of the transformation interferes with the translation in the com-
position of two affine transformations: (A1, t1) ◦ (A2, t2) = (A1A2, A1t2 + t1). Now, if x
is a random variable with mean x̄ and covariance matrix Σxx, then y = Ax + t is a ran-
dom variable with mean ȳ = Ax̄ + t and covariance matrix Σyy = E[(y − ȳ)(y − ȳ)>] =

AΣxxA>. Thus, the action of a linear transformation A ∈ GL(n) on a covariance matri-
ces P ∈ Sym+

n is:

A � P = APA> ∀A ∈ GL(n) and P ∈ Sym+
n .
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3.1. Affine invariant distances
Following [PA98], any invariant distance onSym+

n verifies dist(A � P1, A � P2) = dist(P1, P2).
Choosing A = P−1/2

1 , we can reduce this to the distance to the identity:

dist(P1, P2) = dist
(

Id, P−
1
2

1 P2P−
1
2

1

)
= N

(
P−

1
2

1 P2P−
1
2

1

)
.

However, this should hold true for all transformations. In particular, the distance to
identity N should be invariant by transformations that leaves the identity unchanged,
i.e. the isotropy group of the identityH( Id) = O(n) = {U ∈ GL(n)/UU> = Id}:

∀U ∈ O(n), N(UPU>) = N(P).

Using the spectral decomposition P = UDU>, we can conclude that N(P) has to be a
symmetric function of the eigenvalues d1 ≥ d2 ≥ . . . dn > 0. Moreover, the symmetry
of the invariant distance dist(P, Id) = dist( Id, P−1) implies that N(P) = N(P−1).

The sum of the squared logarithms of the eigenvalues is a candidate that satisfies
these constrains:

N(P)2 = ‖ log(P)‖2 =

n∑
i=1

(log(di))2. (0.9)

By construction, N
(
P−

1
2

1 P2P−
1
2

1

)
fulfills the symmetry and definiteness axioms of the

distance. Because N(P) = 0 implies that the eigenvalues are di = 1 (and conversely),
the separation axiom is also verified. However, if the triangular inequality N(P1) +

N(P2) ≥ N(P−1/2
1 P2P−1/2

1 ) can be verified numerically (see e.g. [FM99]), a formal
proof is quite difficult to establish. Moreover, many other functions N may give rise
to other valid distances.

3.2. An invariant Riemannian metric
Another way to determine the invariant distance is through a Riemannian metric. For
that, we need to define the differential structure of the manifold.

3.2.1. Tangent vectors
Tangent vectors to SPD matrices are simply symmetric matrices with no constrain on
the eigenvalues: if Γ(t) = P + tW + O(t2) is a curve on the SPD space, the tangent
vector W is obviously symmetric, and there is no other constraint as symmetric and
SPD matrices both have the same dimension d = n(n + 1)/2.

Our group action naturally extends to tangent vectors: if Γ(t) = P + tW + O(t2) is a
curve passing at P with tangent vector W, then the curve A � Γ(t) = APA> + tAWA> +

O(t2) passes through A � P = APA> with tangent vector A �W = AWA>. The tangent
space TPSym+

n at the point P is thus identified with the space of symmetric matrices.
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3.2.2. Riemannian metric
On the tangent space at the identity matrix, we can now choose one of the most sim-
ple scalar product: if W1 and W2 are tangent vectors (i.e. symmetric matrices, not
necessarily definite nor positive), the standard Froebenius scalar product on matrices
is 〈W1,W2〉 = Tr(W>

1 W2). This scalar product is moreover invariant by the isotropy
group O(n). Now, if W1,W2 ∈ TPSym+

n are two tangent vectors at P, the invariance
of the Riemannian metric under the action of A ∈ GL(n) means that 〈W1,W2〉P =

〈A �W1, A �W2〉A�P. Using A = P−1/2, we see that we can define the metric at P from
the metric at the identity:

〈W1,W2〉P =
〈
P−

1
2 W1P−

1
2 , P−

1
2 W2P−

1
2

〉
Id

= Tr
(
P−1W1P−1W2

)
.

One can easily verify that using any other transformation A = UP−1/2 (where U is a
free orthonormal matrix) that transports P to the identity does not change the metric
since A � P = APA> = UU> = Id and A �Wi = UP−1/2WiP−1/2U>.

3.2.3. A Symmetric space structures
The invariant metric construction considers the space of SPD matrices as the quotient
Sym+

n = GL+(n)/SO(n) (we take here the connected components of positive determi-
nant to simplify), where SO(n) is the isotropy group of the identity matrix taken as the
origin of Sym+

n . In this homogeneous space, each SPD matrix P is seen as the equiv-
alent class (a coset) of all invertible matrices A ∈ GL+(n) satisfying A Id A> = P, i.e.
A = P1/2V for V ∈ SO(n). This polar decomposition of the positive linear group into
the isotropy group times the SPD manifold can be expressed infinitesimally as the lie
algebra decomposition gl+(n) = so(n) × sim(n), where the Lie algebra of the isotropy
subgroup SO(n) is the algebra so(n) of skew symmetric matrices (vertical vectors),
and sim(n) is a complementary space of horizontal vectors that we can choose to be
the algebra of symmetric matrices, so that it is Ad(SO(n))-invariant. It is important
to realize that many different choices are possible for this complement, but the Ad-
invariance and the invariant metric turn the homogeneous space into a naturally reduc-
tive homogeneous space for which geodesics are induced by one-parameter subgroups
(see below).

In fact, we have in our case an even stronger structure: a symmetric space. Let
us consider the mapping sP(Q) = P Q−1 P. We have s−1

P = sP and sP(P + εW) = P −
εW + O(ε2) for W ∈ TPSym+

n . Thus sP is a smooth involution of Sym+
n that fixes P

and acts on the tangent space at P by minus the identity. Moreover, it transforms
a tangent vector W at Q into the tangent vector W ′ = dsP|Q W = −PQ−1WQ−1P at
Q′ = sP(Q) = P Q−1 P. Thus, we see that our Riemannian metric is actually invariant
under this symmetry:〈

W ′
1,W

′
2
〉

Q′ = Tr
(
(Q′)−1W ′1(Q′)−1W ′

2

)
= Tr

(
Q−1W1Q−1W2

)
= 〈W1,W2〉Q .
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Manifold-valued image processing with SPD matrices 11

Our symmetry is thus an isometry. These properties establish that the space of SPD
matrices with the above metric is a Riemannian symmetric space, with more properties
than general Riemannian manifolds. For instance, the curvature tensor is covariantly
constant.

3.2.4. Geodesics
The determination of geodesics usually relies on the computation of the Christoffel
symbols in general Riemannian manifolds. However, we may use more powerful tools
since we have a naturally reductive homogeneous space. In these spaces, geodesics
going through a point are generated by the action of the horizontal one-parameter
subgroups of the acting Lie group on that point [Gam91, Hel78, KN69]. In our case,
the one parameter subgroups of the linear group are the curves exp(tA) for t ∈ R and
the horizontal vectors are the symmetric matrices A = A> ∈ sim(n). Thus, the geodesic
going through Id with tangent vector W need to have the form: Γ( Id,W)(t) = exp(tA) �
Id = exp(tA) exp(tA)> with W = A + A>. Because A is symmetric (horizontal), we find
that:

Γ( Id,W)(t) = exp(tW). (0.10)

We obtain the geodesics starting at another point P thanks to the invariance: the
geodesic starting at A � P with tangent vector A �W is the transport by the group
action of the geodesic starting at P with tangent vector W. Taking A = P−1/2 gives
P−1/2 � Γ(P,W)(t) =

(
Γ( Id,P−1/2�W)(t)

)
, or in short:

Γ(P,W)(t) = P
1
2 exp

(
tP−

1
2 WP−

1
2

)
P

1
2 (0.11)

A different expression is appearing in some works. It can be related to this one thanks
to the identity exp(WP−1)P = P exp(P−1W) which can be verified using the series ex-
pansion of the matrix exponential.

We now want to compute the distance by integrating the length along geodesics.
Let W = UDIAG(wi)U> be a tangent vector at the identity. The tangent vector at time
t to the geodesics Γ( Id,W)(t) = exp(tW) starting from the identity along W is:

dΓ(t)
dt

= UDIAG
(
wi exp(twi)

)
U> = Γ(t)

1
2 WΓ(t)

1
2 = Γ(t)

1
2 �W.

This is the transport of the initial tangent vector by the group action. Thus, thanks to
our invariant metric, the norm of this vector is constant: ‖Γ(t)1/2 �W‖2

Γ(t)1/2� Id = ‖W‖2Id.
This was expected since geodesics are parametrized by arc-length. Thus, the length of
the curve between time 0 and 1 is

L =

∫ 1

0

∥∥∥∥∥dΓ(t)
dt

∥∥∥∥∥2

Γ(t)
dt = ‖W‖2Id.
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Solving for Γ( Id,W)(1) = P, we obtain the distance to identity N(P) = dist2(P, Id) =

‖ log(P)‖2Id =
∑

i(log di)2 of Eq.(0.9). To obtain the distance from another point, we
use the invariance properties of our metric, as in Section 3.1:

dist(P,Q) = dist
(

Id, P−
1
2 QP−

1
2

)
=

∥∥∥∥log
(
P−1/2QP−1/2

)∥∥∥∥2

Id
.

With the geodesic equation and the distance formula, we clearly see that SPD ma-
trices with null eigenvalues are the limit at infinity of geodesics with positive eigen-
values everywhere. The other side of this geodesic has the corresponding eigenvalues
going to infinity. Symmetric matrices with infinite and null eigenvalues are thus as
far from any SPD matrix that they could be: at infinity. This contrasts with the flat
Euclidean metric where zero eigenvalues PSD matrices are at finite distance: the cone
of SPD matrices is not geodesically complete nor metrically complete with the Eu-
clidean metric. From a computational point of view, the geodesic completeness of the
affine-invariant structure ensures that any finite geodesic walking scheme will remain
in the space of SPD matrices, contrarily to the Euclidean case.

3.2.5. Riemannian Exponential and Log Maps
As in all geodesically complete Riemannian manifolds, geodesics map the tangent
space at P to a neighborhood of P in the manifold: Γ(P,W)(1) = ExpP(W) associates
to each tangent vector W ∈ TPSym+

n a point of the manifold. This mapping is a local
diffeomorphism called the exponential map, because it corresponds to the usual expo-
nential in some matrix groups. This is exactly our case for the exponential map around
the identity:

Exp Id(UDU>) = exp(UDU>) = UDIAG
(
exp(di)

)
U>.

However, the Riemannian exponential map associated to our invariant metric has a
more complex expression at other SPD matrices:

ExpP(W) = P
1
2 exp

(
P−

1
2 WP−

1
2

)
P

1
2 . (0.12)

In our case, this diffeomorphism is global, and we can uniquely define the inverse
mapping everywhere:

−−→
PQ = LogP(Q) = P

1
2 log

(
P−

1
2 QP−

1
2

)
P

1
2 . (0.13)

Thus, ExpP gives us a collection of one-to-one and complete charts of the manifold
centered at any point P.

3.3. The one-parameter family of affine-invariant metrics
One can question the uniqueness of the previous affine-invariant Riemannian metric.
Indeed, the previous construction uses one particular scalar product at the identity
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(the Froebenius one), but other scalar products could also work. It was shown in
[Pen06b, Pen08] that there is actually a one-parameter family of such affine-invariant
Riemannian metrics on SPD matrices that all share the same connection. This is the
affine invariant connection on homogeneous spaces of [Nom54] which is well known
in symmetric spaces [KN69, Hel78, Gam91].

3.3.1. GL(n)-invariant metrics
A GL(n)-invariant scalar product has to verify 〈V,W〉P =

〈
AVA>, AWA>

〉
APA> . In par-

ticular, this should be true for the isotropy group of the identity (the linear transforma-
tions that leave the identity matrix unchanged: the rotation matrices). All the rotation-
ally invariant scalar products on symmetric matrices are given (up to a constant global
multiplicative factor) by:

〈V,W〉 Id = Tr(VW) + βTr(V)Tr(W) with β > −
1
n

where n is the dimension of the space (see for instance [Pen06b, Pen08]). The sketch
of the proof is the following: these scalar products are derived from rotationally in-
variant norms ‖W‖2, which are quadratic forms on (symmetric) matrices. By isotropy,
such forms can only depend on the matrix invariants Tr(W), Tr(W2), Tr(W3), . . . How-
ever, as the form is quadratic in W, we are left only with Tr(W)2 and Tr(W2) that can
be weighted by α and β. One easily verifies that β > −α/n is a necessary and sufficient
condition to ensure positive definiteness. This metric at the identity can then be trans-
ported at any point by the group action using the (symmetric or any other) square root
P1/2 considered as a group element:

〈V,W〉P =
〈
P−1/2VP−1/2, P−1/2WP−1/2

〉
Id

= αTr
(
VP−1WP−1

)
+ βTr

(
VP−1

)
Tr

(
WP−1

)
Theorem 1 (Family of affine-invariant metrics on SPD matrices [Pen06b, Pen08]). All
the metrics on the space of SPD matrices Sym+

n that are invariant under the GL(n) ac-
tion A � P = APA> are given by the 1-parameter family (up to a global scaling factor):

〈V,W〉P = Tr
(
VP−1WP−1

)
+ βTr

(
VP−1

)
Tr

(
WP−1

)
with β > −

1
n
. (0.14)

For β = 0, we retrieve the affine-invariant metric that was proposed in [Sko84,
FM99, Bha03, FJ07, LRDF06, PFA06]. Up to our knowledge, the only case of a
different invariant metric was proposed by [LMO00] with β = −1/(n + 1). This metric
was obtained by embedding the space of SPD matrices of dimension n into the space
of n + 1 square matrices using homogeneous coordinates and by quotienting out n + 1
dimensional rotations. This type of embedding is interesting as it allows to represent
also the mean of a Gaussian distributions in addition to its covariance matrix. The
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embedding can be done in spaces of square matrices of dimension n + k (k ≥ 1), in
which case one would obtain the invariant metric with β = −1/(n + k). Interestingly,
the metric proposed by [LMO00] with −1/β = n + 1 is the first authorized integer to
obtain a proper metric.

Although many people favor the value β = 0, there is no invariance reason to
do so. Indeed, the general linear group GL(n) can be seen as the direct product
GL(n) = SL(n) ⊗ R∗ where SL(n) is the unimodular group (unit determinant matrices)
and R∗ is the multiplicative group of real numbers. Likewise, SPD matrices can be de-
composed into unimodular SPD matricesUSym+

n = {P ∈ Sym+
n , det(P) = 1} and their

determinant in R+
∗ : Sym+

n = USym+
n ⊗ R

+
∗ . The split decomposes an element of the

tangent space at identity W ∈ T IdSym+
n into the traceless part W0 = W − Tr(W)/n Id

and the trace part Tr(W) ∈ R. Since the group action splits into two independent group
actions, we can choose an invariant metric on each part and recombine them after-
ward. For the unimodular part USym+

n , the SL(n)-invariant metric at P ∈ USym+
n is

uniquely defined by < V0,W0 >P= Tr(V0P−1W0P−1) (up to a scale factor), since the
trace part of each tangent vector vanishes. Likewise, the multiplicative-invariant met-
ric on the scale is unique (up to a scale factor). Now, when recombining both parts, we
can independently scale the two parts with the direct product, which exactly describes
all the GL(n)-invariant metrics on SPD matrices.

In the limit case β = −1/n, the bilinear form becomes degenerate in the direction
of the trace of the matrix at the identity: ‖V − Tr(V) Id‖ Id = ‖V‖ Id. This direction in
the tangent space corresponds to the scalar multiplication of SPD matrices: the SPD
matrix s P (for any s > 0) is at null distance of the SPD matrix P with this metric. Thus,
this is still defining a metric on the space of unimodular SPD matrices, but not on the
full SPD matrix space. For β < −1/n, the bilinear form has a negative eigenvalue in
the trace direction and defines a semi-Riemannian metric.

3.3.2. Different metrics for a unique affine connection
The Koszul formula below is the key step to establish the uniqueness of the Levi-Civita
connection of a Riemannian metric [Car92, p.55]:

2 〈∇VW,U〉 = ∂V 〈W,U〉 + ∂W 〈V,U〉 − ∂U 〈V,W〉
+ 〈[V,W],U〉 − 〈[V,U],W〉 − 〈[W,U],V〉 .

In our case, expanding the terms in the Koszul formula by chain rule and using ∂XΣ−1 =

−Σ−1(∂XΣ) Σ−1, we obtain that all the affine-invariant metrics have the same Levi-
Civita connection:

∇VW = ∂VW −
1
2

(VP−1W + WP−1V). (0.15)
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This formula is in agreement with the connection computed for β = 0 by [Sko84] (save
that ∂VW is omitted in this work).

Since all the invariant metrics have the same Levi-Civita connection, they share the
same geodesics and the Riemannian exp and log maps at each point:

ExpP(W) = P1/2 exp
(
P−1/2WP−1/2

)
P1/2

−−→
PQ = LogP(Q) = P1/2 log

(
P−1/2QP−1/2

)
P1/2

However, one should be careful that the orthonormal bases are different for each metric
which means that distances along the geodesics are different. The Riemannian distance
is obtained as before by integration, or more easily by the norm of the initial tangent
vector of the geodesic joining the two points:

dist2(P,Q) = ‖LogP(Q)‖2P =
∥∥∥P−1/2LogP(Q)P−1/2

∥∥∥2
Id

= Tr
(
log(QP−1)2

)
+ βTr

(
log(QP−1)

)2
.

3.3.3. Orthonormal coordinate systems
For many computations, it is convenient to use a minimal representation (e.g. 6 pa-
rameters for 3 × 3 SPD matrices) in an orthonormal basis. In classical Euclidean ma-
trix spaces, this can be realized through the classical “Vec” operator that maps the
element ai, j of a n × n matrix A to the (i n + j)th element Vec(A)i n+ j of a n2 dimen-
sional vector Vec(A). Since we are working with symmetric matrices, we have only
d = n(n + 1)/2 independent coefficients, say the upper triangular part of the symmet-
ric matrix W ∈ TPSym+

n . This corresponds to take the basis vectors Fii = eie>i and
Fi j = eie>j + e je>i (1 ≤ i < j ≤ n) for the space of symmetric matrices, where the ei are
the standard basis vectors of Rn. However, this basis is not orthonormal at the identity:
a direct computation of the Gram matrix

gi j,kl =
〈
Fi j, Fkl

〉
Id

= Tr(Fi jFkl) + βTr(Fi j)(Fkl)

shows that the non-zero terms are gii,ii = ‖Fii‖
2
Id = 1 + β, gii, j j = β for j , i and gi j,i j =

‖Fi j‖
2
Id = 2 for i < j.

A field of orthonormal bases for β = 0
The previous non-orthonormal basis can be easily corrected for β = 0 by normalizing
the basis vectors for the off-diagonal coefficient: an orthonormal basis of T IdSym+

n for
the affine-invariant metric with β = 0 is given by the vectors:

E0
i j =

{
eie>i (1 ≤ i = j ≤ n),
(eie>j + e je>i )/

√
2 (1 ≤ i < j ≤ n).
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The vector of coordinates in this basis is:

Vec0
Id(W) =

(
w1,1, . . . ,wn,n,

√
2 w1,2, . . . ,

√
2 w(n−1)n

)>
.

This realizes an explicit isomorphism between T IdSym+
n endowed with the Froebenius

metric and Rd with the L2 metric.
It is important to notice that the above basis is orthonormal only at the identity

and not at other places due to the curvature of the Riemannian manifold: a field of
orthonormal bases usually depends on the base-point P of the tangent space TPSym+

n .
Such a frame-field can be obtained by the group action since we are dealing with a
naturally reductive homogeneous space: E0

i j|P = P
1
2 E0

i jP
1
2 with 1 ≤ i ≤ j ≤ n. Because

there are no closed geodesics, E0
i j|P is a smooth vector field over Sym+

n , and the set
of vectors fields {E0

i j|P}1≤i≤ j≤n constitute a smooth global frame-field. Moreover, the
vector of coordinates Vec0

P(W) = Vec0
Id(P−1/2 �W) = Vec0

Id(P−1/2WP−1/2) in the frame
at point P also realizes an explicit isomorphism between TPSym+

n with the metric
〈U,V〉0P = Tr(UP−1VP−1) and Rd with the canonical L2 metric.

A field of orthonormal bases for β , 0
To obtain an orthonormal basis for the affine-invariant metric with β , 0, we can build
an isomorphism of Riemannian manifolds by modifying the trace part. First, we ob-
serve that Aα(V) = V − αTr(V) Id is a linear map of the space of symmetric matrices
identified to T IdSym+

n . This map leaves the off-diagonal coefficients unchanged and
transforms the diagonal basis vectors according to:

Eβ
ii = Aα(E0

ii) = E0
ii − α

∑n
j=1 E0

j j.

Thus, when restricted to the basis (E0
11, . . . E

0
nn) this mapping can be written in matrix

form Aα = Idn − α1n1
>
n with 1>n = (1, . . . 1) (we should be careful that this matrix

just operate on the diagonal of symmetric matrices and not on the standard Euclidean
space Rn). Its determinant is det(Aα) = det( Idn − α1n1

>
n ) = 1 − αn, so that the linear

map has positive determinant if α < 1/n. Thus, we can invert it by Sherman-Morrison
formula to get: A−1

α = Id + α1n1
>
n /(1 − αn).

Now we can look for the value of α such that the mapping Aα transforms the affine-
invariant metric 〈., .〉P of Eq. (0.14) with β , 0 to the previous affine invariant metric
with β = 0. This equation reads 〈Aα(V), Aα(W)〉P = 〈A0(V), A0(W)〉P, or:

Tr(Aα(V)P−1Aα(W)P−1) + βTr(Aα(V)P−1)Tr(Aα(W)P−1) = Tr(VP−1WP−1).

Thanks to the invariance, this is verified for all P if this holds for P = Id. Plugging
Aα(V) = V − αTr(V) Id in the above equation with P = Id leads to

Tr((V − αTr(V) Id)(W − αTr(W) Id)) + β(1 − nα)2Tr(V)Tr(W) = Tr(VW).
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Thus, we have to solve nα2 − 2α + β(1 − nα)2 = 0. This leads to the second order
equation nα2 − 2α + β/(1 + nβ) = 0. Because β > −1/n, it has two solutions and the
one that gives a positive determinant for the linear mapping Aα is α = 1

n

(
1 − 1/

√
1 + nβ

)
.

One can now verify by direct computation of the Gram matrix that the vectors

Ei j =

{
eie>i − α Id (1 ≤ i = j ≤ n),
(eie>j + e je>i )/

√
2 (1 ≤ i < j ≤ n), with α =

1
n

1 − 1√
1 + nβ


constitute an orthonormal basis of T IdSym+

n with the affine-invariant metric with any
value of β > −1/n. By invariance, the vectors

{
Ei j|P = P1/2Ei jP1/2

}
1≤i≤ j≤n

form an
orthonormal basis of TPSym+

n for the affine-invariant metric.
To obtain a mapping VecP(W) that realizes an explicit isomorphism between TPSym+

n
with the general affine-invariant metric and Rd with the canonical L2 metric, we have
first to transport W to the tangent space at identity using the action of P−1/2 and then
use the inverse mapping A−1

α on the diagonal coefficients before using the previous
mapping Vec0

Id:

VecP(W) = Vec Id(P−
1
2 WP−

1
2 ) = Vec0

Id(A−1
α (P−

1
2 WP−

1
2 )).

Since A−1
α (V) = V + αTr(V) Id/(1 − αn) = V + 1

n

( √
1 + βn − 1

)
Tr(V) Id, we get the

following theorem.

Theorem 2 (Orthonormal field for the affine invariant metric). The d = n(n − 1)/2
vectors

Ei j|P =

 P
1
2 eie>i P

1
2 − α P (1 ≤ i = j ≤ n),

P
1
2 (eie>j + e je>i )P

1
2 /
√

2 (1 ≤ i < j ≤ n),
with α =

1
n

1 − 1√
1 + nβ

 ,
form an orthonormal basis of TPSym+

n with the affine-invariant metric for any value
of β > −1/n. Moreover, the mapping VecP(W) = Vec Id(P−

1
2 WP−

1
2 ) with

Vec Id(W) =
(
w1,1 + δ, . . .wn,n + δ,

√
2w1,2, . . .

√
2w(n−1),n

)>
and δ = 1

n

( √
1 + βn − 1

)
Tr(W)

realizes an explicit isomorphism between TPSym+
n with the general affine-invariant

metric and Rd with the canonical L2 metric.

3.4. Curvature of affine-invariant metrics
Thanks to the explicit expression of the connection, one can compute the Riemannian
curvature tensor R(V,W)U = ∇V∇WU − ∇W∇VU − ∇[V,W]U. We find:

R(V,W)U =
1
4

(
WP−1VP−1U + UP−1VP−1W − VP−1WP−1U − UP−1WP−1V

)
.
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Equivalently the (0, 4)-Riemannian curvature tensor is given by

R(U,V,W,Z) = 〈R(U,V)Z,W〉 =
1
2

Tr
(
UP−1VP−1WP−1ZP−1 − UP−1VP−1ZP−1WP−1

)
.

The conventions used here are the one of Section 1.4.4 of Chapter 1. Notice that there
is a factor -2 with respect to the formula of [Sko84] which is due to a global scaling
of 1/2 of their Riemannian metric with respect to ours when β = 0 and an opposite
convention for the (0, 4) Riemannian tensor.

3.4.1. Sectional Curvature
From this tensor, one gets the sectional curvature κ(U,V)|P in the subspaces spanned by
the vector fields U and V at P (see Eq.?? in Chapter ??). We recall that this measures
the Gauss curvature of the 2D geodesic surface generated by linear combinations of
the two vectors. This is the function:

κ(U,V) =
〈R(U,V)V ,U〉

〈U,U〉 〈V,V〉 − 〈U,V〉2
=

R(U,V,U,V)
〈U,U〉 〈V,V〉 − 〈U,V〉2

.

This sectional curvature can be computed easily in our previous orthonormal basis
Ei j|P. We find that the only non-zero terms are independent of P:

κ(Eii, Ei j) = κ(Eii|P, Ei j|P) = κ(Ei j|P, E j j|P) = − 1
4 ( j , i),

κ(Ei j, Eik) = κ(Ei j|P, Eik|P) = κ(Ei j|P, Ek j|P) = − 1
8 (i , j , k , i).

Other 2-subspaces are obtained by rotating the vectors U |P and V |P with respect to
our orthonormal basis vectors. The sectional curvature is thus in between κmin = −1/4
and κmax = 0. In consequence, the manifold of SPD matrices with any affine-invariant
metric has bounded non-positive curvature and is a Hadamard manifold.

Thanks to our well chosen orthonormal basis, it is immediately clear that the sec-
tional curvature is “the same” at every point of the manifold. This is not a constant
curvature since it varies depending on the chosen 2-subspace within the tangent space,
but it is comparable at every point up to a rotation. This is a feature of homogeneous
manifolds: there exists a way to compare the geometry at every point thanks to the
group action. The fact that the sectional curvature does not depend on β was expected
since all the affine-invariant Riemannian spaces are isomorphic to each-other.

To compare our results to those of [Sko84] for β = 0, we have to compute the
curvature in the planes spanned by two vectors of the basis {Fi j}. We recall that this
basis is orthogonal but not orthonormal at Id, and not orthogonal at other values of
P. In our case, we find κ(Fii, Fi j)|P = −1/4. Because of the non-orthogonality of this
basis at P , Id, we also get the extra non-vanishing term κ(Fii, Fi j)|P = − 1

2 ρ̄
2
i j/(1 +

ρ̄2
i j), where ρ̄2

i j = (e>i P−1e j)2/(e>i P−1eie>j P−1e j) is the i j partial correlation coefficient
of P. These results are consistent with the ones of [Sko84], up to a factor 2 due the
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global scaling of the metric. Surprisingly, the non-vanishing term κ(Ei j, Eik) = −1/8
seems to be forgotten in their work.

3.4.2. Ricci Curvature
The Ricci curvature is the trace of the linear operator U → R(U,V)Z. In coordinates,
this writes Ricab = Rc

acb = gdcRdacb =
∑

c R(ec, ea, ec, eb), where the right-hand-side is
only valid in an orthonormal basis {ec}. Because this is a bilinear form, it is entirely de-
scribed by the quadratic form Ric(V)|P = Ric(V,V)|P for all the unit vectors in the tan-
gent space at P. Ric(V) is thus is the average (up to a scale factor n) of the sectional cur-
vatures κ(V,W) of 2-planes of the tangent space containing the vector V , assuming that
W follows a uniform distribution on the unit sphere in the tangent space. The scalar
curvature is the metric trace of the Ricci curvature matrix: R = Trg(Ric) = gabRab. The
scalar curvature describes how the volume of geodesic ball in a manifold deviates from
the volume of standard euclidean ball with the same radius.

In dimension 2 and 3, the Ricci curvature determines the Riemannian curvature
tensor, like the sectional curvature. In dimension greater than 3, the sectional curva-
ture continues to determine the full curvature tensor but the Ricci curvature generally
contains less information. However, it encodes important information about the dif-
fusion on the manifold (using the Laplace-Beltrami operator) since Ric(V)|P encodes
how the volume of an infinitesimal neighborhood of a point evolves when it is trans-
ported along the geodesic starting at P in the direction V . In a normal coordinate
system at P, we have indeed the Taylor expansion or the Riemannian measure:

dM
(
ExpP(V)

)
=

(
1 − 1

6 Ric(V)|P + O(‖V‖3P)
)

dV.

A related formulation is developed in the excellent paper of Yann Ollivier a visual
introduction to curvature [Oll13]: if C is a small neighborhood of P, then the volume
of the neighborhood CV = {expQ(ΠQ

P V),Q ∈ C} transported along the geodesics in the
direction V evolves at second order in V with the multiplicative factor (1 − 1

6 Ric(V)|P).
Thus, a negative Ricci curvature indicates a volume expansion of the neighborhood
while a positive curvature indicates a volume contraction in the direction V .

Coming back to SPD matrices with the affine-invariant metric, we want to compute
the Ricci curvature in our orthonormal basis {Ei j|P} at any point P. Using Ei j|P =

P1/2Ei jP1/2 and the above expression of the (0, 4) Riemannian tensor, we get that:

R(Eab|P, Ei j|P, Eab|P, Ekl|P) =
1
2

Tr
(
EabEi jEabEkl − EabEi jEklEab

)
.

Thus, we see that the Ricci curvature matrix at any point is the same than at identity
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in our specific coordinate system:

Ric(Ei j, Ekl) =
∑

1≤a≤b≤n

R(Eab, Ei j, Eab, Ekl) =
1
2

∑
1≤a≤b≤n

Tr
(
EabEi jEabEkl − EabEi jEklEab

)
.

Lengthy computations verified by computer show that only the following terms do
not vanish: Ric(Eii, Eii) = − n−1

4 , Ric(Ei j, Ei j) = − n
4 for i , j, and Ric(Eii, E j j) = 1

4 .
Ordering =the n diagonal basis vectors Eii before the n(n − 1)/2 off-diagonal basis
vectors Ei j (i < j), we obtain the following diagonal by bloc Ricci curvature matrix:

Ric = −
n
4

[
Idn −

1
n1n1

>
n 0

0 Idn(n−1)/2)

]
.

We easily see that this matrix has one eigenvector (1>n , 0n(n−1)/2))> with eigenvalue 0
and d − 1 orthogonal eigenvectors associated to the multiple eigenvalue −n/4. The null
eigenvalue along the trace part in the tangent space of SPD matrices at identity (which
corresponds to a scalar multiplication of SPD matrices when it is exponentiated) means
that the volume of a neighborhood remains constant when we shoot in the direction
of SPD matrix rescaling. In all other directions, the Ricci curvature is negative, which
indicate that a neighborhood is volume increasing.

Theorem 3 (Curvature of affine-invariant metrics). The space Sym+
n of SPD matrix of

dimension n ≥ 2 endowed with the affine invariant metric:

〈V,W〉P = Tr
(
VP−1WP−1

)
+ βTr

(
VP−1

)
Tr

(
WP−1

)
with β > − 1

n ,

has Riemannian curvature tensor:

R(U,V,W,Z) = 〈R(U,V)Z,W〉 =
1
2

Tr
(
UP−1VP−1WP−1ZP−1 − UP−1VP−1ZP−1WP−1

)
.

(0.16)
The sectional curvature is:

κ(Ei j, Eik) = κ(Ei j, Eki) =


− 1

8 if i , j , k , i,
− 1

4 if j = i , k or k = i , j,
0 otherwise.

(0.17)

The Ricci curvature matrix is bloc-diagonal:

Ric = −
n
4

[
Idn −

1
n1n1

>
n 0

0 Idn(n−1)/2)

]
. (0.18)

It has one vanishing eigenvalue along the trace-part and (d − 1) orthogonal eigenvec-
tors associated to the multiple eigenvalue −n/4. Finally, the scalar curvature is:

R = −
n(n − 1)(n + 2)

8
. (0.19)



i
i

“chapter3” — 2019/6/24 — 9:38 — page 21 — #21 i
i

i
i

i
i

Manifold-valued image processing with SPD matrices 21

The sectional, Ricci and scalar curvatures are non-positive.

4. Basic statistical operations on SPD matrices

Now that we have the atomic Exp and Log maps for SPD matrices and that we have
reviewed the main geometrical properties of the affine-invariant structure on SPD ma-
trices, let us turn to statistical inference methods in this space. As the manifold has
a non-positive curvature and there is no cut locus (the injection radius is infinite), the
statistical properties detailed in previous chapters hold in their most general form.

4.1. Computing the mean and the covariance matrix
Let P1 . . . Pm be a set of measurements of SPD matrices. It can be seen as a distribution
using a mixture of delta Diracs at the sample points: µ = 1

m
∑n

i=1 δPi . We recall from
Chapter 2 that the empirical Fréchet mean is the set of SPD matrices minimizing the
sum of squared distances Var(P) = 1

m
∑m

i=1 dist2(P, Pi). Since the manifold has no cut-
locus, the variance is everywhere smooth.

The first order moment of the sample distribution is the contravariant vector field
defined all over the SPD matrix manifold by:

M1(P) =

∫
M

−−→
PQ µ(dQ) =

1
m

m∑
i=1

−−→
PPi =

1
m

m∑
i=1

P
1
2 log

(
P−

1
2 PiP−

1
2

)
P

1
2 . (0.20)

Note that this expression cannot be further simplified in general when the data Pi and
the matrix P do not commute. The gradient of the variance is related very simply to
this first order moment by ∇Var(P) = −2M1(P), and the critical points of the variance
(exponential barycenters) are the zeros of this field. Because SPD matrices have a
non-positive curvature and an infinite injection radius with an affine invariant metric,
there is one and only one global minimum: the Fréchet mean P̄ is unique [Ken90].

Algorithm 1 Intrinsic Gradient Descent to Compute the Mean SPD Matrix
Initialize

Set current estimate of the mean with one of the data points, e.g. P̄0 = P1.
Set error ε0 = ‖M1(P̄0)‖P̄0

, step-size τ = 1/2 and time t = 0.
Iterate

t = t + 1.
P̄t = ExpP̄t−1

(
2τM1(P̄t−1)

)
.

εt = ‖M1(P̄t)‖P̄t
.

if εt > εt−1 then τ = τ/2 and P̄t = P̄t−1.
Until εt < ε.
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To compute this mean, we can use the gradient descent algorithm on the space of
SPD matrices described in Algorithm 1. The idea is to follow the flow of the gradient
of the variance for a certain time step τ:

P̄t+1 = ExpP̄t

(
−τ ∇Var(P̄t)

)
= ExpP̄t

(
2τM1(P̄t)

)
. (0.21)

With the time-step τ = 1/2, this iterative algorithm corresponds to the classical
Gauss-Newton gradient descent algorithm on manifolds, which was shown to be glob-
ally convergent when the data are sufficiently concentrated in Riemannian symmetric
spaces and compact Lie groups [Le01, Man04]. In practice, the Gauss-Newton algo-
rithm converges very quickly when the data points are sufficiently close to each other.

However, the algorithm may diverge when the SPD matrices are too far away from
each other, as noted in [FJ07]. Sufficient conditions on the time-step τ for the con-
vergence of the algorithm were established in [BI13] based on the condition num-
bers (ratio of minimal and maximal eigenvalues) of P̄−1/2

t PiP̄
−1/2
t . When the matrices

P1 . . . Pn commute, then the choice of τ = 1/2 is actually optimal and leads to a super-
linear (quadratic) convergence. When these matrices are close to each other, a fast
convergence is still expected, although it is not quadratic any more. However, when
the matrices are far away from each other, [BI13] showed that the Gauss-Newton al-
gorithm may diverge even if the matrices almost commute. For example, computing
the mean of the three SPD matrices

(
1 0
0 1

)
,
(

2 1
1 2

)
and

(
x 1
1 2

)
converges for x = 1000 but

diverges for x = 10000. Thus, it is generally necessary to use an adaptive time-step
τ in the Riemannian gradient descent. One of the simplest adaptive algorithm is to
start with τ = 1/2 and decrease it instead of updating P̄t+1 when the variance increases
during the optimization [FJ07], as described in Algorithm 1.

The divergence of the Gauss-Newton scheme with a fixed time-step is due to
the curvature of the manifold. This can be illustrated in constant curvature spaces
where we can explicitly compute the eigenvalues of the Hessian of the square Rie-
mannian distance (see for instance [Pen18]). On the sphere (positive curvature), the
eigenvalues are lower than 2, and can become become negative when data leave the
Kendall/Karcher conditions of uniqueness. Because the inverse of the Hessian is used
to modulate the gradient in Newton methods, τ = 1/2 is a conservative bound which
guaranties the convergence, with potentially a suboptimal rate. On the contrary, the
Hessian has eigenvalues larger than 2 in the hyperbolic space (negative curvature) so
that a time-step of τ = 1/2 can be too large. Computing explicit tight bounds on the
spectrum of the Hessian of the variance is possible in connected locally symmetric
spaces [FXCB13], and this enables the use of Newton methods with a quadratic con-
vergence rate.

The covariance, or second order moment of the sample distribution, is the 2-
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contravariant field defined all over the SPD matrix manifold by the tensor product:

M2(P) =

∫
M

−−→
PQ ⊗

−−→
PQ µ(dQ) =

1
m

m∑
i=1

−−→
PPi ⊗

−−→
PPi.

The covariance matrix is the value of this field at the Fréchet mean P̄. This tensor can
be expressed as a matrix in our orthonormal basis using the Vec mapping:

Σ =
1
m

m∑
i=1

VecP̄

(−−→
P̄Pi

)
VecP̄

(−−→
P̄Pi

)>
.

4.2. Tangent PCA and PGA of SPD matrices
Assume that we have computed the sample Fréchet mean P̄ and the sample covari-
ance matrix Σ of a set of SPD matrices. We may want to identify subspaces of low
dimensions that best approximate our SPD data. In Euclidean spaces, this is usually
done using Principal Component Analysis (PCA). As explained in Chapter 2, we have
several choices in a manifold. We can first maximize the explained variance, which
corresponds to choosing the subspace generated by the eigenvectors of the largest
eigenvalues of the covariance matrix. This is called tangent PCA (tPCA). We can
also minimize the unexplained variance, which is measured by the sum of square of
residues, which are the tangent vectors pointing from each data point to the closest
point on the geodesic subspace generated by k modes at the mean (Principal Geodesic
Analysis, or PGA).

Figure 0.1, adapted from [FJ07], presents an example of the difference between
PCA on SPD matrices with the Euclidean metric and tPCA with one of the affine
invariant metric. One of the main differences is that any matrix generated by the prin-
cipal geodesic subspace remains positive-definite, contrarily to the Euclidean PCA.

4.3. Gaussian Distributions on SPD matrices
Several definitions have been proposed to extend the notion of Gaussian distribution
to Riemannian manifolds. The natural definition from the stochastic point of view is
the heat kernel pt(x, y), which is the transition density of the Brownian motion (see
Chapter 4 of this book). The heat kernel is the smallest positive fundamental solution
to the heat equation ∂ f

∂t − ∆ f =0, where ∆ f = Trg(Hess f ) = gi j(Hess f )i j = ∇i∇i f is
the Laplace-Beltrami operator. However, the heat kernel has a non-linear dependency
in time which makes it difficult to use in statistics as a classical Gaussian distribution.

To obtain more tractable formulas, the wrapped Gaussian distribution was pro-
posed in several domains [Gre63, MJ00]. The idea is to take a Gaussian distribution
in the tangent space at the mean value and to consider the push-forward distribution
on the manifold that wraps the distribution along the closed geodesics. The proper
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Figure 0.1 The first two modes of variation of the simulated data: (left) using the affine-
invariant tPCA, and (right) using linear PCA. Units are in standard deviations. The boxes labeled
“Not Valid” indicate that the tensor was not positive-definite, i.e., it had negative eigenvalues.
[Adapted from [FJ07]]

renormalization of this push-forward distribution is an issue since the renormalization
constant includes infinite series along these closed geodesics. The wrapped Gaussian
distribution naturally corresponds to the infinitesimal heat kernel for small time steps
and tends towards the Dirac mass distribution if the variance goes to zero. In the com-
pact case, it also tends towards the Riemannian uniform distribution for a large vari-
ance. [OC95] considered an extension of this definition with non-centered Gaussian
distributions on the tangent spaces of the manifold in order to tackle the asymptotic
properties of estimators. In this case, the mean value is generally not any more simply
linked to the Gaussian parameters.

A third approach, detailed below, considers the probability density function (pdf)
that minimizes the information (or equivalently maximizes the entropy) knowing the
mean and the covariance matrix. This approach was taken for example in [Sou70] for
dynamical Lie groups and in [Pen96, Pen06a] for Riemannian manifolds. This leads
to another family of exponential distributions that are cut at the tangential cut-locus.
Obviously, wrapped and cut Gaussians in tangent spaces are the same in Hadamard
spaces since the cut-locus is at infinity in all directions.

To define the entropy, we consider a probability µ = ρ dM that is absolutely contin-
uous with respect to the Riemannian measure so that it has a pdf ρ that is an integrable
non-negative function on M. With the affine-invariant metric, the Riemannian mea-
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sure on the space of SPD matrices can be expressed as

dM(P) = 2n(n−1)/4
√

(1 + βn) det(P)−1 dP ∝ det(P)−1 dP,

with respect to the standard Lebesgue measure on the upper triangular coefficients
of the SPD matrix P. This expression is obtained by expressing the formula of the
Riemannian measure dM(P) =

√
det(g|P) dP (see Chapter 1, Section 4.3) in the chart

of upper triangular coefficients Fi j of section 3.3.3. The change of coordinates from
the orthonormal basis Ei j|P to the basis Ei j| Id at identity is responsible for the term
det(P)−1. The mapping A−1

α = Id + α1n1
>
n /(1 − αn) transforming to the basis E0

i j| Id

has determinant: det(A−1
α ) = 1/(1 − αn) =

√
(1 + βn). Finally, the rescaling of the

n(n − 1)/2 off diagonal terms by
√

2 to obtain the L2 metric accounts for the fac-
tor 2n(n−1)/4. Changing for the Lebesgue measure on the full matrix coefficients only
changes this last constant multiplicative factor. The entropy of an absolutely continu-
ous distribution µ = ρ dM is then:

H(µ) = −

∫
M

log(ρ(P)) ρ(P)dM(P) = −

∫
Sym+

n

log(ρ(P))
ρ(P)

det(P)
dP.

Its negative is called the information, or negentropy. One verifies that the pdf max-
imizing the entropy in a compact set is the uniform distribution over that set with
respect to the Riemannian measure. Maximizing the entropy is thus consistent with
the Riemannian framework.

Applying the maximum entropy principle to characterize Gaussian distributions,
we can look for the pdf maximizing the entropy with a fixed mean and covariance
matrix. The constraints are thus:
• the normalization

∫
M
ρ(Q) dM(Q) = 1,

• the prescribed mean value
∫
M

−−→
P̄Q ρ(Q) dM(Q) = 0,

• and the prescribed covariance
∫
M

−−→
P̄Q ⊗

−−→
P̄Q ρ(Q) dM(Q) = Σ.

These constraints can be expressed in a normal coordinate system at the mean and
using the convexity of the real function −x log(x), one can show that the maximum
entropy is attained by the distributions of density ρ(v) = k exp

(
− 〈β, v〉x −

1
2Γ(v, v)

)
,

where v is a tangent vector at the mean, provided that there exists a constant k, a vector
β and a bilinear form Γ on the tangent space at the mean such that our constrains are
fulfilled. Moreover, when the tangential cut-locus at the mean is symmetric, we find
that β = 0 satisfies the prescribed mean.

Theorem 4 (Normal density on a Riemannian manifold [Pen06a]). In a complete Rie-
mannian manifold with a symmetric tangential cut-locus at P, the density maximizing
the entropy with a prescribed mean P and covariance Σ has the form of a Gaussian in
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the tangent space at P truncated at the cut-locus: G(Q) = k exp(− 1
2
−−→
PQ> Γ

−−→
PQ). The

exponential of the squared distance G(Q) = exp
(
− τ2 dist2(P,Q)

)
used in Chapter 2 is

a particular case obtained with an isotropic concentration matrix Γ = τId.
Let r = i(M, P) be the injectivity radius at the mean point (by convention r = +∞

if there is no cut-locus). Assuming a finite variance for any concentration matrix Γ, we
have the following approximations of the normalization constant and concentration
matrix for a covariance matrix Σ of small variance σ2 = Tr(Σ):

k =
1 + O(σ3) + ε

(
σ
r

)
√

(2π)n det(Σ)
and Γ = Σ−1 −

1
3

Ric + O(σ) + ε
(
σ

r

)
Here, ε(x) is a function that is a O(xk) for any positive k, with the convention that
ε
(
σ

+∞

)
= ε(0) = 0.

In Riemannian symmetric spaces, the tangential cut-locus is symmetric at all points.
Indeed, the geodesic symmetry with respect to a point P reads

−−→
PQ→ −

−−→
PQ in the log-

map at P. Since this is an isometry, the distance to the tangential cut-locus is the same
in opposite directions. In the case of our SPD matrices space, this distance is moreover
infinite and the conditions involving the injection radius can be waved since we are in
a Hadamard manifold. Thus, we obtain a generalization of the Gaussian distribution
on the space of SPD matrices which is a standard Gaussian in the tangent space at the
mean:

G(P̄,Γ)(Q) = k exp
(
− 1

2

−−→
P̄Q> Γ

−−→
P̄Q

)
.

However, contrarily to the Euclidean case where the concentration matrix Γ is sim-
ply the precision matrix Σ−1, there is a correction term for the curvature which is due
to the change of the volume of infinitesimal geodesic balls with respect to Euclidean
spaces. It is thus natural to see the Ricci curvature appearing as a correction term.
In order to understand better what this means, let us consider a Gaussian distribution
at P̄ = Id (by invariance we are not loosing any generality) with covariance matrix Σ

and concentration matrix Γ that are jointly diagonal with the Ricci curvature matrix.
According to Theorem 3, the Ricci curvature matrix is block-diagonal in the basis
{Ei j}. Let Γi j and Σi j be the coefficients of the diagonal concentration / covariance
matrices. Theorem 4 states that Γi j = Σ−1

i j −
1
3 Ric(Ei j) + O(σ). Thus, we see that that

the Ricci curvature acts as the inverse of a typical length separating two different be-
haviors: when the variance is small (Σi j � Ric(Ei j)−1), then the curvature correction
term can be neglected and the usual Gaussian in the tangent space is a good model.
This is also the regime where tangent PCA (tPCA) will work without having to worry
about curvature. On the contrary, if the variance is large with respect to the curva-
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ture (Σi j � Ric(Ei j)−1), then the curvature has to be taken into account and tPCA and
principal geodesic analysis (PGA) will give different results.

5. Manifold-Valued Image Processing

We turn in this section to the generalization of image processing algorithms like in-
terpolation and diffusion to manifold-valued images. We show that most interpolation
and filtering methods can be reformulated using weighted Fréchet means. The linear
and non-linear diffusion schemes can be adapted to Manifolds through PDEs, provided
that we take into account the variations of the metric. For details, we refer the reader
to [PFA06]. More elaborate methods were developed since then using total variation
[WDS14, GS16] or second order [BBSW16] regularization, as well as non-local mean
denoising of manifold-valued images [LNPS17].

In this section, P(x) is a n × n SPD matrix-valued image with Euclidean coor-
dinates x ∈ Rm. Because we are in a Hadamard space where there exists a global
coordinate system (for instance Ei j(P(x))), this SPD image can be represented as a
d-dimensional vector image, with d = n(n + 1)/2. This would not be possible for an
image of orientations belonging to a sphere, for instance. However, we will see be-
low that processing manifold-valued images is in both cases different from processing
vector images. In practice the image coordinates are sampled at the points xk of a grid
where k = {k1 . . . km} is the index of the signal element (m = 1), the pixel (m = 2) or the
voxel (m = 3). The SPD matrix-valued image is thus encoded by the m-dimensional
array of values Pk = P(xk) at the voxels xk.

5.1. Interpolation
One of the important operations in geometric data processing is to interpolate values
between known measurements. Beyond the nearest neighbor interpolation, which is
not continuous, one of the simplest interpolation for 1D signal processing is linear
interpolation. In 2D and 3D image processing, this generalizes to bilinear and trilin-
ear interpolation, which are particularly popular due to their very low computational
complexity. Higher order methods include quadratic, cubic and higher order spline
interpolation [TBU00, Mei02].

Assuming that we have signal values fk sampled on a regular lattice with integer
coordinates xk ∈ Z

m. It is usual to interpolate the value at a non-integer coordinates
x using a linear combination of the signal value f (x) =

∑
k w(x − xk) fk weighted by

a kernel w normalized with w(0) = 1 and w(k) = 0 at other integer values so that the
interpolated signal f (xk) = fk is equal to the sampled measure at the lattice points. A
typical example of an interpolation kernel with infinite support is the sinus cardinal.
Classical finite support kernels are the nearest-neighbor, linear (or tri-linear in 3D) and
piecewise polynomial kernels realizing spline interpolations [TBU00, Mei02].
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Figure 0.2 Linear interpolation of SPD matrices. Left: linear interpolation on coefficients. Right: affine-
invariant interpolation. We can notice the characteristic swelling effect observed in the Euclidean case,
which is not present in the Riemannian framework.

When the weights are summing up to one, this can be seen as a weighted Fréchet
mean. Thus, interpolation of manifold-valued images can be formulated as an opti-
mization problem: the interpolated value is then defined as:

P(x) = arg min
Q∈M

∑
k

w(x − xk) dist2(Pk,Q)

 .
The cost to pay is that the value has to be determined by gradient descent, for instance
using the extension of algorithm 1 with weights. Linear interpolation between two
points P(0) = P and P(1) = Q can be written explicitly since it is a simple geodesic
walking scheme: P(t) = ExpP(t

−−→
PQ) = ExpQ((1 − t)

−−→
QP).

For our SPD matrices example, this gives the following interpolation with the stan-
dard Euclidean and affine-invariant metrics:

PEucl(t) = (1 − t)P + tQ

PA f f (t) = P1/2 exp
(
t log

(
P−1/2QP−1/2

))
P1/2

For a Euclidean metric, the trace is linearly interpolated. With an affine invariant
metric, the trace is not linear anymore but the determinant is geometrically interpolated
and its logarithm is linearly interpolated [AFPA07]. This is illustrated in Fig. 0.2 for
the linear interpolation and in Fig. 0.3 for the bilinear interpolation with the Euclidean
and affine-invariant metric.

5.2. Gaussian and kernel-based filtering
Considering weighted means allows to generalize many other image processing op-
erations. A kernel convolution, for instance, can be viewed as the average value of
the signal at neighboring points weighted by the respective kernel value. For a trans-
lation invariant kernel k(x, y) = k(y − x) in a Euclidean space, the convolution f̂ (x) =∫
Rn k(u) f (x + u) du is indeed the minimizer of the criterion C( f̂ ) =

∫
Rn k(u) dist2( f (x +

u) , f̂ (x)) du. Here, the kernel might be a discrete measure, for instance when sample
points are localized at discrete nodes of grid.

This variational formulation is still valid in Riemannian manifolds. However, in
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general, the minimum may not exist nor be unique. For Hadamard spaces (thus for
SPD matrices with an affine-invariant metric), the existence and uniqueness are en-
sured for a non-negative kernel. In general, there is no closed form for the minimizer
of this cost function. Thus, we need to rely on an iterative gradient descent algorithm.
Assuming that the kernel is normalized (

∫
Rn k(u) du = 1), we can use:

P̂t+1(x) = ExpPt

(
τ

∫
Rn

k(u) LogP̂t(x)(P(x + u)) du
)
, (0.22)

where the time-step τ is updated like in algorithm 1. Fig. 0.4 illustrates the Gaus-
sian filtering of a SPD image (here a diffusion tensor image) with the flat and affine-
invariant metrics. One can visualize the blurring that occurs on the corpus callosum
fiber tracts using the flat metric.

5.3. Harmonic regularization
In order to filter an image, one can also want to minimize the norm of the derivative
of the field in the direction u. The directional derivative ∂uP(x) is a tangent vector of
TP(x)M which can be evaluated using finite differences: ∂uP(x) ' LogP(x)(P(x + u)) +

O(‖u‖2). The norm of this vector has to be measured with the Riemannian metric at
the foot-point: ‖∂uP(x)‖P(x). However, penalizing the derivative only in one direction
of the space is not sufficient. The spatial differential of the field P(x) is the linear form
that maps to any spatial direction u the directional derivative dP(x) u = ∂uP(x). it can
be expressed as a matrix with the column coefficients related to the spatial basis (say ei)
and row coefficients related to a basis of the TP(x)Sym+

n (for instance E jk(P(x))). The
dual of that d × m matrix with respect to the spatial metric (this is the transpose of the
matrix in an orthonormal coordinate system) has columns that gives the direction of

Figure 0.3 Bilinear interpolation of SPD matrices. Left: linear interpolation on coefficients. Right: affine-
invariant interpolation. We can notice once again the characteristic swelling effect observed in the Euclidean
case, which is not present in the Riemannian framework. [Figure adapted from [AFPA07]]
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Figure 0.4 Results of Euclidean Gaussian, Riemannian Gaussian and Riemannian anisotropic filtering
on a 3D DTI of the brain (Closeup around the splenium of the corpus callosum). The color codes for
the direction of the principal eigenvector (red: left-right, green: posterior-anterior, blue: inferior-superior).
Top left: Original image. Top right: Gaussian filtering using the flat metric (5x5 window, σ = 2.0). This
metric gives too much weight to SPD matrices with large eigenvalues, thus leading to clear outliers in the
ventricles or in the middle of the splenium tract. Bottom left: Gaussian filtering using the Riemannian metric
(5x5 window, σ = 2.0). Outliers disappeared, but the discontinuities are not well preserved, for instance
in the ventricles at the level of the cortico-spinal tracts (upper-middle part of the images). Bottom right:
Anisotropic filtering in the Riemannian framework (time step 0.01, 50 iterations). The ventricles boundary
is very well conserved with an anisotropic filter and both isotropic (ventricles) and anisotropic (splenium)
regions are regularized. Note that the U-shaped tracts at the boundary of the grey/white matter (lower left
and right corners of each image) are preserved with an anisotropic filter and not with a Gaussian filter.
[Figure reproduced from [PFA06]]
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the spatial domain in which each component of the SPD matrix field evolve the fastest:
we denote this gradient by ∇xP(x) = dP(x)> to differentiate it from the connection ∇.

As there are more directional derivatives in classical 6, 18 or 26 neighborhoods (in
3D) than the three needed to compute the full gradient matrix, the gradient may be
approximated by minimizing the least square error:

∇xP(x) = arg min
A∈Mm×d

∑
i

‖A>ui − LogP(x)(P(x + ui))‖2P(x),

where A is a matrix with 3 rows and 6 columns in the case of a 3D image of 3D SPD
matrices. The simplest regularization criterion based on the spatial gradient is the
harmonic energy:

Reg(P) =
1
2

∫
Ω

‖∇xP(x)‖2P(x) dx =
1
2

m∑
i=1

∫
Ω

∥∥∥∂xi P(x)
∥∥∥2

P(x) dx.

The expression on the right assumes an orthonormal coordinate system ∂x1 , . . . ∂xm

of the image domain. The Euler-Lagrange equation ∇PReg(P)(x) = −∆P(x) of this
harmonic regularization criterion with Neumann boundary conditions involves the
Laplace-Beltrami operator ∆P(x) on the manifold. In addition to summing the flat
Euclidean second order directional derivatives ∂2

xi
P(x) in a locally orthogonal system,

this operator has an additional term encoding the curvature of the manifold that distorts
the ortho-normality of this coordinate system from one point to another in the neigh-
borhood. However, we need not compute the full Riemannian curvature operator to
compute the Laplace-Beltrami operator. Indeed, we only need to access to the second-
order derivative along geodesics starting with orthonormal vectors at a point. Because
the Christoffel symbols and their radial derivatives (along the geodesics starting from
the foot-point P) vanish in a normal coordinate system at P, computing the standard
Laplacian in this specific coordinate system actually already includes the correction
for the curvature.

This gives rise to the following very general and efficient scheme for the second
order derivative in the spatial direction u [PFA06]:

∆uP = LogP(x)(P(x + u)) + LogP(x)(P(x − u)) + O(‖u‖4).

Averaging over all the spatial directions in a spatial neighborhood V finally gives a
robust and efficient estimation scheme:

∆P(x) ∝
∑
u∈V

1
‖u‖2

LogP(x)(P(x + u)) (0.23)

The optimization of the harmonic energy can be performed as previously using a first
order gradient descent technique Pt+1(x) = ExpPt(x)

(
−τ∆Pt(x)

)
that iteratively shoot

for an adaptive time-step τ in the (opposite) direction of the regularization criterion
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gradient.

5.4. Anisotropic diffusion
In order to filter in homogeneous regions and to keep edges sharp, one can modulate
the regularization depending on the direction u. A large body of work has been fo-
cusing on the inhomogeneous and anisotropic filtering of classical grey-valued images
(see e.g. [Wei97, Wei98]). A comparatively much smaller part of this early literature
has been devoted to anisotropic diffusion on very specific manifold-valued images,
like circular data [TSC00]. The case of SPD-valued images illustrated below was
investigated in [PFA06] and generalizes easily to generic Riemannian-valued images.

A first method consists in smoothing the image in the direction u if the direc-
tional derivative ∂uP(x) is small, and penalize the smoothing whenever we cross an
edge as measured by a large directional derivative [PM90, GKKJ92]. This can be
realized directly in the discrete implementation of the Laplacian by weighting the di-
rectional contribution ∆uP = LogP(x)(P(x + u))/‖u‖ to the Laplacian with a decreas-
ing function of the norm ‖∂uP‖P. Thus, a natural generalization of the weighted
Laplacian to manifold-valued images is ∆

φ
uP =

∑
u φ(‖∂uP‖P)∆uP, for instance with

φ(x) = exp
(
−x2/κ2

)
[PFA06].

One of the key problem of the anisotropically weighted Laplacian is that its evo-
lution equation is not guarantied to converge, even with Euclidean images, since the
anisotropic regularization “forces” may not derive from a well-posed energy. An alter-
native is to construct a variational formulation with a weighted regularization criterion
that penalizes the spatial variations of the field in the homogeneous areas. It is clas-
sical to take for instance a robust M-estimator of the Riemannian norm: Regφ(P) =
1
2

∫
Ω
φ
(
‖∇xP(x)‖P(x)

)
dx. By choosing an adequate φ-function (for instance φ(s) =

2
√

1 + s2/κ2 − 2), one can give to the regularization an isotropic or an anisotropic
behavior [AK01]. The main difference with a classical Euclidean calculation is the
use of the Laplace-Beltrami operator and the Riemannian norm [FAAP05]. Using
Ψ(x) = φ′(x)/x, we get the following gradient:

∇PRegφ(P) = −Ψ(‖∇xP‖P) ∆P −
∑d

i=1 ∂xiΨ(‖∇xP‖P) ∂xi P.

The evolution equation is thus ∂tP = −∇PRegφ(P). An illustration of the anisotropic
diffusion of an SPD image (here a diffusion tensor image) is given in Fig. 0.4. One can
notice that some important U-shaped tracts at the boundary of the grey/white matter
are preserved with our Riemannian anisotropic filter and not with a Gaussian filter.

5.5. Inpainting and extrapolation of sparse SPD fields
The harmonic or anisotropic diffusion schemes developed above reduce the noise on
the image but also the information that it contains. Indeed, an infinite diffusion time
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leads to a completely homogeneous field. Thus, it is interesting to consider adding a
data attachment term (a data likelihood) in addition to the regularization which consti-
tutes then a spatial prior. One usually assumes an independent Gaussian noise at each
observed point of the image so that the maximum likelihood corresponds to a least-
square criterion. This is still the case up to the first order with our definition of the
Gaussian on manifolds of Section 4.3 when the variance is small enough. However,
correction terms should be considered for covariances that are larger than the Ricci
curvature (see also Chapter 2 on regression on manifolds).

When we have a dense data field Q(x) as previously, the natural similarity criterion
is the classical sum of square differences Sim(P) =

∫
Ω

dist2 (P(x),Q(x)) dx, expressed
with the Riemannian distance. This criterion adds a geodesic spring (whose strength
depends on the weighting of each criterion) ∇Pdist2(P,Q) = −2

−−→
PQ to the gradient of

the regularization which prevents from getting too much away from the data.
For sparse delta-Dirac measurements Qi at points xi, we need to restrict the integral

in the above similarity criterion to the points where we have measurements. Unfortu-
nately, these mass distributions induce singularities in the gradients. One solution is
to regularize the data attachment term with Gaussian convolutions:

Sim(P(x)) =

∫
Ω

n∑
i=1

Gσ(x − xi) dist2 (P(x),Qi) dx.

This leads to the regularized derivative [PFA06]:

∇PSim(x) = −2
n∑

i=1

Gσ(x − xi)
−−−−−→
P(x)Pi.

An example of extrapolation (inpainting) of a whole image from 4 SPD matrix mea-
surements is illustrated in Figure 0.5.

6. Other metrics on SPD matrices

Affine-invariant and Euclidean metrics are two families of metrics that endow the
space of SPD matrices with very different properties. There are actually quite a few
other families of metrics which are interesting to know.

6.1. Log Euclidean metrics
In 2006, soon after the affine-invariant metrics were proposed, [AFPA06, AFPA07]
realized that the matrix exponential was a global diffeomorphism from the space of
symmetric matrices to the space of SPD matrices (a proof of that fact is given in
Section 2 of this chapter), a fact which is mathematically well-known in Hadamard
manifolds. However, it was apparently not used previously to transfer the vector space
structure of symmetric matrices to SPD matrices. In particular, it is possible to endow
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Figure 0.5 Extrapolation of SPD matrix values from four measurements using harmonic diffusion. left:
The four initial SPD matrix values. Middle: result of the diffusion without the data attachment term. The field
of SPD matrix converges to a uniform image with the Fréchet mean value of the 4 SPD matrices. Right:
result of the diffusion with a strong data attachment term. The diffusion smoothly extrapolates outside the
measurements with a very small smoothing towards the mean at each of the original measurements. Notice
that the center point is a multiple of the identity matrix around which it is not possible to consistently orient
the principal eigenvector.

SPD matrices with a commutative Lie group structure were the composition is defined
by P1 � P2 = exp(log(P1) + log(P2)) (the log-product). With the logarithmic scalar
multiplication λ � P = exp(λ log(P)) = Pλ in addition, this endows the SPD space with
a vector space structure. To finish, any Euclidean metric on symmetric matrices is
also transformed into a bi-invariant Riemannian metric on SPD matrices thanks to the
differential of the matrix logarithm:

〈V,W〉LE
P =

〈
d log(P)(V), d log(P)(W)

〉
Eucl =

〈
∂V log(P), ∂W log(P)

〉
Eucl .

We recall that the differential of the matrix logarithm was explicitly determined in
Section 2.2. It is well defined and invertible everywhere on the space of SPD matrices.

Using the fact that Euclidean geodesics are straight lines in the space of symmetric
matrices, the expression of the Exp, Log and distance maps metric are easily deter-
mined for the Log-Euclidean metric:

ExpLE
P (W) = exp

(
log(P) + ∂W log(P)

)
.

LogLE
P (Q) = d exp(log(P))

(
log(Q) − log(P)

)
= ∂log(Q)−log(P) exp(log(P)).

dist2LE(P1, P2) =
∥∥∥log(P1) − log(P2)

∥∥∥2
Eucl .

Because the differential of the matrix log at the identity is the identity, we can see
that log-Euclidean geodesics through the identity are the same as the affine-invariant
geodesics. However, this is not true at other points of the SPD manifold [AFPA07].

By construction, log-Euclidean metrics are invariant by inversion and by a change
of scale of the space. If we choose in addition a Euclidean scalar product which is
invariant by rotation (we already know that they are all of the form ‖W‖2Eucl = Tr(W2) +
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βTr(W)2 with β > −1/n), we conclude that all the similarity invariant log-Euclidean
Riemannian distances are:

dist2LE(P,Q) = ‖ log(P) − log(Q)‖2Eucl

= Tr
(
(log(P) − log(Q))2

)
+ βTr

(
log(P) − log(Q)

)2 .

The relative complexity of the exp/log formulas with respect to the affine-invariant
case is due to the use of matrix exponential and logarithm differentials. However,
log-Euclidean exp and log are nothing else than the transport of the addition and sub-
traction through the exponential of symmetric matrices. In practice, the log-Euclidean
framework consists in taking the logarithm of the SPD matrices, computing like usual
in the Euclidean space of symmetric matrices, and coming back at the end to the
SPD matrix space using the exponential [AFPA06, AFPA05]. The vector space struc-
ture gives a closed-form expression to many of the operations that were defined in
this chapter through optimization. For instance, the log-Euclidean mean is simply
[AFPA05]:

P̄LE = exp

1
n

n∑
i

log(Pi)

 ,
while the affine-invariant mean has to be obtained through the iterative algorithm 1 of
Section 4.1.

This shows that we can have very different flat structures on the space of SPD matri-
ces. In fact, the log-Euclidean structure is much closer to the affine-invariant structure
than to the Euclidean structure: log-Euclidean geodesics are complete (never leaving
the space) and are identical to the affine-invariant geodesics at the identity, contrarily to
Euclidean geodesics. The log-Euclidean and affine-invariant means are identical if the
mean commutes with all the data. When they are not equal, one can show that (close
enough to the identity) the log-Euclidean mean is slightly more anisotropic [AFPA07].
A careful comparison of both metrics in practical applications [AFPA05, AFPA06]
showed that there was very few differences on the results (of the order of 1%) on real
diffusion tensor images (see next section), with a gain of computation time from 4 to
10 folds for the log-Euclidean. The difference is actually due to the curvature induced
by the affine-invariant metric (the log-Euclidean structure is flat since it is a vector
space): when the distance of the data to the identity is less than the typical Ricci
curvature, one can conclude that the log-Euclidean framework is a good first order
approximation of the affine-invariant computations. When there is another reference
point Q̄ which is more central than the identity matrix Id for the data, one can also use
the log-Euclidean structure induced by Q̄1/2 log

(
Q̄−1/2PQ̄−1/2

)
Q̄1/2 instead of log(P).

For other types of applications where the variability or the anisotropy of the SPD
matrices is higher than the affine-invariant Ricci curvature, affine-invariant and log-
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Euclidean results might change a lot. This is for instance the case in adaptive re-
meshing [BGM97]. However, initializing the iterative optimizations of affine-invariant
algorithms with the log-Euclidean result drastically speeds-up the convergence.

6.2. Cholesky metrics
Other families of metrics were also proposed to work with SPD matrices. For in-
stance, [WVCM04] proposed to parametrize tensors by their Cholesky decomposition
P = LL> where L is upper triangular with positive diagonal entries. Taking the stan-
dard flat Euclidean metric on the (positive) upper diagonal matrices leads to straight
line geodesics in that space: Lt = L + tL̇ is the geodesic starting at L with (upper-
triangular) tangent vector L̇. It can be transported to a Cholesky geodesic in SPD
matrix space using the product Pt = Lt L>t = P + t(L̇L> + LL̇>) + t2L̇L̇>. We see that
the matrix product L→ LL> plays here the role that was taken by the matrix expo-
nential in the log-Euclidean framework. This mapping is a diffeomorphism between
positive definite upper triangular and SPD matrices. However, contrarily to the log-
Euclidean case, symmetric matrices with null eigenvalues are at a finite distance of
any SPD matrix with the Cholesky metric, like for the Euclidean case.

6.3. Square root and Procrustes metrics
Since P = (LR)(LR)> is also a valid decomposition of P for any rotation R, other
definitions of square roots of SPD matrices can be used. For instance, the symmetric
square root P1/2 = (P1/2)> lead to a well defined metric on tensors which has similar
properties to the Cholesky metric above, yet having different geodesics. The fact that
the rotation R can be freely chosen to compute the square root led [DKZ09] to propose
a distance measuring the shortest extrinsic distance between all the square roots L1R1

of P1 and L2R2 of P2. The minimal extrinsic distance is realized by the Procrustes
match of the square roots:

dist(P1, P2) = min
R∈O(n)

‖L2 − L1R‖Eucl,

and the optimal rotation R̂ = UV> is obtained thanks to the singular value decomposi-
tion of L>2 L1 = US V>. This distance is in fact the standard Kendall structure on the re-
flection size-and-shape space of n + 1 points in dimension n [DKZ09, DM98, Sma96],
which geometry is well known. For instance, the minimal geodesic joining P1 to P2 is
given by

P(t) =
(
(1 − t)L1 + tL2R̂

) (
(1 − t)L1 + tL2R̂

)>
.

From the equation of the geodesics, one can derive the Riemannian exp and log map
and proceed with the general computing framework. However, one must be careful
that this space is not complete and has singularities when the matrix P has rank n − 2,
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i.e. when 2 eigenvalues are going to zero [LK93]. The curvature of this space positive,
which makes an important difference with the affine-invariant / log-Euclidean setting.

6.4. Extrinsic “distances”
The symmetrized Kullback Leibler divergence (J-divergence) was proposed as a ”dis-
tance” on the SPD matrix space in [WV05] (it is specified in the paper that triangular
inequality might not be verified):

dist2J(P1, P2) = Tr
(
P1P−1

2 + P2P−1
1

)
− 2n.

This J-distance has interesting properties: it is affine invariant, and the Fréchet mean
value of a set of tensors Pi has a closed form solution:

P̄ = B−1/2
(
B1/2AB1/2

)1/2
B−1/2,

with A =
∑

i Pi and B =
∑

i P−1
i . However, this is not a Riemannian distance as a Taylor

expansion

dist2J(P, P + εV) =
ε2

2
Tr(P−1VP−1V) + O(ε3)

shows that the underlying infinitesimal dot product is the usual affine invariant metric
〈V,W〉P = 1

2 Tr(P−1VP−1W). In fact, this divergence is probably an extrinsic distance
(whose triangular inequality remains to be shown) and it would be quite interesting
to determine the underlying embedding. In any case, the algorithms based on this
symmetric divergence should have results close to the affine-invariant ones when the
data are sufficiently concentrated, provided that these algorithms can accommodate an
extrinsic distance without direct correspondence to geodesics.

6.5. Power Euclidean metrics
In between a Euclidean metric and its log-Euclidean counterpart, we can design a
family of Riemannian metrics based of power of the SPD matrices [DPP10]. The
basic idea is to take the Euclidean distance after the power transformation 1

α
Pα for

α , 0, so that the distance is:

dist2α(P,Q) =
1
α
‖Pα − Qα‖2Eucl.

The mapping exp(α(log P))/α has a smooth invertible differential d exp |α(log P)d log |P
which realizes an isometry between Sym+

n and a subset of symmetric matrices with a
Euclidean metric. SPD matrices with power-Euclidean metrics are thus flat spaces.

We recall from Section 2 that the power α of a SPD matrix is obtained by tak-
ing the power of the eigenvalues in the eigen-decomposition P = U DIAG(di) U>,
using the formula Pα = U DIAG(dαi ) U> = exp

(
α(log P)

)
. Since limα→0(xα − 1)/α =
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log(x), we see that the family tends to the log-Euclidean metric for α = 0, and com-
prises the Euclidean metric for α = 1 and the Euclidean metric on the precision matrix
for α = −1. If α ≤ 0 the symmetric matrices must be positive definite or have infinite
eigenvalues, but if α > 0 then we can also compare symmetric positive semi-definite
(PSD) matrices.

The question of how to choose the value of α in practice for a specific dataset
was investigated in [DPP10] using statistical inference to find the optimal value for
which the data are as Gaussian as possible after transformation, similarly to a Box-Cox
transformation. Preliminary tests on canine diffusion tensor image data suggested that
an intermediate value between Euclidean and log-Euclidean α = 1/2 (a square-root
metric) could lead to a good description of the data in this specific case.

6.6. Which metric for which problem?
The zoo of intrinsic Riemannian and extrinsic metrics that we just described raise
the problem of the choice of the metric, which has to be data dependent. One can
think of optimizing the best suited metric, as described in [DPP10] for the power-
Euclidean metrics. Taking into account all the metrics above would require finding a
larger parametric family comprising all of them. This is an interesting challenge. A
simpler method is to list the main properties of these metrics in order to identify which
of them make sense for the data under investigation.

The space of SPD matrices endowed with affine-invariant and log-Euclidean met-
rics is geodesically and metrically complete. This is a desirable feature when we want
to have matrices with null eigenvalues at an infinite distance of any SPD matrix and
cannot be reached in finite time in practice. This is an important feature for gradi-
ent descent algorithms. In both the Hadamard and flat log-Euclidean case, the mean
always exists and is unique, which simplifies many algorithms. For diffusion tensor
data, the negative curvature of the affine-invariant metric seems to be small enough so
that algorithms can be made much more efficient using the flat log-Euclidean metric.

For many other flat or positively curved metrics (e.g. power Euclidean of Cholesky),
the space of SPD matrices is open and has a boundary including some rank-deficient
matrices that can be reached in finite time. This means that positive semi-definite
(PSD) matrices should make sense for the investigated data and that most of the algo-
rithms developed so far need to be adapted to manifold with boundaries. Moreover, the
potential multiplicity of the mean value in positively curved (or in flat but non-convex)
manifolds raises other algorithmic challenges.

An example of PSD matrix data is found in computer vision with the structure
tensor of an image [KWA11]. This is the Gaussian convolution of the gradient of
the image tensored by itself S σ = Gσ ? (∇I ∇I>). The structure tensor field reveals
structural information like edges and corners which are used to guide the anisotropic
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smoothing of the original image. High values of σ favor smooth structure tensor fields
while smaller values can help extracting low level features in images but produces a lot
of noise on the field. Smoothing anisotropically this tensor field may help regularizing
homogeneous regions while preserving edges. Here, filtering the coefficients only
(using the Euclidean metric) produces negative eigenvalues, while filtering with the
affine-invariant or log-Euclidean metrics forbids being close to null eigenvalues and
gives the same importance to small differences in small tensors as to large differences
in large ones [FAAP05]. This means that the anisotropic diffusion enhance these small
details as much as the large scale ones. In fact, we should realize that structure tensors
with one vanishing eigenvalue in 2D (or 2 vanishing eigenvalues in 3D) represents a
perfect infinite edge in the image. This type of PSD matrices should thus be naturally
reachable (i.e. at a finite distance) while negative eigenvalues should be forbidden. In
this case, metrics with flat or positive curvature like Cholesky or Procrustes could be
better suited.

In order to understand the behavior of each type of metric, Fig. 0.6 illustrates the
geodesic shooting from a SPD matrix with the same tangent vector with the Euclidean,
log-Euclidean metric (affine-invariant is very similar), and Cholesky metrics. The Eu-
clidean geodesic quickly reaches the boundary of the space (a matrix with zero eigen-
values) after which it is not defined anymore. The log-Euclidean geodesic reaches
null eigenvalues asymptotically at infinity, while the Cholesky geodesic reaches a null
eigenvalue in finite time but bounce back and becomes positive anew after that point.
There is thus no universal metric for SPD matrices, but many different families of met-
rics sharing similar or distinct characteristics that one has to investigate to choose the
most adapted to the application needs.

Figure 0.6 Geodesic shooting with several metrics from the SPD matrix P = DIAG(4, 1) with the
tangent vector Ṗ = −4P. Left: Along the Euclidean geodesic, the geodesic is Pt = (1 − 4t)P, so
that both eigenvalues vanish at t = 1/4 and the geodesic cannot be continued after in Sym+

n .
One can see the linear height decrease. Middle: The Cholesky decomposition of P gives the
diagonal (thus upper diagonal) matrix L =

√
P = DIAG(2, 1) and the tangent vector L̇ = −2L. The

Cholesky geodesic is thus Pt = (L + tL̇)2 = (1 − 2t)2P. Both eigenvalues vanish at t = 1/2 and
regrow symmetrically on the other side. Notice the quadratic height evolution. Right: along the
log-Euclidean geodesic, matrices are always SPD. The height decrease is exponential.

7. Applications in Diffusion Tensor Imaging (DTI)

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging (MRI) modality
which was developed to measure in vivo oriented structures within tissues thanks to
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the directional measure of the water diffusion. The measure of intravoxel incoherent
motions within each voxel was proposed as early as 1986 [LBBL+86]. Specific gra-
dient pulses produce a spin-echo attenuation that can be related to the diffusion in the
gradient direction. Thus, one can estimate an Apparent Diffusion Coefficient (ADC)
from a reference B0 image (without gradient) and a few Diffusion Weighted Images
(DWI) with gradients in different directions. In 1993, the single isotropic model of
diffusion evolved into a matrix field that is allowing the measure of the anisotropic
behavior of diffusion [BMB94], in particular within the white matter. The diffusion
matrix is symmetric and can be interpreted as the covariance matrix of the Brown-
ian motion of water in the tissues. This symmetric matrix image model was named
Diffusion Tensor Imaging (DTI), and symmetric positive definite matrices are now
classically referred to as tensors in medical image analysis. The Stejskal-Tanner equa-
tion relates the diffusion tensor D to noise-free DWI Bi acquired with the encoding
gradient gi and diffusion factor b:

Bi = B0 exp(−bg>i D gi). (0.24)

Taking the logarithm of this equation leads to a very simple linear system which can
be solved in the least-square sense using algebraic methods (see e.g. [WMM+02]).

In an ideal fibrous tissue, the principal eigenvector of the diffusion tensor is aligned
with the fiber orientation. This gives an information about the direction of the neural
tracts at each point of the image, whose global shape can be reconstructed into fiber
bundles using tractography. Thus, diffusion imaging provides in vivo imaging of the
white mater architecture of nervous fibers (axons) and allows to get an insight on the
brain’s information highways! Fiber tracking is providing a massive amount of de-
tailed information about the macroscopic structures of the brain and is used in many
neuroscience studies, even if the validity of the anatomical interpretation of tractogra-
phies at the microscopic level remains under discussion. Higher order models of dif-
fusion are nowadays developed (Diffusion Spectrum Imaging (DSI), High Angular
Resolution Diffusion Imaging (HARDI), Q-ball, etc [TRW+02]) both to increase the
orientation accuracy and to determine the different compartments at the microstructure
level within each voxel. In all cases, good images require a good scanner quality (in
particular very high and fast gradients) and a relatively long acquisition time.

On the other side of the application spectrum, DTI is finding clinical applications in
brain tumors, spinal chord pathologies, epilepsy, diffuse axonal injury, multiple Scle-
rosis, Alzheimer Disease and ischemic stroke [LMK+14]. Here, DTI as a quantitative
tool for medical diagnosis is hampered by the lower scanners quality in clinical en-
vironments and by the limited time for a clinical MRI acquisition. This results into
images with a quite low signal-to-noise ratio (SNR) and a limited number of encod-
ing gradients. Because the estimation of the tensor field from DWIs is quite noise
sensitive, fiber tracking is often difficult with clinical DTI.
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Simple methods estimate the tensor image with the above linear method and then
spatially regularize the tensor field. From the signal processing point of view, this
amounts to assume a log-Gaussian noise on the images, while it is rather Rician in
MRI as we take the amplitude of a complex Gaussian signal in the k-space [SdD04].
The Gaussian or log-Gaussian noise assumption is valid only for high SNR images
and it biases the estimation for low SNR clinical DTI. Rician noise removal on DWI
images has been investigated [BFW06]. However, smoothing independently each DWI
before estimating the tensor may blur the transitions between distinct fiber tracts which
delimit anatomical and functional brain regions since the transitions may not be seen
correctly in all gradient directions.

Instead of separating the tensor estimation from the DWI and the DTI regular-
ization, a statistically more interesting model is to consider the spatial regularization
as a prior distribution in a Bayesian tensor estimation with a Rician DWI likelihood
[FAPA06, FAPA07]. For instance, a maximum a posteriori (MAP) algorithm jointly
(rather than sequentially) performs the estimation and the regularization of the tensor
field. Such an optimization is very easily developed in the log-Euclidean framework.
One could also formulate it with an affine-invariant metric but calculations are slightly
more complex. Let us consider a Gaussian DWI noise model to start. The tensor image
D(x) = exp(W(x)) is parametrized by an unconstrained symmetric matrix W(x). In the
following, we skip the position x in the image when not necessary. The log-likelihood
for a Gaussian noise is SimGauss(W) =

∑
i(B̂i − Bi(W))2, where B̂i is the DWI observed

with the gradient direction gi and Bi(W) = B0 exp(−bg>i exp(W) gi) is the value mod-
eled from the tensor parameter W using the Stejskal-Tanner equation. The derivative
of this criterion with respect to W is:

∇WSimGauss(W) = 2b
∑

i

(
B̂i − Bi(W)

)
∂W Bi(W) with ∂W Bi(W) = Bi(W) ∂gi g>i exp(W).

The partial derivative of the matrix exponential was computed in Equation 0.4.
In order to take into account the native Gaussian noise in the k-space, [WVCM04]

developed an estimation criterion on the complex DWI signal with a computationally
grounded optimization framework based on the Cholesky decomposition. In clinical
images, the phase is often discarded to conserve only the amplitude. For a Rician noise
of variance σ2 on the data, the probability density of the measured signal B̂ knowing
the expected signal B is in that case [SdDSD98]:

ρ
(
B̂|B

)
=

B̂
σ2 exp

(
−

B̂2 + B2

2σ2

)
I0

(
BB̂
σ2

)
, (0.25)

where I0 is the modified 0 order Bessel function of the first kind. The Rician noise
induces a signal-dependent bias of the order of σ2/2B on the DWI signal [SdDSD98].
As a consequence, tensors are under-estimated with the least-squares estimation be-
cause the signal is systematically overestimated.



i
i

“chapter3” — 2019/6/24 — 9:38 — page 42 — #42 i
i

i
i

i
i

42

Under a Rician noise, the log-likelihood of DWI images with independent voxels
is then: SimRice(W) = −

∑
i log

(
ρ
(
B̂i|Bi (W)

))
. The derivative of this criterion with

respect to the tensor parameter W is quite simple [FAPA06, FAPA07]:

∇WSimRice(W) = −
2b
σ2

∑(
Bi(W) − α

(
B̂iBi(W)
σ2

)
B̂i

)
∂W Bi(W) with α(x) =

I′0(x)
I0(x)

.

It is very similar to the previous Gaussian case up to a correction factor α that depends
on the signal and the noise variance. The variance of the noise is usually estimated on
the background of the image where there is no signal.

The Markovian prior p(P(x + dx)|P(x)) ∝ exp
(
− 1
λ
‖∂dxP(x)‖P(x)

)
is the discrete ver-

sion of the harmonic energy of Section 5.3 for the spatial regularity. For preserving
discontinuities, we may use a redescending M-estimator such as φ(s) = 2

√
1 + s2/κ2 −

2 [FAPA07]. The φ-function helps preserving the edges of the tensor field while
promoting the smoothing of homogeneous regions. The prior becomes: Reg(W) =∫

Ω
φ (‖∇W‖). In order to adapt the previous maximum-likelihood (ML) gradient de-

scent into a maximum a-posteriori (MAP) estimation, we simply need to add the
derivative of this prior to the ML criterion gradient:

∇WReg(W) = −ψ (‖∇W‖) ∆W −
∑

i ∂i (ψ (‖∇W‖)) ∂iW where ψ(s) = φ′(s)/s.

Directional derivatives, gradient and Laplacian can be estimated with finite differences
like for scalar images (see [FAPA06, FAPA07] for details).

Experiments on synthetic data with a Rician noise showed that the above MAP
technique was correctly avoiding the negative eigenvalues which inevitably appear
in the standard linear estimation technique. The results of the ML (without regular-
ization) and the MAP (with regularization) estimation methods with a log-Euclidean
parametrization of the tensor image showed that the volume of the tensors was under-
estimated by 20% when we assume a log-Gaussian noise. Assuming a Gaussian noise
model leads to an even higher underestimation of 30%. The estimation of the volume
was within 5% with the Rician ML and MAP methods [FAPA07].

Results on two clinical acquisitions are presented in (Fig. 0.7). A first dataset is a
brain image with a very low SNR, and a second dataset is an experimental acquisition
of a tumor in the spinal chord, both with 7 gradient directions [FOF+05]. This last type
of acquisition is sometimes difficult to perform because the position is uncomfortable
due to the tumor and the coil cannot be perfectly adapted to the body as it is for the
head. Consequently, spinal chord images are noisier than brain ones.

As for synthetic data, the negative tensor eigenvalues of the standard method dis-
appear with the ML or MAP estimation. Several biomarkers such as the fractional
anisotropy (FA) and the volume of the diffusion tensors in the ventricles/corpus cal-
losum were used to assess the influence of the noise model used. Results using the
Rician ML estimation showed an increase of the tensor volume and the ADC of about
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Figure 0.7 Tensor field estimation of a brain (top row) and improvement of the fiber tracking
(bottom row). Top Left: A slice of the B0 image. Top Middle: The classic log-Gaussian estimation
on the ROI. The color codes for the principal direction of tensors: red: left-right, green: anterior-
posterior, blue: inferior-superior. Missing tensors in the splenium region are non-positive. Top
Right: The MAP estimation of the same region. Bottom Left: ROI where the tracking is initiated.
Bottom middle: The cortico-spinal tract reconstructed after a classic estimation. Bottom Right:
Same tract reconstructed after the MAP estimation. [Image reproduced from [Pen08]].

Figure 0.8 Tensor field estimation of the spinal chord. Left: A slice of the B0 image with the ROI
squared in green. Middle: Classic log-Gaussian ML tensor estimation. There are many missing
(non-positive) tensors around and in the spinal cord. Right: Rician MAP tensor estimation: ten-
sors are all positive and the field is much more regular while preserving discontinuities. Original
DWI are courtesy of D. Ducreux, MD. [Image reproduced from [Pen08]].
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10% in isotropic brain regions, 1 to 2% in anisotropic brain regions, and about 30% in
the spinal chord, without modifying the FA [FAPA07]. These values are in line with
the expected correction of the shrinking effect due to the log-Gaussian noise model.

In MAP methods where spatial regularization is added, Gaussian and log-Gaussian
Rician noise models exhibited a more severe decrease of the FA than the Rician noise
model. Moreover, the effect is much stronger in homogeneous regions (15% FA de-
crease in the ventricles with Rician vs 30% with log-Gaussian) than in anisotropic re-
gions (3% FA decrease in the corpus callosum with Rician vs 11% with log-Gaussian).
Thus, the reproducibility of the biomarkers measurements is higher with the MAP Ri-
cian tensor reconstruction. The tractography results with the MAP Rician estimation
showed more numerous, longer, smoother and less dispersed fibers. In fact, tracts that
were previously stopped because of the noise seem to be fully reconstructed. The
radiologists found these results anatomically more meaningful.

8. Learning Brain Variability from Sulcal Lines

Modeling the statistical variability of the brain shape in a population from 3D images
is a second interesting application of SPD-matrix-valued image processing [FAP+05,
FAP+07]. In Chapters 4 and 5 of this book, the inter-individual shape variability will be
modeled by a diffeomorphic deformation from a template to all the subject images. In
this Section, we assume a simpler setting where we identify corresponding anatomical
features (points or more generally lines or surfaces) among the anatomy of individuals
(structural homologies). The statistical analysis is then performed on the displacement
field between the template and the individuals. The covariance matrix of each point
of the template independently could be seen as a first order estimation of the spatial
Riemannian metric that we should use for inter-subject registration. Because structural
variations are larger along certain directions [TMW+01], we cannot simplify this SPD
matrix field into a simpler scalar variance function. Since the structural homologies
can only be sparsely estimated, we actually have to extrapolate a SPD matrix field
from sparse measurements, similarly to Section 5.5.

Sulcal lines are low dimensional structures easily identified by neuroscientists that
consistently appear in the normal brain anatomy. The main sulcal lines are used to
subdivide the cortex into major lobes and gyri [MRC+04]. In [FAP+05, FAP+07], 72
sulcal curves that consistently appear in all subjects were selected. The curves were
manually delineated in 98 subjects by expert neuroanatomists according to a precise
protocol with formal rules governing the handling of branching patterns, breaks in
sulci, and doubling of specific sulci (see above references for details). The inter- and
intra-rater error (reliability) is less than 2mm (in r.m.s.) everywhere, and in most re-
gions less than 1mm, far less than the inter-subject anatomical variance. To determine
the point correspondences between different instances of each sulcal line, a classi-
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cal method is to alternate the computation of the closest point from the mean curve
to each instance and the re-estimation of the mean curve from the updated correspon-
dences (this is the max-max algorithm of Chapter 9). A constraint imposing monotonic
matches along the curves was added with dynamic programming and a global affine
transformation per subject was also removed. This matching obviously underestimates
the variability in the tangent direction to the sulcal lines except maybe at the endpoints
that can be considered as landmarks. The mean sulcal lines are illustrated in Figure
0.9.

Figure 0.9 Top: From sulcal lines to the brain variability. Left : sulcal lines of 80 subjects in
green with the mean sulcal lines in red. Middle: variability measured along the mean sulcal lines
(covariance matrix at one sigma). Right: the color encodes the amount of variability everywhere
on the cortex after the extrapolation of the covariance onto the whole 3D space. Bottom: The
366 SPD matrices selected along each sulcal lines, and the trace of the extrapolated covariance
matrix. Lateral view from the left (on the left) and from above (right). Images courtesy of P.
Fillard.

The correspondences from the mean sulcal lines to all subjects are then summa-
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rized in a covariance matrix along each sulcal line that encodes the point-wise vari-
ability up to second order (since the mean is zero by construction of the mean sulcal
lines). These covariance matrices are highly correlated along each line. In order to
retain only the informative ones, the subset of SPD matrices optimizing a prescribed
maximal distance (0.2 in the affine-invariant metric sense) between interpolated and
measured tensors along the line is computed. The selection of 366 covariance matri-
ces was found to be sufficient to encode the variability of the 72 sulci with a low RMS
error. The resulting sparse field of SPD matrices was then extrapolated to the whole
space using the framework described in Section 5.5 (see Fig. 0.9).

The dense map of covariance matrices which is obtained was qualitatively agreeing
with the previously reported brain variability results [FAP+07]: areas that are highly
specialized and lateralized such as the planum parietale and the temporo-parietal areas
exhibit the largest variability. Phylogenetically older areas (e.g. orbitofrontal cor-
tex) and primary cortices that myelinate earliest during development (e.g., primary
somatosensory and auditory cortex) display the minimum of variability.

However, the 3D covariance matrix field contains more information than a scalar
evaluation of the variability: it also contains directions that could be used to better
guide the registration for instance. Even more interestingly, it is possible to study with
this approach the co-variability of different areas of the brain: instead of constructing
the covariance matrix of the inter-subject displacements at each point, we may con-
struct the joint variance-covariance matrix of the inter-subject displacements at two
points x and y of the space. For prescribe initial points x, this amount to extrapo-
late an image of 6 × 6 covariance matrices (the point y being the spatial coordinate of

the image). The total covariance matrix Λ(x, y) =

[
Σxx Σxy

Σ>xy Σyy

]
can be analyzed using

Canonical Correlation Analysis (CCA): the correlation matrix Γ(x, y) = Σ
−1/2
xx ΣxyΣ

−1/2
yy

is decomposed using SVD to find the correlation coefficients between the x and y vari-
ables. A chi-square test allows to state if the correlation matrix is significantly different
from zero, (i.e. if there exists at least an axis in which there is some correlation), in
which case we may report the maximal correlation coefficient and the related axes in
which this correlation happens at both points. In this process, the components that are
tangential to the sulcal lines may be questioned since they are known to be notably
underestimated (this is called the aperture problem). They can be removed completely
from the test at this stage to avoid biases. Since this test should be corrected for mul-
tiple comparisons, it is also important to limit the number of candidate pairs of points
that are tested.

In [FPTA07], three reference positions (beginning, middle, and end point) were
selected along two important sulci: the Central Sulcus (CS) and the Inferior Tempo-
ral Sulcus (ITS). These sulci lie in different lobes, develop at different times during
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Figure 0.10 Correlation Maps between the Central Sulcus and Other Brain Regions. A white
arrow in each row indicates a reference landmark; correlations with the reference landmark are
plotted. Correlations for 3 reference landmarks on the CS are shown: the first (top row), the
middle (second row), and the last, i.e. most inferior, position (third row) on the sulcal trace.
Corresponding regions in the opposite hemisphere are highly correlated for the top and middle
points (marked A and B). The lower end of the sulcus, however, exhibits low correlation with
its symmetric contralateral counterpart. It is interesting to notice an unexpected long-range
correlation between the variability of the top point of the left CS and a point of the right frontal
lobe.

gyrogenesis (CS developing earlier) and are distant in terms of fiber and functional
connectivity: we expect a priori a very low correlation between them. Thus, they
are good candidates for assessing inter-structure correlation. The correlation maps
over the brain surface are displayed in Figure 0.10 and Figure 0.11 colored by their
p-value. The threshold for statistical significance of the CCA was set to 0.0001 to
correct for multiple comparisons. A large area around the reference points shows high
p-values: points that are anatomically close to the reference are likely to have a corre-
lated distribution among individuals. More interestingly, corresponding brain regions
in each hemisphere are highly correlated, except for regions including Wernicke’s and
Broca’s areas, which are known to be functionally specialized in one hemisphere.
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Figure 0.11 Correlation Maps between the Inferior Temporal Sulcus (ITS) and Other Brain Re-
gions. A white arrow in each row indicates a reference landmark; correlations with the reference
landmark are plotted. Correlations for 3 reference landmarks on the ITS are shown: the first
(top row), the middle (second row), and the last, i.e. most inferior, position (third row) on the
sulcal trace. The first and middle positions are symmetrically correlated (marks A and B). The
last position (third row) correlates less with its opposite hemisphere counterpart, than with the
intra-parietal sulci (marked B and C). This could be expected because the intersubject variability
is very low and reaching the inter-rater reliability. [Figure reproduced from [FPTA07]]

The posterior tip of the ITS is also very loosely correlated to its opposite hemi-
sphere counterpart. As this structure is highly variable and is specialized for under-
standing the semantics of language in the left hemisphere and the prosodic aspects of
language in the right hemisphere, this may suggest partially independent developmen-
tal programs. The long-range correlation between the back of the ITS and the left and
right intra-parietal sulci is in itself an interesting neuroscience finding: the planum
temporale and planum parietale are the two distinct areas most widely studied in neu-
roscience for their very high hemispheric asymmetry. Such long-range correlations
may reflect common factors driving programmed asymmetries for both regions.
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cations en imagerie médicale et biologie moléculaire. Thèse de sciences (phd thesis), Ecole
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