Optimization on Graphs and image generation J

Camille Couprie
Facebook AI Research, Paris, France

September 6, 2018

September 6, 2018 Optimization on Graphs and i



Contexte de recherche

x* = argmin Z R(xi,x;) + Z D(x;, x;)
e;€E e €E
N——— N————’

Régularisation Fidelité aux données

Segmentation d’images

N\ 7—> N\

Restauration d’images




Contexte de recherche

x* = argmin Z R(xi,x;) + Z D(x;, x;)
e;€E e €E
N——— N————’

Régularisation Fidelité aux données

Classification Filtrage de maillages




N
Outline

©

I - Standard graph-based methods
II - Unifying optimization Framework

(*]

@ A new graph-based optimization framework
Q Image segmentation

© Image filtering (nonconvex optimization)

© Surface reconstruction

©

III - Biological applications

©

IV - Image generation using adversarial networks

@ Sharp video forecasting
Q Creative image generation

September 6, 2018 Optimization on Graphs and im eneration



N
Outline

o I - Standard graph-based methods
o II - Unifying optimization Framework

@ A new graph-based optimization framework
Q Image segmentation

© Image filtering (nonconvex optimization)

© Surface reconstruction

o III - Biological applications

o IV - Image generation using adversarial networks

@ Sharp video forecasting
©Q Creative image generation

September 6, 2018 Optimization on Graphs and im eneration



I - Standard graph-based methods

Foreground/Background segmentation of an image

Question 1: suppose you need to perform F/B segmentation of an image like
this one, given only the image and some F/B seeds. How would you do?
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I - Standard graph-based methods

Some graph-based segmentation tools: Graph Cuts

o Graph cuts / Max flow

[Ford & Fulkerson 60s,

o Energy formulation — extends to a Boykov-Joly 1998]

large class of problems s
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Some graph-based segmentation tools: Graph Cuts

o Graph cuts / Max flow

[Ford & Fulkerson 60s,
Boykov-Joly 1998]
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I - Standard graph-based methods

Some graph-based segmentation tools: Graph Cuts

o Graph cuts / Max flow

[Ford & Fulkerson 60s,

o Energy formulation — extends to a Boykov-Joly 1998]

large class of problems

o Robust to markers placement

Bias toward small contours
Block artifacts
Super-linear complexity

Limited to binary (2 labels)
segmentation

© © o o
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I - Standard graph-based methods

Question 2: A faster strategy:

How would you modify the graph cut energy function to solve the problem
faster?
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I - Standard graph-based methods

Some graph-based segmentation tools: Random Walker

o Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]

o Resolution of system of linear equations.
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I - Standard graph-based methods

Some graph-based segmentation tools: Random Walker

o Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
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I - Standard graph-based methods

Question 3: Can you find even faster strategies:

For instance using famous algorithms from graph theory?
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I - Standard graph-based methods

Question 3: Can you find even faster strategies:

For instance using famous algorithms from graph theory?
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I - Standard graph-based methods

Watershed and Maximum Spanning Forest equivalence

@ MSEF: set of trees

o spanning all nodes 4 3

. . I .
o not connecting different seeds
o such that the total sum of their weights is ! ) 3 I . 4 I

maximum. C—

o If seeds are the maxima of the weight function, 4 I 2 2
every MSF cut on the weight function is a Emmm
watershed cut [Cousty et al 07, the drop of water 3 2
principle]
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I - Standard graph-based methods

Some graph-based segmentation tools

o Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

o Fast
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I - Standard graph-based methods

Some graph-based segmentation tools

o Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

v ” a3l
o Fast \ ,’/-
o Multilabel | Y
@ Robust to markers size ) . o l :
o
o Leaking effect i
o Non unique solution (difficult to -
get a non algorithmically dependent ‘ //
result) ) I l\ 1
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A unifying optimization framework

What does all those algorithms have in common ?

Graph cuts Shortest paths

Random walker Watersheds
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ation framework

Previously established links

arg min Z wii¥|xi — xj]9 + Z willx; — L]
* e,-jEE vieV

Smoothness term Data term
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A unifying optimization framework

Previously established links

arg min Z wij |xi —xj| + Z wi |xi — 1
X

e;€E vieV
Smoothness term Data term
° ° .
l o | o N
® ® ®
T

q = 1: Graph cuts [Boykov-Joly 2001 (only for 2 labels )]
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A unifying optimization framework

Previously established links

arg min Z wi|xi — xj)? + Z witlxi — L
X

e;€E vieV
Smoothness term Data term
° ° .
l o | o N
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T

g = 2: Random walker [Grady 2006]
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A unifying optimization framework

Previously established links

limy ;o0 arg min Z wii¥|xi — xj]9 + Z willx; — ;|2
X

e;€E vieV
Smoothness term Data term
° ° .
l o | o N
® ® ®
T

q — oo: Shortest paths [Sinop et al 2007]
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A unifying optimization framework

Previously established links

lim,, ;o0 arg min Z wi |xi — xj| + Z wi |xi — 1
X

e;€E vieV
Smoothness term Data term
° ° .
l o | o N
® ® ®
T

p — oo: MSF (Watershed) [Allene et al. 2007]
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ation framework

Power watershed framework

x5, = argmin Yy wi b — x|+ Y wllx — L)
X

e €E vieV

Smoothness term Data term
e/ °

l o | o

) .
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Power watershed framework

X4 = arg min > wi b= x4+ wi | — 1)

e;€E vieV
Smoothness term Data term
P 0 finite o9
q
1 Reduction to seeds Graph cuts Max Spanning Forest
(watershed) [Allene et al. 07]

2 £>-norm Voronoi Random walker
. . Shortest Path

o) £1-norm Voronoi £,-norm Voronoi [Sinop et al. 07]
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A unifying optimization framework

Power watershed framework

X4 = arg min > wi b= x4+ wi | — 1)

e;€E vieV
Smoothness term Data term
P 0 finite o)
q
1 Reduction to seeds Graph cuts Max Spanning Forest
(watershed) [Allene et al. 07]

2 £>-norm Voronoi Random walker
. . Shortest Path

0o £1-norm Voronoi £1-norm Voronoi [Sinop et al. 07]

[Couprie-Grady-Najman-Talbot, ICCV 2009, PAMI 2011]
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amework

Power watershed framework

x5, =argmin ¥ wil g —x|7+ > wilx; — |
* e;€E ViEV

Smoothness term Data term

x = lim x*




A unifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

»” S|
, /J\ x*, = arg min Z wy i —xP+ D)
j’ * eijEE ~ .
1 Data fidelity
/ Smoothness term
| <l

solution x™, cut: threshold of x*,

September 6, 2018 Optimization on Graphs and im: neration



A unifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

»” S|
/J\ x*, = arg min Z wy 2 —xP+ D)
j’ * eijEE ~ .
1 Data fidelity
/ Smoothness term
| <}

solution x*,  cut: threshold of x*,

September 6, 2018 Optimization on Graphs and im: eneration
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Convergence of RW when p — oo toward MSF cut
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ifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

/J\ x*y = arg min Z wy i —xP+ D)
- X ——

S Data fidelity

"\

/ Smoothness term

solution x¥;  cut: threshold of x™,
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ifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

/J\ x13* = arg min Z w,-j”\x,- — )Cj|2 + D(X)
X ——

47 o<t Data fidelity

"\

Smoothness term

solution x;3* cut: threshold of x3*
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A unifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

/J\ xi8% = argminZwijlg\x,- —x*+ D(x)
| v

o X e
47 uct Data fidelity
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Smoothness term

solution x;g* cut: threshold of xg*

September 6, 2018 Optimization on Graphs and image generation



A unifying optimization framework 1) Image segmentation
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ifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds
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A unifying optimization framework 1) Image segmentation

Convergence of RW when p — oo toward MSF cut

Input seeds

/l\ "~ x,* = arg min Z wi|xi — x|+ D(x)
e ~—~—

X .
ek Data fidelity

‘V

' Smoothness term

Theorems

When p — oo,
o the obtained cut is an MSF cut.

@ when g > 1, the solution X is

. _ unique.
X = limp 00 X cut: threshold of X 9

D
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A unifying optimization framework

Power watershed algorithm

@ Choose an edge with maximal
weight epmax. Let S the set of edges
connected to emax With the same
weight as emax.

@ 1If S does not contain vertices that
have different labels, merge the
nodes of S into one node, otherwise
minimize E; , on S.

© Repeat steps 1 and 2 until all vertices
are labeled.

Optimization on

1) Image segmentation

2
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A unifying optimization framework 1) Image segmentation

Power watershed algorithm

@ Choose an edge with maximal
weight epax. Let S the set of edges 5 | 3 5 9I
connected to emax with the same 5
weight as emax.-

@ If S does not contain vertices that
have different labels, merge the
nodes of S into one node, otherwise 9 7 4 4 |
minimize £, , on S.

@ Repeat steps 1 and 2 until all vertices 9 4 4

are labeled.
X = lim, o0 arg min, Ze[,-eE wll;|x, — x4
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A unifying optimization framework

Power watershed algorithm

@ Choose an edge with maximal

weight epmax. Let S the set of edges
connected to epmax with the same
weight as emax.-

If S does not contain vertices that
have different labels, merge the
nodes of S into one node, otherwise
minimize £, , on S.
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A unifying optimization framework

Power watershed algorithm

@ Choose an edge with maximal

weight emax. Let S the set of edges
connected to emax With the same
weight as emax.

If S does not contain vertices that
have different labels, merge the
nodes of S into one node, otherwise
minimize E; , on S.

Repeat steps 1 and 2 until all vertices
are labeled.

Optimization on

1) Image segmentation

X = argmin, lim, Ze[jEE wII;|x, — xj|?



A unifying optimization framework

Comparison of results

1) Image segmentation
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A unifying optimization framework 1) Image segmentation

Comparison of results

P
L ‘
P e

Input seeds
L i

[\
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A unifying optimization framework 1) Image segmentation

Algorithms comparison

o Evaluation on GrabCut database
o 2 sets of seeds to study robustness to seeds centering

Q seeds well centered around boundaries:
Best performer : Shrt path, worst performer : GraphCuts

O seeds less centered around boundaries: From best to worst : GraphCuts,
PWshed, Random Walker, MaxSF, Shrt path

o Algorithms behavior on plateaus

Seeded image Graph Shortest Paths, Random Walker,
& Cuts Watershed PWqg=2

AR
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A unifying optimization framework 1) Image segmentation

Algorithms comparison
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optimization framework

Computation time

Computation times 2D

80
@ Graph Cuts
< Random Walker
V Shortest Paths Forest
- Power Watershed (g=2)
‘0 Max Spanning Forest (Prim)
60

Time (seconds)
5

3.0E+08 6.0E+06 1.2E407 1.5E+07

Nb of pixels in the image

9.0E+06

ation on

1) Image segmentation

Time (seconds)

13

75

Computation times 3D

Graph Cuts

Random Walker
Power Watersheds (q=2)
Shortest Paths Forest

Max Spanning Forest (Prim}

156406

30E406
Nb of pixels in the image

4.5E406




A unifying optimization framework 1) Image segmentation

Optimal multilabels segmentation

o [solutions x!, x?, ...x' computed

*(F) =1
xk(17) = 0 for all ¢ # k.

o Each node i is affected to the label for which x{.‘ 1S maximum:

o xf computed by enforcing{

s; = arg max x
k

Input seeds Segmentation by PowerWatershed (g = 2)

September 6, 2018 Optimization on Graphs and ima;



A unifying optimization framework 1) Image segmentation

Question 4

How to define a new graph to perform unseeded image segmentation?

Optimization on Graphs and im



A unifying optimiza framework 1) Image segmentation

Unseeded segmentation

= lim arg1 min Z whlxi — x|+ Z weF|x— 117+ Z wi |x;|?
Vi Vi

p—)OO
e;€E

Graph Cuts Watershed




A unifying optimization framework 1) Image segmentation

Unseeded segmentation

e;€E

= lim arg1 min E whlxi — x|+ E weF|x— 117+ E wel x| P =
Vi : SaR &in

Image Graph Cuts Watershed

This is the first time that it is shown how to incorporate data unary terms into
watershed computation.

September 6, 2018 Optimization on Graphs and im



A unifying optimization framework 1) Image segmentation

Question 4

How to define a new graph to perform semantic segmentation?

Optimization on Graphs and im



g optimization framework 1) Image segmentation

Semantic Segmentation

Unary weights Power Watershed
Result

pil

mm background

mm bookshelf
cabinet floor

/ z ceiling mm wall

o [ picture
Ground truth

Image

Pairwise weights
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g optimization framework 1) Image segmentation

Semantic Segmentation

Graph Cuts Random Walker Power watershed Ground truth
Ve

P
b

-
Legend: Eblind ceiling sofa Ewall
Ebackground Ebookshelf floor table Elwindow
Elbed cabinet picture Elltelevision

September



A unifying optimization framework 2) Nonconvex Image filtering

Non-convex diffusion using power watersheds

o Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations
Goals of this work:
o perform anisotropic diffusion using an £y norm to avoid the blurring
effect

o optimize a non convex energy using Power Watershed
[Couprie-Grady-Najman-Talbot, ICIP 2010]

September 6, 2018 Optimization on Graphs and i



x* = argmin Za(xi—xj) + )\ZU(Xi—fi)

e,-jEE v,eVvV

J/

smoothness term  data fidelity term

—az? Leads to piecewise constant results
Original image PW result




A unifying optimization framework 3) Stereo-vision

Stereovision using power watershed

o Compute the disparity map from two ahgned 1mages

o Labels correspond to the disparities, weights to similarity coefficients

between blocks
P o

September 6, 2018 Optimization on Graj



A unifying optimization framework 4) Surface reconstruction

Question 6: Surface reconstruction from a noisy set of dots

=

o Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Joint work with Xavier Bresson

September 6 8 Optimization on G



A unifying optimization or] 4) Surface reconstruction

Question 6: Surface reconstruction from a noisy set of dots

=

o Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Joint work with Xavier Bresson
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4) Surface reconstruction

o Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Joint work with Xavier Bresson
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A unifying optimization framework 4) Surface reconstruction

Surface reconstruction from a noisy set of dots

=

o Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Joint work with Xavier Bresson

September 6, 2018 Optimization on Graphs and image generation



A unifying optimization framework 4) Surface reconstruction

How to solve this problem

o Graph : 3D grid
o Here x represents the object indicator to recover.
X= pli_}rrolo argxmin Z wi |xi — x| /
e €k
st.x(F)=1,x(B)=0

o weights : distance function from the set of dots to

fit
Why PW are a good fit for this problem ? Power
numerous plateaus around the dots to fit — smooth watershed
isosurface is obtained solution

September 6, 2018 Optimization on Graphs and in eneration



4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed

Size of required seeds Size of required seeds Size of required seeds

o

J estimation required




4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed

o Fast, accurate, globally optimal surface reconstruction from noisy set of
dots

o Robust to markers placement

o No post-processing smoothing step

September 6, 2018 Optimization on Graphs and im eneration



Gene Regulatory Network inference

Biological Regularization A-priori for Network Inference
(BRANE)

o I - Standard graph-based methods

o II - Unifying optimization Framework

o III - Biological applications

o IV - Image generation using adversarial networks

Joint work with Aurelie pirayre, Laurent Duval, Frederique Bidard and
Jean-Christophe Pesquet

September 6, 2018 Optimization on Graphs and im: neration



Gene Regulatory Network inference Introduction

Context: Second generation of biofuel production

FERMENTATION
Levures

ETHANO!

Etapes de production
d’éthanol-carburant faisant
intervenir des biocatalyseurs.

HYDROLYSE

ENZYMATIQUE
Enzymes

BIOCARBURANT

.'.. ..'. <:' MATHEMATIQUES
: . INFORMATIQUE

LIGNINE
CELLULOSE .
HEMICELLULOSE Frres® -

PRETRAITEMENT

PHYSICO-CHIMIQUE BIOLOGIE )
MOLECULAIRE/
HIOMASSE GENETIQUE @
LIGNOCELLULOSIQUE PRODUCTION D'ENZYMES MICROBIOLOGIE

Champignons

Slide credit: IFPEN




Gene Regulatory Network inference Introduction

A micro-organism: how does it work?

Genome Genome expression Reactions - Environment
A A A
r N\ ~
.Substrates
> —
Pd
. / .
ARN Proteins / AR Metabolism
N
(eg\»\,\a"—es" --- e‘, < *Energy
- -~ o
- PO &
regulators ,.-;(;@ t‘
ampr, {0k0 ' 4
e $ G = €,
; enzymes (4
C.. Growth
> Surviva

* Waste
Slide credit: Antoine Margeot Enzymes...




Gene Regulatory Network inference Introduction

A limited but useful analogy: a factory

Genome Genome expression Reactions - Environment
r A N\ A ~N A
‘.Substrates

’
/ AR Assembly line

*Energy

‘ & 7

e ” Nutrlent
‘ .

[ £

Growth
-) Surviva

* Waste
Slide credit: Antoine Margeot Enzymes...




Gene Regulatory Network inference Introduction

Regulation network

Gene 1
\
) mRNA 1
Protein 3
? ) 2
Protein 1 e
mMRNA 3 @ ¥ / G2
e Gene 2 G3 <«
L.
Gene 3

“Protein 2 mRNA 2

-

Transcription factors (TF) are proteins that regulate some gene expressions.

Slide credit: Pierre Geurts
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Gene Regulatory Network inference Introduction

Overview of our gene expression data

; ’ Gene Xu
o o o o
*
—@ @ GeneXs
® o o @
~ 10000 genes
X1 X ce Xm
-0.61 0.41 0.51 te
-2.3 0.1 S -0.21 PY
0.33 -0.45 S 0.3 T ~
0753 o087 T T 009 ~ 100 cond. L] : o @ Gene Xa
060 | 061 | -~ | 0.02 L °

Slide credit: Van anh Huynh-Thu
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Gene Regulatory Network inference Introduction

Overview of our problem

Complete Graph weighted Inferred GRN (Gene

by pairwise gene
similarity measure w Regulatory Network)

Transcriptomic
data

369 121520

\ e
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Gene Regulatory Network inference Introduction

An edge selection problem

o We note x;; the binary label of edge presence: V(i,j) € V?

1 if €j € E*,
0 otherwise.

xiJ:




Gene Regulatory Network inference Introduction

An edge selection problem

o We note x;; the binary label of edge presence: V(i,j) € V?
1 ife; J € E*,

Xi Jj— X

0 otherwise.

o Thresholding cost function for given weights w:

maximize > w;ijxij + A(1 —x;))
{01} (i jevz W Y

o Explicit form:
1 if Wij > A
0 otherwise.

September 6, 2018 Optimization on Graphs and i



Gene Regulatory Network inference Introduction

What additional knowledge may we include?

o Very often, a list of putative transcription factors (TFs) is known by
biologists

o Observation 1: Regulation type statistics Regulation relationships
between two TFs are less frequent that others

o Example: on this graph: 2 TF-TF edges / 20 edges (ratio TF/nonTF
genes =4/13 > 0.3 >> 0.1)

o Question 7: How to define gene network inference as an optimization
problem using Observation 1?

September 6, 2018 Optimization on Graphs and im: neration



Gene Regulatory Network inference Introduction

The generalized cost function

o Selecting strongly weighted edges

Optimization on Graphs and im:



Gene Regulatory Network inference Introduction

The generalized cost function

o Selecting strongly weighted edges

@ Favoring the selection of edges involving one TF (Obs. 1)
Aij corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

min > il — 1

(ij)eVXV

2\ ifi € dje
)\,’J = TF e T andJ T, with Arp > )‘T_F'
Arr + A otherwise.

September Optimization on Graj



Gene Regulatory Network inference Introduction

The generalized cost function

o Selecting strongly weighted edges

@ Favoring the selection of edges involving one TF (Obs. 1)
Aij corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

min Y owighg =+ > Ay
xe

(i,)eVxV (ij)EVXV

2\ ifi € dje
)\,’J = TF e T andJ T, with Arp > )‘T_F'
Arr + A otherwise.
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Gene Regulatory Network inference Introduction

The generalized cost function

o Selecting strongly weighted edges

@ Favoring the selection of edges involving one TF (Obs. 1)
Aij corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

min Z wightiy — 1+ > x4 p@N),

N
(i,)eVxV (ij)EVXV

2\ ifi € dje
)\,’J = TF e T andJ T, with Arp > )‘T_F'
Arr + A otherwise.
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Gene Regulatory Network inference Introduction

What additional knowledge may we include?

o Observation 2: Coupling property If two transcription factors are
co-regulated and regulate at least one gene, it is probable that any other
gene (not) regulated by one of these TF is (not) regulated by the other.

wj it >y

Question 8: How to incorporate a gene coupling a-priori?

September 6, 2018 Optimization on Graphs and i



Gene Regulatory Network inference Introduction

What additional knowledge may we include?

o Observation 3: Average Connectivity Non TF genes are not regulated
by a large number of genes. Typically, the average degree is of 3.

o Example: on this graph, the average degree of non-TF genes is 1.5.

@ ®
@
P
@ 1 / o
R : \ ’ ¥ e
@ ®._
e P ®
\. °

o Question 9: how to incorporate an average degree a-priori?

September 6, 2018 Optimization on Graphs and ima;



Gene Regulatory Network inference Introduction

The generalized cost function

How to define an appropriate cost function?

Optimization on Graphs and im:



Gene Regulatory Network inference Introduction

The generalized cost function

How to define an appropriate cost function?

o Selecting strongly weighted edges

min > il — 1
(ij)eVxV

September 8 Optimization on Graphs and im:



Gene Regulatory Network inference Introduction

The generalized cost function

How to define an appropriate cost function?
o Selecting strongly weighted edges
o Favoring the selection of edges involving one TF (Obs. 1)
Aij corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

min > owigha =+ Y Ay

(ij)eVxV (ij)evxy




Gene Regulatory Network inference Introduction

The generalized cost function

How to define an appropriate cost function?
o Selecting strongly weighted edges

o Favoring the selection of edges involving one TF (Obs. 1)
Aij corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

@ Structural a priori (Observations 2 and 3)

RN Z wightiy =11+ Z Aijxij + pPNij),
(ij)eVxy (ij)eVxVy
where
o ®(N;;) denotes a structural a priori involving the local neighborhood
./\/;'J' of €ij

o 4 is a regularization parameter

September Optimization on Graj



Gene Regulatory Network inference

Structural a priori

Let 7 C V be a set of transcription factors (TFs)

Method

BRANE cut

Introduction

BRANE Relax

Structural a
priori

Coupling property

Average connectivity

w; >
Principle Wi k> —, Genes are usually regulated by a
‘o’ small number d of TFs.
k Wir k > i
Mathematical
form
Optimization . .
Discrete (Maximal Flow) Relaxed (Forward-Backward)
strategy

September



Gene Regulatory Network inference Introduction

The discrete one: BRANE cut

We know how to obtain a discrete solution for x, where x € {0, 1}V

September 6, 2018 Optimization on Graphs and im: eneration



inference Introduction

Maximal flow algorithm in BRANE cut

minimize E wijlxij — 1| + E Aijxij + p E oyt |xijg — xi g
€{0,1
xe{0,1} (i) EVXV (i) EVXV iEV\T,
GJ")ETXT

node label ()

s )

edge label
o 1}

ATF

dcial)lcl
e P =

node label ()

t=20




Gene Regulatory Network inference Introduction

The relaxed one: BRANE relaxed

We have to relax x, that is to say x € [0, 1]¥

September 6, 2018 Optimization on Graphs and image generation



Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimizew " (1 — x) + AT x + p [|[Qx — d|?
x€[0,1]NV
fi®)

Algorithm 1: Projected gradient descent algorithm
Fix xo € RV ;
forn=0,1,...do

=2~ VA

xf,’l)l = Py, v oMy

September 6, 2018 Optimization on Graphs and im: neration



Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimizew " (1 —x) + ATx + p || Qx — d||* + 1o v (x)
x€[0,1]¥ -~

fi®) fx)

Algorithm 6: Forward-Backward algorithm (general version)

Fix xo € RV ;
forn=0,1,...do

wW=x"—v, VA (x;,);

w1 =PIOX ()

September 6, 2018 Optimization on Graphs and image generation



Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimizew " (1 —x) + ATx + p || Qx — d||* + 1o v (x)
x€[0,1]¥ -~

fi®) fx)

Algorithm 11: Accelerated Forward-Backward algorithm

Fix xo € RV ;
forn=0,1,...do

W =2 — AT IV (x);

xiy = prox_, e o8
[Chouzenoux et al., J. Optim. Theory Appl. 2014]
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Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimizew " (1 —x) + ATx + p || Qx — d||* + 1o v (x)
x€[0,1]¥ -~

fi®) fx)

Algorithm 16: Block Accelerated Forward-Backward algorithm

Fix xo € RV ;

forn=0,1,...do
Select the index &, € {1,...,p} of a block of variables
yfzk") _ xr(lk”) - 'YnAk_nlvfl (xn);

(kn) ( (1‘”)) .

a1 = PIOX 1y O
A = ke {1,...,p}\ {ku}; [Chouzenoux et al. 2013]
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Gene Regulatory Network inference Results

Results

Network obtained with the E. Coli dataset

Legend: black nodes: transcription factors, gray nodes: other genes. green edges: inferred regulations also
reported in the gold standard, blue edges: new inferred regulations that are also inferred by CLR, and pink

edges: new inferred regulations.
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Gene Regulatory Network inference Results

Results on DREAM4 data (multifactorial challenge)

Network index 1 2 3 4 5
GENIE3! 0.239 0.260 0.316 0.301 0.295
AUPR CLR 0.249 0.258 0.294 0.296 0.299

BRANE Cut 0.256 0.261 0317 0.317 0.316
BRANE Relax  0.246  0.264 0.321 0.317 0.317

GENIE3 with all genes as input genes
—— GENIE3 with TF as input genes
— CLR
08 —~ BRANE Cut

=
0.4

i I | i i |
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Recall
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Gene Regulatory Network inference

Results

Results on DREAM4 data (multifactorial challenge)
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Gene Regulatory Network inference Results
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Gene Regulatory Network inference Results

BRANE Cut results on E.coli data

CLR GENIE3 BC' BC?
AUPR (x107?) 6.11 6.31 6.39 6.45
Total comput. time (min)  30.0 420.0 30.0 30.1
vs CLR  vs GENIE3

AUPR gain 5.9% 2.2%
Comput. time gain ~ none 7 x faster

—~CLR.
—GENIE3
—BRANE Cut

Precision
o
=

i i i
0() 0.02 0.04 0.06 0.08 0.1 0.12
Recall
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Gene Regulatory Network inference Results

Conclusions

Summary

o Incorporating biological contrains in a mathematical optimization
formulation allows us to have optimality guaranties on the obtained
solution

o BRANE cut and BRANE relax improve the gene regulation networks
obtained by previous methods given their weights as input

o Low computation time (negligible in comparison to the necessary
weights computation)

September 6, 2018 Optimization on Graphs and in eneration



Gene Regulatory Network inference Using Clustering (BRANE Clust)

Inference improvement using clustering

o Hdge selection step: binary edge labeling x € {0, 1}"

We want to

o favor strongly weighted edges

maximize E wjjXij+ )‘< “\’1'4/)7
xe{0,1}" N
J)EV2
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Inference improvement using clustering

o Hdge selection step: binary edge labeling x € {0, 1}"
o Gene clustering step: node labeling y € N¢
We want to

o favor strongly weighted edges

maximize E wjjXij+ )‘< “\’1'4/)7
xe{0,1}" N
J)EV2
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Inference improvement using clustering

o Hdge selection step: binary edge labeling x € {0, 1}"
o Gene clustering step: node labeling y € N¢
We want to
o favor strongly weighted edges
o reduce weight w;; if nodes v; and v; belong to distinct clusters
_ B=10i#y)
) = B

@ cost function : f(y;. v, , where $ > 1 controls clustering

maé)}%)rrf%%e E f i, Vj w,/m + A(1 ~\'f./>7
X b
yENG (l;/ €V2
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Inference improvement using clustering

o Hdge selection step: binary edge labeling x € {0, 1}"
o Gene clustering step: node labeling y € N¢
We want to
o favor strongly weighted edges
o reduce weight w;; if nodes v; and v; belong to distinct clusters
_ B=10i#)
) = B

@ cost function : f(y;. v, , where $ > 1 controls clustering

maé)}%)rrf%%e E f i, Vj w,/\,/ + A(1 —x;),
X b
yENG (l;/ €V2

Can be improved by integrating biological and structural a priori

September 6, 2018 Optimization on Graphs and ima;



Gene Regulatory Network inference Using Clustering (BRANE Clust)

Enforcing modular structure

o Hdge selection step: binary edge labeling x € {0, 1}"

o Gene clustering step: node labeling y € N¢

We want to promote a modular structure organized
around central nodes (TFs)

September 8 Optimization on Graphs and im:



Gene Regulatory Network inference Using Clustering (BRANE Clust)

Enforcing modular structure

o Hdge selection step: binary edge labeling x € {0, 1}"
o Gene clustering step: node labeling y € N¢

We want to promote a modular structure organized
around central nodes (TFs)

o Let 7 be a set of central nodes (TFs) and f; ; a parameter controlling the
modular structure

maximize Z FOi,yi) wijxij+ A1 —x;) +Z/’z/ yi =J)-

G i,j)EV? iev
yeN ( 1] je'ﬂ‘

September 6, 2018 Optimization on Graphs and im eneration



Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

maximize Z f(y,',yj) Wi j Xij + )\(1 = x,'J) + Z ,u,“/']l(y,‘ :])
xe{0,1}" (l',]')EVZ icV
yeNC JET




Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

maximize > f(yi,yj) wijxij + A1 —xij) + Y pigl(yi =Jj).

xe{0,1}"  (; jeva iV
JENO (i) 3
Hard-clustering (pirayre, 2015] Soft-clustering [pirayre, 2016]

# clusters = # TF # clusters < # TF
o a ifi=j
— o0 ifi=j T )
Hij = . pij = al(wi;>7) ifi#jandieT
0 otherwise. ‘ o )
wijl(wyj >7) ifi#jandi ¢ T
n
— '0
S
* 00 0‘ --al(wi; >7)
(W > 7)




Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

Alternating optimization

maximize > f(yi,yj) wijxij + A1 —xij) + Y i1y = Jj)-
xe{0,1}" (i) €V? icV
yENC JET
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

Alternating optimization

maximize > f(yi,yj) wijxij + A1 —xij) + Y i1y = Jj)-
xe{0,1}" (i) €V? icV
yENC JET

o Aty fixed and x variable:
minimizex € {0, 1}" Z Fiyj) wijxij+ A1 —xiy)
(ij)ev?

o Explicit form:
. {1 if £ (i) wiy > A

0 otherwise.
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Multi-labels and relaxation

o At x fixed and y variable:

e e Wi j Xij .
minimizey € N Z %1()&' #yj) + Z i1 (yi # j)

(ij)EV? i€V, jeT
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Multi-labels and relaxation

o At x fixed and y variable:

Wi Xij
minimizey € N¢ Z %]l(yi #yj) + Z pijL(yi #j) = NP-ha

(ij)EV? i€V, jeT
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Multi-labels and relaxation

o At x fixed and y variable:

Wi Xij
minimizey € N¢ Z %]l(y,- #yi) + Z pijL(yi #j) = NP-ha

(ij)EV? i€V, jeT

o discrete problem = quadratic relaxation
o T-classes problem = T binary sub-problems

o label restriction to T: {s('), e ,s<T)} such that sj(’) = 1ifj = t and O otherwise.
o ¥ ={yV,...,yD} such that y) € [0,1]¢

September 6, 2018 Optimization on Graphs and im eneration



Gene Regulatory Network inference Using Clustering (BRANE Clust)

Multi-labels and relaxation

o At x fixed and y variable:

Wi Xij
minimizey € N¢ Z %]l(y,- #yi) + Z pijL(yi #j) = NP-ha

(ij)EV? i€V, jeT

o discrete problem = quadratic relaxation
o T-classes problem = T binary sub-problems

o label restriction to T: {s", ... s} such that sj(’) = 1ifj = t and O otherwise.
o ¥ ={yV,...,yD} such that y) € [0,1]¢

Problem re-expressed as:

T
minimize yz Z % (yl(t) _yj(t)>2 n Z i) (yit) _ SJ@)Z

=1 \(i,j)eVv? i€V, jeT
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

T
minimize Y> [ %Txu (yl(t) _ yj@)z £ <ylgz) _ sj(t))Z

=1 \(ij)eV2 i€V, jeT

o This problem is called the Combinatorial Dirichlet problem
o Random Walker algorithm

o Minimization via solving a linear system of equation /Grady, 20061
()

o Final labeling: node i affected to the label ¢ for which y;” is maximal

(1)

i

y;i =argmaxt €Ty
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

We want to obtain the optimal labeling y* based on
an weighted graph = Random Walker algorithm
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

We want to obtain the optimal labeling y* based on
an weighted graph = Random Walker algorithm

y ={1,1,2,3,3}
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Gene Regulatory Network inference

Using Clustering (BRANE Clust)

Benchmark data: DREAM4 and DREAMS

o DREAM4

o DREAMS

September 6, 2018

Network 1 2

3

4

Average

CLR 0.256 0.275
BRANE Clust 0.275 0.337

Gain 73% 22.6%

GENIE3 0.269 0.288
BRANE Clust 0.287 0.348
Gain 6.5% 20.9%

0.314
0.360

145%

0.331
0.364

10.0%

0.313
0.335
7.0%

0.323
0.371
15.0%

5

0.313 0.294
0.342 0.330
9.1% 121%

0.329 0.308
0.367 0.347
11.6% 12.8%

Network

3

CLR
BRANE Clust

GENIE3
BRANE Clust

0.252
0.253

0.283
0.327

0.0378
0.0399

0.0488
0.0536

0.0080
0.0073

0.0081
0.0083

Optimization on



inference Using Clustering (BRANE Clust)

Flgure: Network built using BRANE Clust on GENIE3 weights and containing 236 edges. Large dark gray nodes refer to transcription
factors (TFs). Inferred edges also reported in the ground truth are colored in pink while predictive edges are green. Dashed edges correspond
to links inferred by both BRANE Clust and GENIE3 while solid links refer to edges specifically inferred by BRANE Clust. The node contours
are colored according to the clusters to which they belong to.




Conclusions

Conclusions and perspectives

{BRANE Clust: Biologically Related A priori Network Enhancement using Clustering]

Conclusions

o Inference and clustering alternate optimization: convergence guarantee

o Incorporating clustering steps gives promising result

o Enforcing a modular structure around central nodes improves results
Perspectives

o Clustering fusion improvement

o Joint clustering and inference (instead of cluster-assisted inference)
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