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Contexte de recherche

x∗ = arg min
x∈Rn

∑
eij∈E

R(xi, xj)︸ ︷︷ ︸
Régularisation

+
∑
eij∈E

D(xi, xj)︸ ︷︷ ︸
Fidelité aux données

Segmentation d’images

→
?

Restauration d’images

→
?
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Outline

I - Standard graph-based methods
II - Unifying optimization Framework

1 A new graph-based optimization framework
2 Image segmentation
3 Image filtering (nonconvex optimization)
4 Surface reconstruction

III - Biological applications
IV - Image generation using adversarial networks

1 Sharp video forecasting
2 Creative image generation
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I - Standard graph-based methods

Foreground/Background segmentation of an image

Question 1: suppose you need to perform F/B segmentation of an image like
this one, given only the image and some F/B seeds. How would you do?
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I - Standard graph-based methods

Some graph-based segmentation tools: Graph Cuts

Graph cuts / Max flow

Advantages
Energy formulation→ extends to a
large class of problems

Robust to markers placement

Drawbacks
Bias toward small contours

Block artifacts

Super-linear complexity

Limited to binary (2 labels)
segmentation

[Ford & Fulkerson 60s,
Boykov-Joly 1998]
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I - Standard graph-based methods

Question 2: A faster strategy:

How would you modify the graph cut energy function to solve the problem
faster?
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I - Standard graph-based methods

Some graph-based segmentation tools: Random Walker

Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]

Resolution of system of linear equations.

Advantages

Energy formulation→ extends to a
large class of problems

No blocking artefacts

Drawbacks
Requires a more centered markers
placement

Super-linear complexity
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I - Standard graph-based methods

Question 3: Can you find even faster strategies:

For instance using famous algorithms from graph theory?
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I - Standard graph-based methods

Watershed and Maximum Spanning Forest equivalence

MSF: set of trees

spanning all nodes
not connecting different seeds
such that the total sum of their weights is
maximum.

If seeds are the maxima of the weight function,
every MSF cut on the weight function is a
watershed cut [Cousty et al 07, the drop of water
principle]
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I - Standard graph-based methods

Some graph-based segmentation tools

Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages
Fast

Multilabel

Robust to markers size

Drawbacks
Leaking effect

Non unique solution (difficult to
get a non algorithmically dependent
result)
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A unifying optimization framework

What does all those algorithms have in common ?

Graph cuts Shortest paths

Random walker Watersheds
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A unifying optimization framework

Previously established links

limq→∞ arg min
x

∑
eij∈E

wij
q|xi − xj|q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
q|xi − li|q︸ ︷︷ ︸

Data term

l

x
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Data term

l

x

q = 1: Graph cuts [Boykov-Joly 2001 (only for 2 labels l)]
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A unifying optimization framework

Previously established links

limq→∞ arg min
x

∑
eij∈E

wij
2|xi − xj|2︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
2|xi − li|2︸ ︷︷ ︸

Data term

l

x

q = 2: Random walker [Grady 2006]
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A unifying optimization framework

Previously established links

limq→∞ arg min
x

∑
eij∈E

wij
q|xi − xj|q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
q|xi − li|q︸ ︷︷ ︸

Data term

l

x

q→∞: Shortest paths [Sinop et al 2007]
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A unifying optimization framework

Previously established links

limp→∞ arg min
x

∑
eij∈E

wij
p|xi − xj|q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
p|xi − li|q︸ ︷︷ ︸

Data term

l

x

p→∞: MSF (Watershed) [Allène et al. 2007]
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A unifying optimization framework

Power watershed framework

x∗p,q = arg min
x

∑
eij∈E

wij
p|xi − xj|q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
p|xi − li|q︸ ︷︷ ︸

Data term

l

x
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H
HHHq

p
0 finite ∞
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∞ `1-norm Voronoi `1-norm Voronoi
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(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker

∞ `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

[Couprie-Grady-Najman-Talbot, ICCV 2009, PAMI 2011]
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A unifying optimization framework

Power watershed framework

x∗p,q = arg min
x

∑
eij∈E

wij
p|xi − xj|q︸ ︷︷ ︸

Smoothness term

+
∑
vi∈V

wi
p|xi − li|q︸ ︷︷ ︸

Data term

x̄ = lim
p→∞

x∗p,q
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A unifying optimization framework 1) Image segmentation

Convergence of RW when p→∞ toward MSF cut

Input seeds

x∗01 = arg min
x

∑
eij∈E

wij
01|xi − xj|2︸ ︷︷ ︸

Smoothness term

+ D(x)︸︷︷︸
Data fidelity

solution x∗01 cut: threshold of x∗01
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A unifying optimization framework 1) Image segmentation

Convergence of RW when p→∞ toward MSF cut

Input seeds

x30
∗ = arg min

x

∑
eij∈E

wij
30|xi − xj|2︸ ︷︷ ︸

Smoothness term

+ D(x)︸︷︷︸
Data fidelity

solution x30
∗ cut: threshold of x30

∗

September 6, 2018 Optimization on Graphs and image generation 14



A unifying optimization framework 1) Image segmentation

Convergence of RW when p→∞ toward MSF cut

Input seeds

xp
∗ = arg min

x

∑
eij∈E

wij
p|xi − xj|q︸ ︷︷ ︸

Smoothness term

+ D(x)︸︷︷︸
Data fidelity

x̄ = limp→∞ x∗p cut: threshold of x̄

Theorems
When p→∞,

the obtained cut is an MSF cut.

when q > 1, the solution x̄ is
unique.
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A unifying optimization framework 1) Image segmentation

Power watershed algorithm

1 Choose an edge with maximal
weight emax. Let S the set of edges
connected to emax with the same
weight as emax.

2 If S does not contain vertices that
have different labels, merge the
nodes of S into one node, otherwise
minimize E1,q on S.

3 Repeat steps 1 and 2 until all vertices
are labeled.
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A unifying optimization framework 1) Image segmentation

Comparison of results

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2
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A unifying optimization framework 1) Image segmentation

Algorithms comparison

Evaluation on GrabCut database
2 sets of seeds to study robustness to seeds centering

1 seeds well centered around boundaries:
Best performer : Shrt path, worst performer : GraphCuts

2 seeds less centered around boundaries: From best to worst : GraphCuts,
PWshed, Random Walker, MaxSF, Shrt path

Algorithms behavior on plateaus

Seeded image Graph
Cuts

Shortest Paths,
Watershed

Random Walker,
PW q = 2
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A unifying optimization framework 1) Image segmentation

Computation time
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A unifying optimization framework 1) Image segmentation

Optimal multilabels segmentation

l solutions x1, x2, ...xl computed

xk computed by enforcing
{

xk(lk) = 1
xk(lq) = 0 for all q 6= k.

Each node i is affected to the label for which xk
i is maximum:

si = arg max
k

xk
i

Input seeds Segmentation by PowerWatershed (q = 2)
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A unifying optimization framework 1) Image segmentation

Question 4

How to define a new graph to perform unseeded image segmentation?
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A unifying optimization framework 1) Image segmentation

Unseeded segmentation

x̄ = lim
p→∞

arg min
x

∑
eij∈E

wp
ij|xi − xj|q +

∑
vi

wFi
p|xi−1|q +

∑
vi

wBi
p|xi|q

wB

wF

F

B

Image Graph Cuts Watershed

This is the first time that it is shown how to incorporate data unary terms into
watershed computation.
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A unifying optimization framework 1) Image segmentation

Question 4

How to define a new graph to perform semantic segmentation?
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A unifying optimization framework 1) Image segmentation

Semantic Segmentation

Image

Unary weights

→

l

x →
Pairwise weights

Power Watershed
Result

background
bookshelf
cabinet floor
ceiling wall
picture

Ground truth

September 6, 2018 Optimization on Graphs and image generation 27



A unifying optimization framework 1) Image segmentation

Semantic Segmentation

Image Graph Cuts Random Walker Power watershed Ground truth

Legend:
background
bed

blind
bookshelf
cabinet

ceiling
floor
picture

sofa
table
television

wall
window
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A unifying optimization framework 2) Nonconvex Image filtering

Non-convex diffusion using power watersheds

Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work:

perform anisotropic diffusion using an `0 norm to avoid the blurring
effect

optimize a non convex energy using Power Watershed
[Couprie-Grady-Najman-Talbot, ICIP 2010]
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A unifying optimization framework 2) Nonconvex Image filtering

Anisotropic diffusion and `0 norm

x∗ = arg min
x

∑
eij∈E

σ(xi − xj)︸ ︷︷ ︸
smoothness term

+ λ
∑
vi∈V

σ(xi − fi)︸ ︷︷ ︸
data fidelity term

x

σ(x) = 1− e−αx
2

α = 1
α = 10

α = 100

Leads to piecewise constant results
Original image PW result
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A unifying optimization framework 3) Stereo-vision

Stereovision using power watershed

Compute the disparity map from two aligned images

Labels correspond to the disparities, weights to similarity coefficients
between blocks
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A unifying optimization framework 4) Surface reconstruction

Question 6: Surface reconstruction from a noisy set of dots

⇒

Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Joint work with Xavier Bresson
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A unifying optimization framework 4) Surface reconstruction

How to solve this problem

Graph : 3D grid

Here x represents the object indicator to recover.

x̄ = lim
p→∞

arg min
x

∑
eij∈E

wij
p|xi − xj|q

s.t. x(F) = 1, x(B) = 0

weights : distance function from the set of dots to
fit

Why PW are a good fit for this problem ?
numerous plateaus around the dots to fit→ smooth
isosurface is obtained

Power
watershed
solution
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A unifying optimization framework 4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed
Size of required seeds Size of required seeds Size of required seeds

estimation required
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A unifying optimization framework 4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed

Fast, accurate, globally optimal surface reconstruction from noisy set of
dots

Robust to markers placement

No post-processing smoothing step
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Gene Regulatory Network inference

Biological Regularization A-priori for Network Inference
(BRANE)

I - Standard graph-based methods

II - Unifying optimization Framework

III - Biological applications
IV - Image generation using adversarial networks

Joint work with Aurelie pirayre, Laurent Duval, Frederique Bidard and
Jean-Christophe Pesquet
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Gene Regulatory Network inference Introduction

Context: Second generation of biofuel production

Slide credit: IFPEN
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Gene Regulatory Network inference Introduction

A micro-organism: how does it work?
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Gene Regulatory Network inference Introduction

A limited but useful analogy: a factory
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Gene Regulatory Network inference Introduction

Regulation network

Transcription factors (TF) are proteins that regulate some gene expressions.

Slide credit: Pierre Geurts
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Gene Regulatory Network inference Introduction

Overview of our gene expression data

Slide credit: Van anh Huynh-Thu
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Gene Regulatory Network inference Introduction

Overview of our problem
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Gene Regulatory Network inference Introduction

An edge selection problem

We note xi,j the binary label of edge presence: ∀(i, j) ∈ V2

xi,j =

{
1 if ei,j ∈ E∗,
0 otherwise.

Thresholding cost function for given weights ω:

maximize
x∈{0,1}n

∑
(i,j)∈V2

ωi,j xi,j + λ(1− xi,j)

Explicit form:

x∗i,j =

{
1 if ωi,j > λ

0 otherwise.
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Gene Regulatory Network inference Introduction

What additional knowledge may we include?

Very often, a list of putative transcription factors (TFs) is known by
biologists
Observation 1: Regulation type statistics Regulation relationships
between two TFs are less frequent that others
Example: on this graph: 2 TF-TF edges / 20 edges (ratio TF/nonTF
genes = 4/13 > 0.3 >> 0.1)

Question 7: How to define gene network inference as an optimization
problem using Observation 1?
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Gene Regulatory Network inference Introduction

The generalized cost function

Selecting strongly weighted edges

Favoring the selection of edges involving one TF (Obs. 1)
λi,j corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

min
x∈RN

∑
(i,j)∈V×V

wi,j|xi,j − 1|+
∑

(i,j)∈V×V

λi,jxi,j + µΦ(Ni,j),

λi,j =

{
2λTF if i ∈ T and j ∈ T
λTF + λT̄F otherwise.

, with λTF > λT̄F.
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Gene Regulatory Network inference Introduction

What additional knowledge may we include?

Observation 2: Coupling property If two transcription factors are
co-regulated and regulate at least one gene, it is probable that any other
gene (not) regulated by one of these TF is (not) regulated by the other.

k i

j j′
wj,k> γ

wj′,k> γ

wj,j′> γ

Question 8: How to incorporate a gene coupling a-priori?

September 6, 2018 Optimization on Graphs and image generation 47



Gene Regulatory Network inference Introduction

What additional knowledge may we include?

Observation 3: Average Connectivity Non TF genes are not regulated
by a large number of genes. Typically, the average degree is of 3.

Example: on this graph, the average degree of non-TF genes is 1.5.

Question 9: how to incorporate an average degree a-priori?
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Gene Regulatory Network inference Introduction

The generalized cost function

How to define an appropriate cost function?

Selecting strongly weighted edges

Favoring the selection of edges involving one TF (Obs. 1)
λi,j corresponds to a weight depending whether the genes i and/or j are
Transcription Factors (TF) or not.

Structural a priori (Observations 2 and 3)

min
x∈RN

∑
(i,j)∈V×V

wi,j|xi,j − 1|+
∑

(i,j)∈V×V

λi,jxi,j + µΦ(Ni,j),

where

Φ(Ni,j) denotes a structural a priori involving the local neighborhood
Ni,j of ei,j

µ is a regularization parameter
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Gene Regulatory Network inference Introduction

Structural a priori

Let T ⊂ V be a set of transcription factors (TFs)

Method BRANE cut BRANE Relax

Structural a
priori Coupling property Average connectivity

Principle
k i

j j′wj,k> γ

wj′,k> γ

wj,j′> γ

Genes are usually regulated by a
small number d of TFs.

Mathematical
form

Φ(Ni,j) =
∑

i∈V\T ,

(j,j′)∈T×T

αi,j,j′ |xi,j − xi,j′ |
Φ(Ni,j) =

∑
i∈V\T

(
g∑

j=1
xi,j − d

)2

Optimization
strategy Discrete (Maximal Flow) Relaxed (Forward-Backward)
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Gene Regulatory Network inference Introduction

The discrete one: BRANE cut

We know how to obtain a discrete solution for x, where x ∈ {0, 1}N
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Gene Regulatory Network inference Introduction

Maximal flow algorithm in BRANE cut

minimize
x∈{0,1}N

∑
(i,j)∈V×V

wi,j|xi,j − 1| +
∑

(i,j)∈V×V
λi,jxi,j + µ

∑
i∈V\T ,

(j,j′)∈T ×T

αi,j,j′ |xi,j − xi,j′ |

v1

v2

v3

v4

w1,2 = 8w1,3 = 5w1,4 = 5

w2,3 = 10
w2,4 = 5

w3,4 = 1

s

tnode label
t = 0

node label
s = 1

edge label
xi,j ∈ {0, 1}

node label
yi = 1

λTF = 1
λTF = 3

x1,2 x1,3 x1,4 x2,3 x2,4 x3,4

y1 y2 y3 y4

8 5 5 10 5 1

∞∞ ∞∞

3
v1

v2

v3

v4
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e1,3

e1,4
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Gene Regulatory Network inference Introduction

The relaxed one: BRANE relaxed

We have to relax x, that is to say x ∈ [0, 1]N
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Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimize
x∈[0,1]N

w>(1− x) + λ>x + µ ‖Ωx− d‖2︸ ︷︷ ︸
f1(x)

+ ι[0,1]N (x)︸ ︷︷ ︸
f2(x)

Algorithm 1: Projected gradient descent algorithm
Fix x0 ∈ RN ;
for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of variables
y(n)

n = x(n)
n − γnA−1

n ∇f1(xn);
x(kn)

n+1 = P[0,1]N (y(n)
n ) ;

x(k)
n+1 = x(k)

n , k ∈ {1, . . . , p} \ {kn} ;
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f1(x)

+ ι[0,1]N (x)︸ ︷︷ ︸
f2(x)

Algorithm 6: Forward-Backward algorithm (general version)
Fix x0 ∈ RN ;
for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of variables
y(n)

n = x(n)
n − γnA−1

n ∇f1(xn);
x(n)

n+1 = prox
γn−1An,f

(n)
2

(y(n)
n ) ;

x(k)
n+1 = x(k)

n , k ∈ {1, . . . , p} \ {kn} ;
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Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimize
x∈[0,1]N

w>(1− x) + λ>x + µ ‖Ωx− d‖2︸ ︷︷ ︸
f1(x)

+ ι[0,1]N (x)︸ ︷︷ ︸
f2(x)

Algorithm 11: Accelerated Forward-Backward algorithm
Fix x0 ∈ RN ;
for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of variables
y(n)

n = x(n)
n − γnA−1

n ∇f1(xn);
x(n)

n+1 = prox
γ−1

n An,f
(n)
2

(y(n)
n ) ;

[Chouzenoux et al., J. Optim. Theory Appl. 2014]
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Gene Regulatory Network inference Introduction

Forward-backward algorithm in BRANE relax

minimize
x∈[0,1]N

w>(1− x) + λ>x + µ ‖Ωx− d‖2︸ ︷︷ ︸
f1(x)

+ ι[0,1]N (x)︸ ︷︷ ︸
f2(x)

Algorithm 16: Block Accelerated Forward-Backward algorithm
Fix x0 ∈ RN ;
for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of variables
y(kn)

n = x(kn)
n − γnA−1

kn
∇f1(xn);

x(kn)
n+1 = prox

γ−1
n Akn ,f

(kn)
2

(y(kn)
n ) ;

x(k)
n+1 = x(k)

n , k ∈ {1, . . . , p} \ {kn}; [Chouzenoux et al. 2013]
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Gene Regulatory Network inference Results

Results

Network obtained with the E. Coli dataset

Legend: black nodes: transcription factors, gray nodes: other genes. green edges: inferred regulations also

reported in the gold standard, blue edges: new inferred regulations that are also inferred by CLR, and pink

edges: new inferred regulations.
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Gene Regulatory Network inference Results

Results on DREAM4 data (multifactorial challenge)

Network index 1 2 3 4 5

AUPR

GENIE31 0.239 0.260 0.316 0.301 0.295
CLR 0.249 0.258 0.294 0.296 0.299

BRANE Cut 0.256 0.261 0.317 0.317 0.316
BRANE Relax 0.246 0.264 0.321 0.317 0.317
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Gene Regulatory Network inference Results

BRANE Cut results on E.coli data

CLR GENIE3 BC1 BC2

AUPR (×10−2) 6.11 6.31 6.39 6.45
Total comput. time (min) 30.0 420.0 30.0 30.1

vs CLR vs GENIE3
AUPR gain 5.9% 2.2%

Comput. time gain none 7 × faster
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Gene Regulatory Network inference Results

Conclusions

Summary
Incorporating biological contrains in a mathematical optimization
formulation allows us to have optimality guaranties on the obtained
solution

BRANE cut and BRANE relax improve the gene regulation networks
obtained by previous methods given their weights as input

Low computation time (negligible in comparison to the necessary
weights computation)
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Inference improvement using clustering

Edge selection step: binary edge labeling x ∈ {0, 1}n

Gene clustering step: node labeling y ∈ NG

We want to

favor strongly weighted edges

reduce weight ωi,j if nodes vi and vj belong to distinct clusters

cost function : f (yi, yj) =
β−1(yi 6=yj)

β , where β > 1 controls clustering

maximize
x∈{0,1}n

y∈NG

∑
(i,j)∈V2

ωi,j xi,j + λ(1− xi,j),

Can be improved by integrating biological and structural a priori
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Enforcing modular structure

Edge selection step: binary edge labeling x ∈ {0, 1}n

Gene clustering step: node labeling y ∈ NG

We want to promote a modular structure organized
around central nodes (TFs)

Let T be a set of central nodes (TFs) and µi,j a parameter controlling the
modular structure

maximize
x∈{0,1}n

y∈NG

∑
(i,j)∈V2

f (yi, yj)ωi,j xi,j + λ(1− xi,j) +
∑
i∈V
j∈T

µi,j1(yi = j).
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

maximize
x∈{0,1}n

y∈NG

∑
(i,j)∈V2

f (yi, yj)ωi,j xi,j + λ(1− xi,j) +
∑
i∈V
j∈T

µi,j1(yi = j).

Hard-clustering [Pirayre, 2015] Soft-clustering [Pirayre, 2016]

# clusters = # TF # clusters < # TF

µi,j =

{
→∞ if i = j
0 otherwise.

µi,j =


α if i = j
α1(ωi,j > τ) if i 6= j and i ∈ T
ωi,j1(ωi,j > τ) if i 6= j and i /∈ T
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

Alternating optimization

maximize
x∈{0,1}n

y∈NG

∑
(i,j)∈V2

f (yi, yj)ωi,j xi,j + λ(1− xi,j) +
∑
i∈V
j∈T

µi,j1(yi = j).

At y fixed and x variable:

minimize x ∈ {0, 1}n
∑

(i,j)∈V2

f (yi, yj)ωi,j xi,j + λ(1− xi,j)

Explicit form:

x∗i,j =

{
1 if f (yi, yj)ωi,j > λ

0 otherwise.
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Multi-labels and relaxation

At x fixed and y variable:

minimize y ∈ NG
∑

(i,j)∈V2

ωi,j xi,j

β
1(yi 6= yj) +

∑
i∈V, j∈T

µi,j1(yi 6= j)

⇒ NP-hard

discrete problem⇒ quadratic relaxation
T-classes problem⇒ T binary sub-problems

label restriction to T: {s(1), . . . , s(T)} such that s(t)
j = 1 if j = t and 0 otherwise.

Y = {y(1), . . . , y(T)} such that y(t) ∈ [0, 1]G

Problem re-expressed as:

minimizeY
T∑

t=1

 ∑
(i,j)∈V2

ωi,j xi,j

β

(
y(t)

i − y(t)
j

)2
+

∑
i∈V, j∈T

µi,j

(
y(t)

i − s(t)
j

)2

 .
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

minimizeY
T∑

t=1

 ∑
(i,j)∈V2

ωi,j xi,j

β

(
y(t)

i − y(t)
j

)2
+

∑
i∈V, j∈T

µi,j

(
y(t)

i − s(t)
j

)2

 .

This problem is called the Combinatorial Dirichlet problem

Random Walker algorithm

Minimization via solving a linear system of equation [Grady, 2006]

Final labeling: node i affected to the label t for which y(t)
i is maximal

y∗i = arg max t ∈ T y(t)
i
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Optimization strategy

We want to obtain the optimal labeling y∗ based on
an weighted graph⇒ Random Walker algorithm
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y2y3
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Benchmark data: DREAM4 and DREAM5

DREAM4
Network 1 2 3 4 5 Average

CLR 0.256 0.275 0.314 0.313 0.313 0.294
BRANE Clust 0.275 0.337 0.360 0.335 0.342 0.330
Gain 7.3 % 22.6 % 14.5 % 7.0 % 9.1 % 12.1 %

GENIE3 0.269 0.288 0.331 0.323 0.329 0.308
BRANE Clust 0.287 0.348 0.364 0.371 0.367 0.347
Gain 6.5 % 20.9 % 10.0 % 15.0 % 11.6 % 12.8 %

DREAM5

Network 1 3 4

CLR 0.252 0.0378 0.0080
BRANE Clust 0.253 0.0399 0.0073

GENIE3 0.283 0.0488 0.0081
BRANE Clust 0.327 0.0536 0.0083
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Gene Regulatory Network inference Using Clustering (BRANE Clust)

Escherichia coli network

Figure: Network built using BRANE Clust on GENIE3 weights and containing 236 edges. Large dark gray nodes refer to transcription
factors (TFs). Inferred edges also reported in the ground truth are colored in pink while predictive edges are green. Dashed edges correspond
to links inferred by both BRANE Clust and GENIE3 while solid links refer to edges specifically inferred by BRANE Clust. The node contours
are colored according to the clusters to which they belong to.
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Conclusions

Conclusions and perspectives

BRANE Clust: Biologically Related A priori Network Enhancement using Clustering

Conclusions

Inference and clustering alternate optimization: convergence guarantee

Incorporating clustering steps gives promising result

Enforcing a modular structure around central nodes improves results

Perspectives

Clustering fusion improvement

Joint clustering and inference (instead of cluster-assisted inference)
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