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Note

These slides are supporting material for the lecture.

They do not provide a self-contained exposition.



Intro: Geometry in spaces of probability distributions

From Shun-ichi Amari, Differential-geometrical methods in statistics.

One may ask why geometry, in particular differential geometry, is useful for statis-
tics. The reason seems very simple and strong. A statistical model is a set of
probability distributions. In particular, a parametric model usually forms a finite-
dimensional manifold embedded in the set of all possible probability distributions.
[. . . ] One often uses a statistical model to carry out statistical inference, assuming
that the true distribution is included in the model. However, a model is merely a
hypothesis. The true distribution may not be in the model but be only close to
it. Therefore, in order to evaluate statistical inference procedures, it is important to
know what part the statistical model occupies in the entire set of probability distribu-
tions and what shape the statistical model has in the entire set. This is the problem
of geometry of statistical models. It is therefore expected that a fundamental role
is played in statistics by geometrical quantities such as the distance or divergence
between two probability distributions, the flatness or curvature of a statistical model,
etc...



Bad news from Wikipedia





.

Points, manifolds and curves

.



Points I: Probability distributions for categorical variables

A random variable taking only X a discrete variable taking m distinct values

X ∈ X = {S1, . . . , Sm} with probability π = (π1, . . . , πm).

Categorical distributions span the proba-

bility simplex: the subset of Rm such that∑
i πi = 1 and 0 ≤ πi ≤ 1.

π1

π2

π3

Simplex for m = 3

Multinomial: n independent realizations of a categorical variable.

An n-sample projects right away on the simplex by the sample frequencies:

π̂ = (π̂1, . . . , π̂m) =
(
n1

n
, . . . ,

nm

n

)



Points II: Probability distributions for continuous variables

Continuous: a random variable taking values in a measurable space.

We shall only consider families of probability distributions having a density with

respect to a common (dominating) measure. And we further require common

support (or trouble will happen).

Parametric families {p(x; θ) | θ ∈ Θ ⊂ Rp} as p-dimensional manifolds.

The empirical distribution p̂ of n samples

p̂(x) =
1

n

n∑
i=1

δ(x− xi)

does not live on the manifold.



Curves in distribution space: one-dimensional families

Such as simple transformation models:

• Location p(x; θ) = q(x− θ)

• Scale p(x; θ) = 1
θq(

x
θ)

But such curves do not exist for a general random variable,
for which addition or multiplication are not defined.

We are looking for a generic, way of drawing a ‘line’ between two distributions.

Statistics suggest at least two segments:

• Mixture segment

• Exponential segment

See next slide



Straight segment from p0 to p1 ? Two statistical ideas

• Defining ‘segments’ between two points p0(x) et p1(x).

p0(x)
p1(x)

Exponential segment
Ee(x)

Mixture segment
Em(x)

• A ‘mixture segment’ from p0(x) to p1(x):

pm(x; t) = (1− t)p0(x) + tp1(x), t ∈ [0,1]

• An ‘exponential segment’ from p0(x) to p1(x):

log pe(x; t) = (1− t) log p0(x) + t log p1(x)− logφ(t), t ∈ [0,1]

Do they look good in a simple Gaussian case ?



Tangent vectors (?)

p0(x)
p1(x)

Exponential segment
Ee(x)

Mixture segment
Em(x)

The mixture and exponential segments from p0(x) to p1(x) also read

pm(x; t) = p0(x) (1 + t Em(x)) Em(x) =
p1(x)− p0(x)

p0(x)

pe(x; t) = p0(x) exp
(
t Ee(X)− ψ(t)

)
Ee(x) = log

p1(x)

p0(x)
− E0 log

p1(x)

p0(x)

We may interpret Ee(X) and Em(X) as tangent vectors at point p0.

Note that they are zero-mean there:

E0 Ee(X) = E0 Em(X) = 0



Affine space

Affine space: a vector space which has forgotten its origin (and does not care).

In Euclidean space, 3 points A,B,C define a plane P.

Pick up an origin, say point C, and represent any point M in the plane P as

M = M(α, β) : ~CM = α ~CA+ β ~CB



From segments to affine manifolds

Def. An exponential (resp. mixture) family contains all the exponential (resp.

mixture) segments between any two of its points.

So we start with n + 1 distributions p0, . . . , pn and build the n-dimensional

model ‘spanned’ by them.

In the exponential case, that would be:

log p(x; θ) = log p0(x; θ) +
n∑
i=1

θi log
pi(x)

p0(x)
− ψ(θ) θ ∈ Θ ⊂ Rn

This is an exponential family. The usual, more general (?), defintion:

p(x; θ) = g(x) eθ
†S(x)−ψ(θ) θ ∈ Θ ⊂ Rn

where g(x) is some positive measure and S(x) an n × 1 function of x, called

the sufficient statistic. Then

ψ(θ) = log
∫
g(x) eθ

†S(x) dx

This means bliss. Note that this is an ‘affine’ model. More about it soon.



.

Statistical manifolds

.



Hardy-Weinberg equilibrium: a manifold for a 3-categorical variable

In a population, a gene exists in two forms B and b

in proportions θ and 1− θ respectively.

Individuals can carry pairs (BB), (Bb), (bb).

At equilibrium, these are found with probabilities:

(BB) (Bb) (bb)
θ2 2θ(1− θ) (1− θ)2

BB

π(θ)

π̂

π(θ̂)

Bb bb

With just a little bit of work,

the Hardy-Weinberg model is seen to be

an exponential family. Hint:

logPBB + logPbb − 2 log pBb = − log 4



Statistical manifolds: smooth parametric families of distributions

Parametric model: p(x; θ) for the distribution of X. X ∈ X , θ ∈ Θ ⊂ Rp.
Assume smoothness and a dominating measure.

The parameter θ is used to label the distributions in the parametric model but

there are (infinitely) many ways to do it.

For instance, the normal family N (µ, σ2) may be parameterized by

θ =

[
µ

σ2

]
θ =

[
µ

logσ

]
θ =

[
µ

µ2 + σ2

]
θ =

[
µ/σ2

1/σ2

]

Statistical inference should be invariant with respect to parameterization

→ we mean geometry.

Still, geometry may help us pick ‘preferred’ parameterizations. . .

In the above example, which one do you think is ’best’ ?

And for the Hardy-Weinberg model ?



Some parametric models. I: Generative and transformation models

• Location p(x; θ) = q(x− θ)

• Scale p(x; θ) = 1
θq(

x
θ), θ ∈ R+

• Location-scale: p(x; θ) = 1
θ1
q(x−θ2

θ1
)

• Multi-dimensional scale: p(x; θ) = 1
|det θ|q(θ

−1x), withx ∈ Rn, θ ∈ GL(n).

• Contamination: the distribution of X+λY√
σ2
Y +λ2σ2

Y

when λ is varied over [0,+∞]

• Mixture of Gaussians

• Graphical models

• From statistical physics

• Any stochastic physical model with adjustable parameters. . .



Some parametric models. II: From the big book

Such as, say, the Gamma distribution, with support on R+. Scale parameter

θ and shape parameter k:

p(x; θ, k) =
1

Γ(k)θk
xk−1e−x/θ

For integer k, it is the distribution of the sum of k independent exponentially

distributed random variables, each with mean θ (Erlang distribution).

And many, many more. . .



Some parametric models. II: From the big book

Overview of supported distributions in ProbOnto, and relationships between univariate
probability distributions (cropped). Credits: probonto.org



Some parametric models. III: Exponential families. Oh so nice!

• A p-dimensional family of distributions for a random X (of any kind):

p(x; θ) = g(x) eθ
†S(x)−ψ(θ) θ ∈ Θ ⊂ Rp

where g(x) is some positive measure, S(x) is a p× 1 function of x.

S(x) : sufficient statistic, ψ(θ) = log
∫
g(x) eθ

†S(x) dx : potential function.

• Differentiate Eθ1 = 1 twice to get:

∂ψ

∂θ
= EθS(x),

∂2ψ

∂θ2
= CovθS(x) Convexity!

Differentiate further: ψ is the cumulant (of S(X)) generating function.

• Optional normalizations:

− Take
∫
g(x) = 1 to have p(x; 0) = g(x) then . . . ψ(0) = 0.

− Replace S(x) by S(x)− E0S(x) then . . . ∂ψ
∂θ (0) = 0.

− Replace S(x) by [Cov0S(x)]−1/2S(x) then . . . ∂2ψ
∂θ2 (0) = Ip.

− Change the origin and the basis vectors as you please.

• See the affine structure for the canonical parameter θ.



Who is exponential ?

The key thing in the exponential structure is the sufficient statistic

p(x; θ) = g(x) eθ
†S(x)−ψ(θ) θ ∈ Θ ⊂ Rp

and that data and parameters interact only in the log through θ†S(x).

Is that so common ? Maybe after some massaging. . .

• The normal family N (µ,R) for X ∈ Rd is a p-dimensional exponential family

p = d+ d(d+ 1)/2 since −(x− µ)R−1(x− µ)/2 = θ†S(x)− µ†R−1µ/2 with

S(x) = [xi, xixj ]1≤i≤j≤d θ = [(R−1µ)i, −(R−1)ij/2 ]1≤i≤j≤d

• The set of all multinomial distributions.

• Look in the big book: Normal, Gamma, Wishart, Poisson, . . .

• Maxent distributions: distributions of maximal entropy with given moments.

• Curved exponential families as universal approximants to smooth models.



.

Kullback-Leibler divergence and the likelihood

.



Likelihood for multinomials

Data Xn = [X1, . . . , Xn] where Xi ∈ X = [S1, . . . , Sp] modelled as n independent

samples, each drawn with probability π = [π1, . . . , πp] i.e. Prob(Xi = Sk) = πk.

Probability of an n-sequence under a distribution categorical distribution π.

log p(Xn;π) =
n∑

k=1

log Prob(Xk = Sk)

=
p∑

i=1

#(Xk = Si) logπi

= n
p∑

i=1

π̂i logπi

where π̂i = #(Xk = Si)/n is the frequency of Si in the sequence Xn.

Key point: the probability of the sample depends only on the empirical distri-

bution π̂ = [π̂1, . . . , π̂p] which thus is a sufficient statistic.



Likelihood and Kulback matching

An enlightning decomposition:

−
1

n
log p(Xn;π) = −

p∑
i=1

π̂i logπi =
p∑

i=1

[
π̂i log

π̂i
πi
− π̂i log π̂i

]
For two categorical distributions p and q, define the KL divergence:

K [p | q] def
=

∑
i

pi log
pi
qi

and H(p)
def
= −

∑
i

pi log pi Shannon entropy.

The Kullback-Leibler divergence from p to q also reads

K [p | q] =
∑
i

pi k
(qi
pi

)
k(u)

def
= u− 1− logu ≥ 0

This (non symmetric) measure of discrepancy between discrete distributions

allows us to write the likelihood as

p(Xn;π) = e−n(K[π̂ |π]+H(π̂))

The likelihood measures goodness of fit in the Kullback sense.

Maximum likelihood estimation is a Kullback-projection onto the model.



Distribution of the empirical distribution

If n samples are i.i.d. distributed according to π and if Xn has type π̂.

p(Xn;π) = e−n{K[π̂ |π]+H(π̂)}

The set T (π̂) of n-samples with an empirical distribution π̂ has cardinality:

|T (π̂)| =
n!∏
i ni!

≈ enH(π̂) (via Stirling approx.)

Then, the probability of observing a particular type π̂ is

p(π̂;π) =
∑

Xn∈T (π̂)

p(Xn;π) = |T (π̂)| e−n{K[π̂ |π]+H(π̂)} ≈ e−nK[π̂ |π]

Thus, the sample distribution π̂ is concentrated in a ‘Kullback ball’ centered

at the true distribution π with a ‘radius’ of order 1/n.



Distribution of sample distributions (ctd)

K [π̂ |π] = k2

K [π̂ |π] = k1

π π̂

• p(π̂) ≈ e−nK[π̂ |π]

• Most of the probability is concen-

trated in a Kullback-ball of center π and

of radius 1/n

• or is it 1/
√
n ?

For π̂ close to π, the KLD reduces to the (symmetric) quadratic χ2 distance:

K [π̂ |π] ≈
1

2

∑
i

(π̂i − πi)2

πi
≈ K [π | π̂]

and small Kullback balls become ellipsoids with covariance matrices:

Cov(π̂i, π̂j) =
1

n
(δijπi − πiπj)

Can you see why?



Back to Hardy-Weinberg

If π = π(θ), the maximum likelihood estimate of θ is the minimizer of K [π̂ |π(θ)].

Kullback matching.

Remember Hardy-Weinberg

BB

π(θ)

π̂

π(θ̂)

Bb bb

(BB) (Bb) (bb)
θ2 2θ(1− θ) (1− θ)2

Finding the maximum likelihood solution is Kullback-projecting the sample

distribution onto the model.

We’ll see later why this picture is a bit wrong.



Kullback matching for continuous variables. I

• Kullback-Leibler divergence from a distribution P to a distribution Q:

K [P |Q] = EP log
P (x)

Q(x)
=
∫
P (x) log

P (x)

Q(x)
dx

• It is not symmetric: in general, K [P |Q] 6= K [Q |P ]

• It is strictly positive unless P and Q agree P -almost everywhere because

K [P |Q] = EP [k (Q(x)/P (x))] with k(u) = u− 1− log(u) ≥ 0.

• It is invariant: under any invertible transform f(·),

K [PX |PY ] = K
[
Pf(X) |Pf(Y )

]



Kullback matching for continuous variables. II

Question: With a continuous variable X and a parametric model p(x; θ), can we

play the same trick : maximizing the likelihood is finding the model distribution

which is the closest in the Kullback sense to the sample distribution ?

No, in general: the sample distribution for n independent realizations x1, . . . , xn:

p̂(x) =
1

n

n∑
i=1

δ(x− xi)

is at infinite distance from the model K [p̂(x) | p(x; θ)] = +∞.

But considering the likelihood loss:

L̂(θ) = −
1

n

∑
i

log p(xi; θ)

as the estimate of the expected loss, with p∗(x) the true distribution of X:

L(θ) = −E∗L̂(θ) = −
∫
p∗(x) log p(x; θ) = K [p∗(x) | p(x; θ)] +H(p∗)

gives us the expected shape of the likelihood.



Kullback matching in exponential families

Recall the generic exponential family:

p(x; θ) = g(x) eθ
†S(x)−ψ(θ) ψ(θ) = log

∫
g(x) eθ

†S(x) dx

∂ψ(θ)

∂θ
= EθS(X)

def
= η(θ)

∂2ψ(θ)

∂θ2
= CovθS(X)

Since ψ(θ) is convex, there is a 1-to-1 mapping θ ←→ η = ∂ψ(θ)
∂θ .

Any distribution can be uniquely labeled with η = η(θ) = EθS(x).

∂ log p(x; θ)

∂θ
= S(x)−

∂ψ(θ)

∂θ
= S(x)− η(θ)

So the maximum likelihood estimate of η based on x is η̂ML = S(x).

Based on an n-sample, it is η̂ML = ÊS(x).

With θ̂ML = θ(η̂ML), one has exactly

L̂(θ) = −
1

n

∑
i

log p(xi; θ) = K
[
θ̂ML | θ

]
+ data only term

yielding the exact shape of the likelihood in geometric terms.



Summary

• There is a natural divergence in spaces of probability distributions.

• Maximum likelihood is Kullback matching.

• So we found a (non)-distance for information geometry.

• But differential geometry needs

a local (infinitesimal) quadratic distance.



.

The matrix and the metric

.



Estimation theory gives us a metric

Parametric model p(x; θ) for the distribution of X ∈ X with θ ∈ Θ ⊂ Rp.

Estimator: a function T : X 7→ Rp of the data, returns an estimate θ̂ = T (X).

Cramér-Rao bound: The variance of an unbiased estimator is lower bounded:

Covθ(T (X)) ≥ F (θ)−1 F (θ): the p× p Fisher information matrix

Hence, in essence, p(x; θ) and p(x; θ + ∆θ) are undistinguishable if, say,

∆θ† F (θ) ∆θ < 1 A resolution cell.

Infinitesimal distance between p(x; θ) and p(x; θ + dθ)?

The CR bound makes it statistically unavoidable (Rao 1945) to define it as√
dθ†F (θ)dθ

This is parameterization invariant, of course.

Note: for n indepedent observations, the Fisher matrix is nF (θ).

The resolution cell shrinks accordingly.



Score function and Fisher matrix

The score function is the vector-valued function

ϕ(x; θ) =
∂ log p(x; θ)

∂θ

and the score ϕ(X; θ) is a random vector which depends on θ.

A trivial but striking property: for any smooth function h(x),

∂

∂θ
Eθ
(
h(X)

)
= Eθ

(
h(X)ϕ(X; θ)

)
.

In particular, the score ϕ(X; θ) has zero mean when X ∼ p(x; θ):

Eθ ϕ(X; θ) = 0

The ‘Fisher information matrix’ is the covariance matrix of the score:

F (θ) = Covθ(ϕ(X; θ)) = Eθ ϕ(X; θ)ϕ(X; θ)†



Reminder: some (statistical) Euclidean geometry

• In a vector space Rn: consider the approximation of a vector y as a linear

combination of p vectors
∑p
i=1 Φiαi = Φα. Best (minα ‖y −Φα‖2) solution:

y? = Φα? = Φ(Φ†Φ)−1Φ†y = ΠΦy ΠΦ
def
= Φ(Φ†Φ)−1Φ† = Proj(Span(Φ))

Basis-free characterization: ΠΦy
? = y? and ΠΦ(y − y?) = 0 (orthogonality).



Reminder: some (statistical) Euclidean geometry

• In a vector space Rn: consider the approximation of a vector y as a linear

combination of p vectors
∑p
i=1 Φiαi = Φα. Best (minα ‖y −Φα‖2) solution:

y? = Φα? = Φ(Φ†Φ)−1Φ†y = ΠΦy ΠΦ
def
= Φ(Φ†Φ)−1Φ† = Proj(Span(Φ))

Basis-free characterization: ΠΦy
? = y? and ΠΦ(y − y?) = 0 (orthogonality).

• Prediction Ŷ of a random scalar Y by a linear combination of p zero-mean

random variables: Ŷ =
∑p
i=1αiξi. The best (minE(Ŷ − Y )2) prediction is

Ŷ = X†E(XX†)−1E(XY ) X = [ξ1, . . . , ξp]
†

Actually, we are working in a vector space of scalar random variables with

scalar product 〈ξi, ξj〉 = E(ξiξj) and (squared) norm ‖ξ‖2 = 〈ξ, ξ〉 = Eξ2.

Orthogonal decomposition as Y = Ŷ + (Y − Ŷ ) since E
(
(Ŷ − Y )Ŷ

)
= 0.

It entails EY 2 = EŶ 2 + E(Y − Ŷ )2.

Spoiler: tangent planes can be constructed like that.



The Frechet-Darmois-Cramér-Rao bound a.k.a. the CRB. . .

Decompose the error e = θ̂ − θ made by an estimator θ̂ = T (X) as

θ̂ − θ = e = e// + e⊥

where e// is the projection of e onto the linear span of ϕ(X; θ) and e⊥ is the

orthogonal (uncorrelated) part. The projected error e// is:

e// = Eθ
(
e ϕ†

)
Eθ

(
ϕϕ†

)−1
ϕ with ϕ = ϕ(X; θ)

If T (x) is unbiased, Eθ
(
e ϕ†

)
must be the identity matrix:

Eθ
(
e ϕ†

)
= Eθ

(
(θ̂ − θ)ϕ†

)
=

∂

∂θ
Eθθ̂ − θEθϕ† = I − 0.

Hence, its parallel error is e// = F−1
θ ϕ(X; θ). It does not depend on T !!

θ̂ = θ + F−1
θ ϕ(X; θ) + e⊥

Hence the Cramér-Rao bound: covariance of the unavoidable error:

Covθ(θ̂) = Cov(e//) + Cov(e⊥) ≥ Cov(e//) = Covθ
(
F−1
θ ϕ

)
= F−1

θ

An efficient estimator is unique: it must behave as T (X) = θ + F−1
θ ϕ(X; θ).



Summary

We have a statistically well founded Riemmanian metric.

Further, it is Kullback-compatible: For infinitesimal dθ,

K [θ | θ + dθ] = K [θ + dθ | θ] =
1

2
dθ†F (θ)dθ

So, we are happy.



.

Tangent planes

.



Representing the tangent plane with random variables

• Tangent plane at point θ∗ = span of the scores there.

T (θ∗) =
{
α†S(x; θ∗) =

∑
i

αiSi(x; θ∗) =
∑
i

αi
∂ log p(X; θ∗)

∂θi

}
So the tangent plane is a vector space of zero-mean scalar random variables

with the norm controlled by the Fisher matrix

‖α‖2 = E(α†S(x; θ∗))2 = α†F (θ∗)α

• More generally, for P (x) a prob. dist. and d(X) a zero-mean variable

EPd(X) = 0, one can define a ‘translation’ P → Q : ~PQ = ~d by ~d = d(X) by:

Q(x) = P (x) ed(x)−ψ(~d) ψ(~d) = logEP e
d(X) ≈

1

2
EPd

2(X) =
1

2
‖~d‖2P .

Note that K
[
P |P + ~d

]
= K [P |Q] = EP

(
logP/Q

)
= ψ(~d).

If P (x) = p(x; θ) and d(x) = α†S(x; θ), the translated distribution stays in the

model approximately. It stays in it exactly for an exponential family.



The exponential family tangent to a smooth model

• 2nd-order expansion around point θ∗ of the log-density in a smooth model:

log p(x; θ) ≈ log p(x; θ∗) + (θ− θ∗)†
∂ log p(x; θ∗)

∂θ
+

1

2
(θ− θ∗)†

∂2 log p(x; θ∗)

∂θ2
(θ− θ∗)

• Exponential family based at θ∗ with sufficient statistic ϕ(x; θ∗) = ∂ log p(x;θ∗)
∂θ :

p(x; θ) = p(x; θ∗)e(θ−θ∗)†ϕ(x;θ∗)−ψ(θ−θ∗).

The potential ψ satisfies ψ(0) = 0 and ∂ψ(0)
∂θ = E∗ϕ(X; θ∗) = 0 and

∂2ψ(0)

∂θ2
= Cov∗(ϕ(X, θ∗)) = F (θ∗)

so, at second order,

ψ(θ − θ∗) ≈
1

2
(θ − θ∗)†F (θ∗)(θ − θ∗).

Hence the two models are almost identical at second-order since

−
∂2 log p(x; θ∗)

∂θ2
≈ −E∗

∂2 log p(x; θ∗)

∂θ2
= E∗

∂ log p(x; θ∗)

∂θ

∂ log p(x; θ∗)

∂θ

†
= F (θ∗)

and they become equivalent if many independent samples are available.



Smooth models as curved exponential families

For a smooth model, define `(x; θ) = log p(x; θ), θ ∈ Rn, pick a θ∗ and define

the higher order scores:

`i(x) =
∂`(x; θ∗)

∂θi
, `ij(x) =

∂2`(x; θ∗)

∂θi∂θj
, `ijk(x) =

∂3`(x; θ∗)

∂θi∂θj∂θk
,

In general d = n+ n(n+ 1)/2 + n(n+ 1)(n+ 2)/6 such independent scores.

Then, build with them a d-dimensional exponential family p3(x;T ), T ∈ Rd

p3(x;T ) = p(x; θ∗) eT
†S(x)−ψ(T ) with S(x)

def
= [`i(x) `ij(x) `ijk(x)]†1≤i≤j≤k≤n.

The third order expansion of the log-density log p(x; θ∗+ t) reads

log p(x; θ∗+ t) ≈ log p(x; θ∗) +
∑
i

ti `i(x) +
∑
ij

titj `ij(x) +
∑
ijk

titjtk `ijk(x) + . . .

so the log-density log p(x; θ) is approximated at third-order around θ∗ by

log p(x; θ∗+ t) ≈ log p3(x;T (t)) T (t)
def
= [ti tij tijk]†1≤i≤j≤k≤n.

We have approximated a smooth model by a curved exponential family.

It is curved because the Rn 7→ Rd mapping t→ T (t) is not linear.



Summary

• Tangent plane tp p(x; θ) at θ∗ as a vector space . . .

• of zero-mean random variables . . .

• spanned by the scores at θ∗.

• Exponential model tangent to a smooth family

• ‘Osculating’ higher-dimensional exponential models

to embed (approximately) a smooth manifold as a curved submodel.



.

The Pythagorean theorem of information geometry.

.



The Pythagorean theorem of information geometry

R
E

P

Q

K(P |R) = K(P |Q) +K(Q|R)

• E: an exponential family of distributions.

• Q: the minimizer in E of K(P‖·). It is the m-projection of P onto E.

• Then, for any other distribution R of E

K(P‖R) = K(P‖Q) +K(Q‖R).

MLE and foliationfoliation here, maybe with maxent



Kullback divergence in an exponential family

Recall the generic exponential family:

p(x; θ) = g(x) eθ
†S(x)−ψ(θ) ψ(θ) = log

∫
g(x) eθ

†S(x) dx

∂ψ(θ)

∂θ
= EθS(x)

def
= η(θ)

∂2ψ(θ)

∂θ2
= CovθS(x)

Since ψ(θ) is convex, there is a 1-to-1 mapping θ ←→ η = ∂ψ(θ)
∂θ . Any point is

uniquely labeled with η = η(θ) = EθS(x), the conjugate variable.

The convex conjugate of ψ(θ) is ϕ(η) which is minus the intercept of the

tangent plane with slope η, so ψ(θ) = −ϕ(η) + θ†η or

ϕ(η) = θ†η − ψ(θ) for θ s.t.
∂ψ(θ)

∂θ
= η

Then ψ(θ) ≥ −ϕ(η) + η†θ for all θ, η with equality if ∂ψ(θ)
∂θ = η. Then

K [1 |2] = ϕ(η1) + ψ(θ2)− η†1θ2 Kullback as Bregman

The dual potential functions can also be expressed as

ϕ(η) = K [p(x; η) | g(x)] ψ(θ) = K [g(x) | p(x; θ)]



Euclidean vs Information geometry

• Do we have, non locally in distribution space something like this?

‖ ~AC‖2 = ‖ ~AB + ~BC‖2 = ‖ ~AB‖2 + ‖ ~BC‖2 − 2 ~BA · ~BC

•Take any three distributions P , Q, R, and check:

K [P |R]−K [P |Q]−K [Q |R] =
∫
P log

P

R
−
∫
P log

P

Q
−
∫
Q log

Q

R
=
∫

(P−Q) log
Q

R

• Making sense of the difference:∫
(P −Q) log

Q

R
= −

∫
Q

(
P

Q
− 1

)(
log

R

Q
+K [Q |R]

)
• Everything is beautiful with mixture and exponential vectors:

K [P |R] = K [P |Q] +K [Q |R] − 〈 ~QPm, ~QR
e 〉Q

~QP
m

=
P (X)

Q(X)
− 1 ~QR

e
= log

R(X)

Q(X)
+K [Q |R]

and 〈 ~QPm, ~QR
e 〉Q = 0 for the Pythagorean theorem.

A dual mixture/exponential structure is hidden in the KLD.



Back to Hardy-Weinberg



.

Parallel transport and connections

.



Connecting tangent planes, the regular way

Let Vi(θ) be a basis for the tangent plane at θ = [θ1, . . . , θn].

The scalar product between two vectors at θ:

〈X|Y 〉 = 〈
∑
i

xiVi|
∑
j

yjVj〉 =
∑
ij

xiyj〈Vi|Vj〉
def
=

∑
ij

xiyj gij(θ)

Variation of a vector field X(θ) =
∑
i x
i(θ)Vi(θ):

δX(θ) =
∑
i

δ[xiVi] =
∑
i

∑
j

[∂xi
∂θj

Vi + xi
∂Vi
∂θj

]
δθj

First order variation of the basis controlled by n3 Christoffel symbols Γkij:

∂Vi
∂θj

=
∑
k

ΓkijVk

The metric gij and the Christoffel symbols Γkij fully determine the geometry.

You/the math/the physics/the stats decide what to pick for gij(θ) and Γkij(θ). . .

. . . but a unique connection can be derived from the metric.



Statistical connections

Connections can be determined from statistical principles. Define:

`i = `i(x; θ) =
∂ log p(x; θ)

∂θi
`ij = `ij(x; θ) =

∂2 log p(x; θ)

∂θi∂θj

The metric (Levi-Civita) connection for the Fisher metric gij(θ) = Eθ`i`j is

Γ0
ij,k(θ) = Eθ

(
(`ij +

1

2
`i`j) `k

)
but we do no want it. Amari introduced a pair of dual connections:∗

Γ(e)
ij,k(θ) = Eθ

(
`ij`k

)
Γ(m)
ij,k (θ) = Eθ

(
(`ij + `i`j)`k

)
Γ(e)
ij,k = 0 in an exponential model. Γ(m)

ij,k = 0 in a mixture model.

The scalar product of two vectors is preserved during parallel transport along

any curve if one is e-transported while the other is m-transported.

But we are not going to do that.

∗Actually, he introduced a 1D family of such pairs of dual connections.



Some parallel transport

Dual parallel transport preserves the scalar product.

Let a and b be two vectors of the tangent plane at P ,

represented by two random random variables with zero mean under P .

EPa(X) = EP b(X) = 0 with scalar product 〈a|b〉P = EP (a(X)b(X))

The vectors are parallelly transported to Q.

Vector a undergoes an e-parallel transport and becomes ae.

Vector b undergoes an m-parallel transport and becomes bm.

How does parallel transport work here ?

ae(X) = a(X)− EQ a(X) bm(X) = b(X)
p(X)

q(X)

Check that ae(X) and bm(X) have zero-mean under Q and that

〈a|b〉P = 〈ae|bm〉Q



.

Information geometry of ICA

.



Multi-channel time series: a biomedical example

8 ECG electrodes located on the thorax and the abdomen of a pregant woman.

Looking for linear decompositions: Data = Mixing matrix × Sources.

Data Credits: Daisy database



Principal component analysis

=



95 -51 -33 8 2 0 2 2

87 53 16 6 -2 -5 4 4

94 17 14 0 11 6 1 1

-9 105 -28 -5 1 0 0 0

97 26 0 5 0 -1 -9 -9

89 7 1 0 -11 8 0 0

97 -6 1 -4 -1 -4 1 1

92 -32 -3 -15 0 -1 0 0



×

• Orthogonal mixture, uncorrelated components 1
T

∑
t yi(t)yj(t) = 0 for i 6= j

• Decorrelation is weak (always posible), orthogonality is implausible.



Independent component analysis

=



98 60 -71 5 -34 17 3 3

93 114 37 0 10 5 6 6

101 99 -4 0 13 6 6 6

-17 47 79 33 -19 -13 -1 -1

106 102 7 0 -10 4 10 10

110 71 -8 0 -1 1 0 0

107 82 -22 0 0 7 17 17

112 42 -43 0 -1 11 20 20



×

• Linear decomposition into “the most independent sources”

• Blind: only independence is at work but it must go beyond decorrelation.

• Independence is statistically very strong but often physically plausible.

• Weak assumptions −→ wide applicability



The basic ICA model

• An n× T data set X = {xi(t) | 1 ≤ i ≤ n, 1 ≤ t ≤ T} . . .

. . . modelled as X = AS with an n× T source matrix of independent rows.

X = A ×
· · · S1 · · ·

...
· · · Sn · · ·

Assuming X = AS, is the assumption of statistical independence

sufficient to recover the sources blindly and efficiently ?

Blindness: why not? If mixing always destroys independence,

then recovering independence should unmix, shouldn’t it?



The crux of the matter

Blind methods good statistical descriptors.

Mixing Gaussian (top row) or uniform(bottom) random variables
with the identity (left), a rotation (center), a generic transform (right):

Rotation is invisible unless the data and the model are non Gaussian.

Mere decorrelation, 1
T

∑
t yi(t)yj(t) = 0, does not cut it.



How to do it ?

• Ignore time/space structure but use non Gaussianity . . .

– Minimize dependence between recovered sources . . .

– . . . as measured by mutual information, why ? hard !

– . . . or approximated using high order cumulants, clumsy ?

– or find the most non Gaussian sources why ? how ?

– or find sources uncorrelated through non linear functions:

e.g 1
T

∑
t φ(yi(t))ψ(yj(t)) = 0 for i 6= j. Which functions φ, ψ ?

• . . . or assume Gaussianity but use temporal/spatial structure, such as

– . . . correlations, or spectral diversity,

– . . . or non stationarity / inhomogeneities

But how to make sense of all that ? How to do it properly ? Statistics!



Likelihood and Kullback matching

The distribution of X = AS is specified by θ = (A,PS1
, . . . , PSn).

− logPθ(X) - log-likelihood

= −EX logPθ(X) + stoch. The average likelihood landscape

c
= K [PX |Pθ] +H(X) H(X) = entropy = cst

c
= K [PX |PAS] The model is X = AS.

= K
[
PA−1X |PS

]
Invariance under invertible transforms.

= K [PY |PS] No X, no A, only Y
def
= A−1X.

The likeliest A is the one making PY the closest to PS =
∏
i PSi. Nice !

PX - A−1 - PY
D≈ PS =

∏
i PSi

Data X and mixing A enter only through Y = A−1X: equivariance.



The Pythagorean theorem of information geometry

The Kullback divergence may not be a distance,

it still has its own private Pythagoras theorem.

A picture in
distribution space

P

Q
R

E

• E: an exponential family of distributions.

• Q: the minimizer in E of K [P | ·]. It is a projection of P onto E.

• Then, for any other distribution R of E

K [P |R] = K [P |Q] +K [Q |R]

The Kullback divergence behaves here as a squared Euclidean distance.



Likelihood and mutual information

• Maximizing the likelihood p(X|A) for X = AS and S ∼ PS is equivalent to

minimizing the (empirical) Kullback mismatch K [PY |PS] with Y = A−1X.

• The target source distribution PS is usually unknown except for PS =
∏
i PSi.

PY

∏
i PYi

PS =
∏
i PSi

Independent rows

K [PY |PS] = K
[
PY |

∏
i PYi

]
+K

[∏
i PYi |

∏
i PSi

]
= I(Y ) +

∑
iK

[
PYi |PSi

]
= dependence + sum of marginal mismatches

The likelihood suggests to measure dependence

by the mutual information I(Y ) = K
[
PY |

∏
i PYi

]
.



Form Kullback matching to mutual information

• Maximizing the ICA likelihood is equivalent to minimizing K [PY |PS].

• The target source distribution PS is usually unknown except for PS =
∏
i PSi.

K [PY |PS] = I(Y ) +
∑
i

K
[
PYi |PSi

]
Optimizing over nuisance parameters PSi kills each K

[
PYi |PSi

]
and leaves us

with (in)dependence:

I(Y )
def
= K

[
PY |

∏
i PYi

]
a.k.a. mutual information

→ Maximum likelihood leads to maximum independence. . .

→ . . . and provides a definition for it.

A key property :

mixing matrix and source distributions are orthogonal parameters.

→ Black board time.



Some statistical manifolds of ICA

Mixing

Changing sources

Product manifold
Xi = f(Si)

System manifold
X = AS

Diagonal manifold
X = DS

X = S

• X = S: the distribution of a vector S with independent entries. Move from there.

• The system manifold: the family of distributions of X = AS for all invertible matrices A.

• The product manifold: distort the marginals of S, retaining independence.

• The diagonal manifold: change only the scales of the entries of S.

→ ICA is doable: the system manifold intersects the product manifold along
the diagonal manifold only. And even easy by nuisance orthogonality.
But breaks for Gaussian S. . .



Classic ICA: mining non Gaussianity

Classic ICA ignores any ‘time’ structure and thus must rely on non Gaussianity.

It assumes (explicitly or not) i.i.d. sequences:

P (Y ) = P (Y (1), Y (2), . . . , Y (T ))

=
∏
t

Pt(Y (t)) Independently and . . .

=
∏
t

p(Y (t)) . . . identically distributed.

where p() is the n-dimensional pdf common to all Y (t), 1 ≤ t ≤ T .

Then, divergence between T -long time series distributions reduces to

K [P |Q] = T ×K [p | q]

depending only on the n-dimensional distributions p and q.

Note: for readibility, we drop the T factor in the following.



Geometry of non Gaussian dependence

SG=0.029

I=0.158

G=0.103

C=0.084

H=0.187

some 2D density

Gaussian approx.

Product approx.Gauss. prod. approx.

Y ∼ P (Y1, Y2)

Y P ∼ P (Y1)P (Y2)

Y G ∼ N (Cov(Y ))

Y PG ∼ N (diagCov(Y ))

Two familiar statistical approximations can be seen as projections:

Oh, let’s assume it’s Gaussian. . .

Ho, let’s assume they’re independent. . .



Geometry of non Gaussian dependence

SG=0.029

I=0.158

G=0.103

C=0.084

H=0.187

some 2D density

Gaussian approx.

Product approx.Gauss. prod. approx.

Y ∼ P (Y1, Y2)

Y P ∼ P (Y1)P (Y2)

Y G ∼ N (Cov(Y ))

Y PG ∼ N (diagCov(Y ))

C(Y )
def
= K

[
Y G |Y PG

]

G(Y )
def
= K

[
Y |Y G

]

I(Y )
def
= K

[
Y |Y P

]

Orthogonal projections → two right triangles → two Pythagorean theorems



Dependence and non Gaussianity

• Non Gaussianity. Define the non Gaussianity G(Y ) of Y as

G(Y ) = K [PY | N (RY )]

i.e. how much the best Gaussian approx. fails to mimic the distrib. of Y .

• The correlation C(Y ) of Y

C(Y ) = K [N (RY ) | N (diagRY )]

i.e. how much the covariance matrix RY of Y fails to be diagonal.

• All these are (geometrically) connected by

I(Y ) +
∑
i

G(Yi) = C(Y ) +G(Y )

• Under linear transforms, G(Y ) is constant. The mutual information then is

I(Y ) = C(Y )−
∑
i

G(Yi) + cst

→ Under linear transforms, making the entries of Y as independent as possible
(min I(Y )) is identical to making (as much as possible) Y uncorrelated and
each of its entries non Gaussian.



Non Gaussianity (cont.)

Repeat: Under linear transforms, making the entries of Y as independent as

possible (min I(Y )) is identical to making (as much as possible) Y uncorrelated

and each of its entries non Gaussian.

• Note 1: The relation I(Y ) = C(Y )−
∑
iG(Yi) +G(Y ) also reads

Complicated = Simple - Simples + Complicated constant

• Note 2: Some people/algos enforce C(Y ) = 0 (pre-whitening) but even

that leaves us with with the not-so-easy-after-all measure of marginal non-

Gaussianity G(Yi). So, how do we do that?

• Note 3: Connection between non Gaussianity and sparsity.



Non Gaussianity, sparsity and bad luck

To avoid estimating (explicitly or implicitly) the source distributions, one may
use fixed targets PSi = Qi for each component and just minimize K [PY |

∏
iQi].

If the pdf’s of the sources are known, one should do just that, indeed. If the
pdf’s are not known but are expected to be “sparse”, then one could use some
sparse guess Qi in place of the true but unknown distribution,

This works (provably) provided the mismatch between PSi and Qi is not too
large. It does not work if a sparse model is used and the true sources are
“anti-sparse” or vice-versa.

True distribution Hypothesized distribution Estimated distribution

It’s not only wrong; it’s maximally wrong!



Other geometries: three points of view on a time series.
A sequence

Marginal probability density Spectral energy density Temporal energy density

Same marginal Same spectrum Same variance profile

A random (?!) sequence

Its ’marginal distribution’ Its ‘spectrum’ Its ‘variance’ profile

Non Gaussian i.i.id Gaussian stationary Modulated Gaussian i.i.d.

• All models are wrong, but some are useful — George Box

Other instances of mutual information by projecting the data onto simple
Gaussian models for time series:
stationary but colored, white but non non stationary.



Conclusion

Some nice conlusion


