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Plan

Basics (2h)

• Artificial neural nets 

• Supervised training, back-prop

• Regularization

Convolutional nets (1h)

• Sequential data and RNNs

• Gating, long-short time memory

• Applications

Recurrent nets (1h) 

• Sequential data and RNNs

• Gating, long-short time memory

• Applications

Unsupervised representations (1h)

• Unsupervised / self-supervised

• Auto-encoders

• Deep generative models
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Basics
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21st century Artificial Intelligence (AI)
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21st century Artificial Intelligence (AI)
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Deep Learning (DL)
Reinforcement Learning (RL)



DL in a nutshell

Branch of Machine Learning (ML)
• Dates back to the 40’s, survived two winters

Spectacular revival in 2006-2012
• Boost of computational power (GPU)

• Massive amount of data (internet)

• Deeper architectures and improved algorithms

Learn rich representations 
• From sequences of non-linear transforms

• For a specific task 

• Agnostic to future use
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Key applications

Recognition
• Optical character recognition (OCR)

• Automatic speech recognition (ASR)

• Natural language processing (NLP) 

• Image understanding

Prediction, decision and control
• Cars, autonomous robots, games, complex systems

Signal transformation
• Enhancement

• Example-based or interactive editing 
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Machine Learning

From training data, not prior rules

• Learn to solve a prediction task (usually under supervision)

• Learn to extract structure (possibly with no supervision)
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Images
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image place: “indoor”
object: “person”
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Audio
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machine

recognition*: label
speech recog. : words 
enhancement: audio
source separation: audio

waveform

*audio scene, speech, music – category or instance level



Text

21

machine

categorization*: label
summarization: text
translation: text
q. answering: text
visual search: image

text

* nature, topic, spam



Feed-forward artificial neural net

• A sequence of transforms based on formal neurons 

• Producing a sequence of representations
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Origins
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Origins
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• McCulloch & Pitts (1943): Linear threshold unit 

• Rosenblath (1957-61): Perceptron learning algorithm

• Minsky and Papert (1969): Analysis of (multilayer) perceptron

• Werbos (1974): Gradient back-propagation

• Fukushima (1975-80): Unsupervised multilayer cognitron

• Hinton (1985-93): Auto-encoders

• LeCun (1989-98): Modern convolutional nets



Feed-forward nets
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depth

transforms: built on ordered layers of artificial neurons

1 10 100
shallow deep very deep



Sigmoid

Non-linear activation
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Rectified Linear Unit (ReLU) 
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“cat”

Supervised learning

• Training data: large collection of annotated examples

• Learn parameters (1-100M) by error back-propagation
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Using trained models

• Same task, same domain: reuse

• Same task, different domain: fine-tune 

• Similar data, different task: adapt, train/fine-tune

• Same data type: use off-the-shelf intermediate deep representations
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Using trained models

• Same task, same domain: reuse

• Same task, different domain: fine-tune

• Similar data, different task: adapt, train/fine-tune

• Same data type: use off-the-shelf intermediate deep representations
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Tools
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Open source frameworks

• Torch (NYU/Facebook) [C++/Lua]

• Caffe (Berkeley) [C++/Python/Matlab]

• Keras (F. Chollet) [Theano/Tensorflow]

• CNTK (Microsoft) [C++]

• TensorFlow (Google)[C++/Python]

• Pytorch (Facebook)[Python]

• MXNet (AWS)[multi]

Hardware specific

• Nvidia SDK, CuDNN

• Qualcomm SDK



Take home message

• Learn from examples instead of knowledge-based rules 

• Learn end-to-end pipeline
• From input,

• through intermediate, distributed representations of increasing abstraction,

• to predicted output.

• Many generic bricks

• Trained architectures and quality codes available

Adapt them to your data and problems
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Learning and representations

High level goal 

• Turn input “signals” into “representations” (descriptors/features/embedding/codes)

• Learn to reason on codes

Two pipelines 

• Classic: Engineer generic features, pool them into codes, learn predictors on codes

• Deep: Learn representation jointly with a task solver… or independently of tasks
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Supervisions

• (Fully) supervised all training examples fully annotated

• Weakly supervised all training examples partially annotated

• Un-supervised training examples with no annotation

• Semi-supervised fraction of training examples fully annotated

• Self-supervised automatic annotation of training examples

• Privileged annotation richer than task requires
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Supervised training
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Risk and loss

• Training set

• Predictor family

• Loss

• Expected and empirical risks
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• Parametric predictors

• Learning problem

• Single framework: classic regression, SVM, kernels, DL

• DL: non-convex optimization, very large dimension (millions)
• Iterative gradient descent

Minimizing empirical risk
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Training, validation and test

Iterative minimization of

To avoid overfitting for good generalization

• Monitor error on validation set

• Use early stopping

• Balance model capacity vs. data amount

• Use priors (e.g., penalize large parameters)

Evaluate performance on test set
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Gradient descents

Gradient descent : follow steepest descent direction at current location

Stochastic gradient descent (SGD): process one sample at a time

Minibatch SGD: process one small subset of samples at a time
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Epochs and learning rates

Epoch: a complete pass over all training examples

Learning rate: progressively slow down, e.g. after each epoch

Minibatch SGD: process one small subset of samples at a time
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• Sequential functional definition

• Backward parameter dependencies

• Back-propagation: efficient gradient computation with chain-rule 

Case of feed-forward net
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Single-layer Perceptron
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Multi-layer Perceptron (MLP)
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Non-linearities
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Sigmoid Rectified Linear Unit (ReLU) 



Classification

• Softmax: pseudo-probabilistic output

• “One-hot’’ ground-truth output (indicator)

• Cross-entropy loss (maximum log-likelihood)
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One layer classifier

• Logistic regression

• Loss gradient for one training example

• By increasing a class activation, the loss decreases if the class is correct, and 
increases otherwise
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Regularization

• L2 penalty: Weight decay

• Gradient

• L1 penalty: Sparsity enforcing prior

• Lasso special case 
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Regression

• Square loss

• From least square regression to deep regression
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Learning rate issue

Towards better adaptation of learning rate

• Momentum

• AdaGrad

• Adam

[Rumelhart et al. 1986 / Duchi et al. 2011 / Kingma and Jimmy 2014]
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Drop-out
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[Hinton et al. 2012]



The Art of DL

Data gathering

• Size and quality, annotations

• Augmentation: synthetic transforms

• Real vs. synthetic

Architecture design

• Exploiting known structures

• Convolutional net, recurrent net

• Lego game and hyper-parameters

Loss definition

• Domain knowledge

• Differentiability

• Regularization

Training

• Initialization

• SGD: batches, learning rate, misc.

• Monitoring, early stopping
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Structured inputs and/or outputs

2D data: convolutional nets Sequences: recurrent nets
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ConvNets
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MLP for images?
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Scalability

• 1Mpix image and 1M unit hidden layer:  1012 weights

[fig by Ranzato] 



MLP for images?
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Stability: expect invariance to small input distortions

[fig by Ranzato] 



Local linear transforms

• Each unit connected to a “local patch” 

• As in biological vision 
• A cell sensitive to a small region of input (receptive field)

• Tiled to cover the whole field of view
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Shared weights

• Weights shared across spatial locations

• Translation-invariant (local) linear filter = convolution with small kernel

• One filter and non-linearity produces one “feature map” or “channel”
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Convolutional layer (CL)

• Building bock of convolutional networks (ConvNet)

• Covariance (not invariance) of map with input

60[fig by Ranzato] 



Spatial pooling

• Local aggregation of activations (max or sum)

• Small amount of translation invariance

• Reduction of spatial resolution: increase receptive fields of next layers

61[fig by Ranzato] 



Multiple i/o maps

Multiple input maps (e.g. color image)

• One filter = stack of 2D filters = 3D filter (tensor)

Multiple output maps

• Number of maps  = width of layer
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“1x1 convolution”

Linear combination of multiple input maps in a single one

63[fig by Ranzato] 



Normalizations

• Local contrast normalization (LCN): normalize activations across 
channels and local spatial neighborhood

• Batch normalization (BatchNorm): and across batches
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A simple example

• Example with two ad-hoc edge filters

65[fig by Ranzato] 



Convolutional networks

• Leverage spatial stationarity

• Share parameters

• Key for spatial data (inc. images at large)
66

machine*input output

tr
an

sf
. 1

tr
an

sf
. 2

tr
an

sf
. L

fully connectedconvolutional



LeCun 1998: “LeNet5”
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Krizhevsky et al. 2012: ”AlexNet”
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Krizhevsky et al. 2012: ”AlexNet”
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70

AlexNet’s filters
[Zeiller 2013]



71

AlexNet’s filters
[Zeiller 2013]



Simonyan et al. 2014: ”VGG”
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He et al. 2014: “ResNet”
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He et al. 2014: “ResNet”

Residual blocks
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Deeper and deeper
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Larger or more complex scenes

• Training on ImageNet: recognize fixed-sized cropped objects

• Extend to:
• Different input image size?

• More complex scenes with multiple images?

• Object localization?
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?

[fig by Cord] 



Fully convolutional nets

• Sliding window: Variable size input & loosely spatialized output

77[fig by Cord] 



Fully convolutional nets

• Sliding window: FC as convolutions 

78[fig by Cord] 



Feature map pooling

• Variable size input & loosely spatialized output

79[fig by Cord] 



Fully convolutional nets

• Variable size input & loosely spatialized output

80[fig by Cord] 



Class activation maps

• Towards localization and (low-res) semantic segmentation

81[fig by Cord] 



Getting spatial resolution back

• Mirroring ConvNet: unpooling and convolution

• Upsampling and convolution

• Fractional-stride convolution
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[Noh et al. 2015]



U-Net and skip-connections

• Passing features maps across through stacking

83[Ronneberger 2015]



Recurrent Neural Nets
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Sequential data

Data with natural total ordering, and variable length

• Text

• Speech

• Audio

• Video

• Animation

• EEG, body signals

• DNA sequences

• Streams and sequences at large
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Handling sequences?

Order-less pooling, e.g. “bag-of-words” 
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machine



Handling sequences?

Sliding window (fixed-sized context), e.g., “word2vec”
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machine



Handling sequences?

1D-convolution, e.g., Holden’s motion embedding

90

ConvNet



Recurrent machines, e.g., RNNs

Handling sequences?
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Recurrent Neural Nets (RNNs)

• Recurrent link through a dedicated “hidden state”

• Captures short term memory
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RNNs

• Variations
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one-to-many many-to-one many-to-many
many-to-many

parallel



Many-to-one

• Sentence encoding (embedding) 
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Many-to-one

• Sentiment analysis
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RNN RNNRNN RNN RNNRNN



Many-to-one

• Visual Question Answering (VQA)
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RNN RNNRNN RNN

multimodal 
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One-to-many

• Image captioning
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[Xu et al. 2015]



One-to-many

• Image captioning
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RNN RNNRNN RNN RNNRNN



Many-to-many

• Machine translation text2text
"The agreement on the European Economic Area was signed in August 1992.“

"L’accord sur la zone économique européenne a été signé en août 1992."
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RNNRNN RNN RNNRNN

The   agreement   …   1992     END L’    accord …      août 1992

RNN RNNRNN… …

L’     accord … 1992    END



Many-to-many

• Machine translation speech2text
audio.mp3

"How much would a woodchuck chuck"
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Vanilla RNN

• Update state:

• Update output:

• Classification:

101
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Issue with long sequences

Vanishing / exploding gradients

• Gradient clipping

Difficulty with long-term “memory”

• Gated unites
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Cho et al. 2014: Gated Recurrent Unit (GRU)

• Update gates:

• Update state:

• Update output:

103

“reset”

“update”



s

Hochreiter and Schmidhuber 1997
Long-Short Term Memory (LSTM)
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“save”

“remember”

“focus”

long memory

working memory

output



Long-Short Term Memory (LSTM)
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Deep RNN with LTSM units
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+
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Unsupervised representations
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Unsupervised learning

Discover useful structures in raw data

• Clusters, low-dim sub-space(s), manifold

• Probabilistic counterparts

Desirable properties

• “Related” inputs should have similar embedding
• Semantic, context or geometric similarities

• Structure should be “economic”
• Finite, low-dimensional or sparse

• Encoding should be approx. decodable
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Unsupervised neural nets?

• One of current challenges

• Descriptive/predictive

– Self-organizing (Kohonen) map [1982]

– Auto-encoder (AE) [1988]

– Restricted Boltzman machines (RBM) [2002-2006]

– t-distributed stochastic neighbor embedding (t-SNE) [2008]

– Skip-gram for word embedding [2013]

• Generative

– Variational auto-encoder (VAE) [2013]

– Generative adversarial net (GAN) [2014]
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Auto-Encoder (AE)

Learning to reconstruct input from code

• Encoder: one layer perceptron

• Associated mirror decoder

• Aiming at good reconstruction on relevant data

113

encoder decoder

input code reconstruction
error



Auto-Encoder (AE)

Learning to reconstruct input from code

• Encoder: one layer perceptron

• Associated mirror decoder

• Aiming at good reconstruction on relevant data
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Auto-Encoder (AE)

AE with bottleneck

• Related to PCA

AE with sparsity prior

• Related to sparse coding
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Denoising AE

Corrupt inputs with noise

• Data augmentation

• Robustness, regularization, generalization

• Actual task!
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Restricted Boltzman Machine (RBM)

• Bi-partite binary Markov random field from exponential family

• Maximum likelihood training with SGD

• Stochastic Monte Carlo approximation
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Deepening

• Stack BMs/AEs, learned one at time + end-to-end fine tuning

118

[Hinton 2006]



Representation learning through prediction

• Learn to predict: surrounding letter, word, movement, image patch, video frame

• Trivial self-supervision from real raw data

[Pathak 2016]



Word-to-Vec

Word embedding based on “context”

• Learn explicit embedding allowing logistic regression of word given 
surrounding ones

• Words frequently sharing context are mapped nearby

• Typical dimension: 100-600

• Surprising geometric relationships 
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Word-to-Vec

121

[Mikolov 2013]



Other self-supervised tasks

[Doersch 2015]



Generative models
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DISCRIMINATORGENERATORcode fake?

DISCRIMINATOR genuine?

Generative Adversarial Network (GAN)

DECODER compareoutputcodeENCODER

Variational Auto-Encoder (VAE)

[Kingma and Welling 2013 / Goodfellow et al. 2014]



Ha and Eck 2017: Sketch VAE-RNN
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Hou et al. 2016: Face VAE
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Zhou et al. 2016: cGAN image translation
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Karras et al. 2017: High-res GANs
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Misc
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Optimizing trained net w.r.t input

• Network weights are frozen

• Random or specific initialization

• Iterative minimization with gradient back-prop

Application

• Visual inspection of the net, network inversion

• Create “adversarial perturbation”

• Modify or create new inputs with desirable properties
136



Visual inspection

• Input that maximizes a certain activation, e.g., class output
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dalmatian goose husky ostrich

cup washing machine computer keyboard limousine

[Simonyan 2014]



Adversarial perturbation

• Small computed alteration of input to change output drastically

138
[Szegedy 2013]



Adversarial perturbation

• Small computed alteration of input to change output drastically
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[Szegedy 2013]



Adversarial perturbation

• Small computed change of input to change output drastically

140
[Szegedy 2013]



Gatys et al. 2015: Style transfer
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“style/texture”

“content/structure”

?



Gatys et al. 2015: Style transfer



Upchurch et al. 2017
Deep Feature Interpolation
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• Multi-tasking

• Meta learning (Auto ML)

• Efficient deep learning (on budget)

• Explainable deep learning

• Provable deep learning 

• Trainable logic

• Neural solvers

• Bayesian neural nets

• Long term memory

• Regularization and generalization

• Transfer learning

Advanced topics
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