Unnormalized Spectral Clustering

This form of relaxed RatioCut = Unnormalized Spectral Clustering

arg min Tr(F'LF) such that F'F =1
FeRNXk

Algorithm: Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of L

Apply k-means to rows of F to obtain cluster assignments
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What is the algorithm doing - view 1

At each vertex the algorithm associates a feature vector that represents the fine
and large scale structure of that vertex’s neighbourhood in the graph

B W [ vertex [q], feature f; ¢ R”
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These are the lines of the matrix F

N7 ot If the graph has k disconnected components,
3. what does F'look like 7

k-means is then applied to these vectors to cluster into k clusters

In short, the algorithm classifies vertices into k clusters blindly
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What is the algorithm doing - view 2

We are looking for k “partition signals (functions)” *

fg:V%R

In the ideal case (k disconnected components)

£li] = 1 it ¢ € cluster ¢
87 0 otherwise

These are maximally smooth signals: f/ Lf, =0
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Incidence Matrix: S e RY*M N =|V|, M = |E|

+1 if e; = (v;, vg) for some k
S(i,7) =¢ —1 ife; = (vg,v;) for some k
0 otherwise
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k| Signal (function) f defined on the vertices f € RY

(ST )] = flil — f[k] derivative of falong edge
4 STfeR™  gradient of f
L =SSt fILf = f1SStf

= [IS* flI5

= (fli] = f[k])?

1~k

In general for a weighted graph: fILf = ZW(Z, kY(fli] — fK])?

1~k

This quadratic (Dirichlet) form is a measure of how smooth the signal is
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Laplacian Eigenmaps
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Spectral Graph Embedding

Dataset is a large matrix X ¢ RV*!

N is the number of data points

L is the dimension of each data points

Often L >> 1 and must be reduced (think images)

For computations

For visualisation, in which case we would like L = 2, 3

(Q: can we reduce L in a way that resulting modified data stays faithful
to the original one 7
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Formulation

Find a mapping from the N high-dim data points to N low-dim points

L1yee ey TN =2 Y1y..., YN

z; € Rt y; € RY

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :
selecting k-nearest neighbours of each point with distance d(z;, x;)

OR

selecting all points in a neighbourhood d(z;,z;) <e

THEN weighting these edges ex: W (¢,7) = e~ Uwisw;)* [t

\> )

LTS | EPFL ‘
FCOLE POLY TECHNIQUE
FEDERALE D7 LAUSANNE



Formulation

W captures similarities among data points z; € RE

We want that similar points are embedded close to each other

Suppose we embed in 1 dimension (P=1)

arg min W (i, §)(y; — y;i)? arg min y’ L

Add a constraint to avoid collapse y=0: y! Dy =1

Avoid trivial eigenvector: y'D1 =0

ml- Arg min y! Ly

y € RY
T _
y'Dy=1
y'D1 =0
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Full problem

When we embed in P dimension (P > 1)

. -W-. . Z_ 2
argylr,lf}}g]v;; (i, Dy — ;|3

Algorithm: Laplacian Eigenmaps

Collect the coordinates of embedded points as lines of matrix Y

arg min tr(YTLY)
Y e R™™
Y'DY =1

Laplacian Eigenmaps produces coordinate maps that are smooth
functions over the original graph. Note similarity with clustering !

\> )

LTS | EPFL ‘
FCOLE POLYTECHNIQUE
FEDERALE D7 LAUSANNE




11

Examples: synthetic

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373—1396, 2003.
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Examples: text

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373—-1396, 2003.
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