
Unnormalized Spectral Clustering
�1

This form of relaxed RatioCut = Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of L 

Apply k-means to rows of F to obtain cluster assignments

Algorithm: Unnormalized Spectral Clustering

arg min
F2RN⇥k

Tr(FTLF ) such that FTF = I



What is the algorithm doing - view 1
�2

At each vertex the algorithm associates a feature vector that represents the fine 
and large scale structure of that vertex’s neighbourhood in the graph 

vertex [i], feature fi 2 Rk

fi[`] = u`[i], ` = 1, . . . , k

These are the lines of the matrix F

If the graph has k disconnected components, 
what does F look like ?

k-means is then applied to these vectors to cluster into k clusters

In short, the algorithm classifies vertices into k clusters blindly



What is the algorithm doing - view 2
�3

We are looking for k “partition signals (functions)”

In the ideal case (k disconnected components)

f` : V 7! R

f`[i] =

⇢
1 if i 2 cluster `
0 otherwise

These are maximally smooth signals: fT
` Lf` = 0
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S(i, j) =

8
<

:

+1 if ej = (vi, vk) for some k
�1 if ej = (vk, vi) for some k
0 otherwise

Incidence Matrix: S 2 RN⇥M N = |V |, M = |E|
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[i]

[k]

edg
e j

(ST f)[j] = f [i]� f [k]

Signal (function) f defined on the vertices f 2 RN

derivative of f along edge j

ST f 2 RM gradient of f

L = SST fTLf = fTSST f

= kST fk22
=

X

i⇠k

(f [i]� f [k])2

fTLf =
X

i⇠k

W(i, k)(f [i]� f [k])2In general for a weighted graph:

This quadratic (Dirichlet) form is a measure of how smooth the signal is



Laplacian Eigenmaps



Spectral Graph Embedding
�7

Dataset is a large matrix X 2 RN⇥L

N is the number of data points
L is the dimension of each data points

Often L >> 1 and must be reduced (think images)

For computations

For visualisation, in which case we would like L = 2, 3

Q: can we reduce L in a way that resulting modified data stays faithful  
    to the original one ?



Formulation
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Find a mapping from the N high-dim data points to N low-dim points 

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏
OR

THEN weighting these edges ex: W(i, j) = e�d(xi,xj)
2/t



Formulation
�9

W captures similarities among data points xi 2 RL

We want that similar points are embedded close to each other

Suppose we embed in 1 dimension (P=1)

arg min
y1,...,yN

X

i⇠j

W(i, j)(yi � yj)
2 arg min

y2RN
yTLy

Add a constraint to avoid collapse y=0: yTDy = 1

Avoid trivial eigenvector: yTD1 = 0

arg min
y 2 RN

yTDy = 1
yTD1 = 0

yTLy



Full problem
�10

When we embed in P dimension (P > 1)

arg min
y1,...,yN

X

i⇠j

W(i, j)kyi � yjk22

arg min
Y 2 RN⇥P

Y TDY = I

tr(Y TLY )

Collect the coordinates of embedded points as lines of matrix Y

Algorithm: Laplacian Eigenmaps

Laplacian Eigenmaps produces coordinate maps that are smooth 
functions over the original graph. Note similarity with clustering !



Examples: synthetic
�11

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.



Examples: text
�12

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.
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Examples: speech
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