
Unnormalized Spectral Clustering
�1

This form of relaxed RatioCut = Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of L

Apply k-means to rows of F to obtain cluster assignments

Algorithm: Unnormalized Spectral Clustering

arg min
F2RN⇥k

Tr(FTLF) such that FTF = I

What is the algorithm doing - view 1
�2

At each vertex the algorithm associates a feature vector that represents the fine
and large scale structure of that vertex’s neighbourhood in the graph

vertex [i], feature fi 2 Rk

fi[`] = u`[i], ` = 1, . . . , k

These are the lines of the matrix F

If the graph has k disconnected components, 
what does F look like ?

k-means is then applied to these vectors to cluster into k clusters

In short, the algorithm classifies vertices into k clusters blindly

What is the algorithm doing - view 2
�3

We are looking for k “partition signals (functions)”

In the ideal case (k disconnected components)

f` : V 7! R

f`[i] =

⇢
1 if i 2 cluster `
0 otherwise

These are maximally smooth signals: fT
` Lf` = 0

�4

S(i, j) =

8
<

:

+1 if ej = (vi, vk) for some k
�1 if ej = (vk, vi) for some k
0 otherwise

Incidence Matrix: S 2 RN⇥M N = |V |, M = |E|

[i]

[k]

edg
e j [i]

[k]

j

+1

-1 S

�5

[i]

[k]

edg
e j

(ST f)[j] = f [i]� f [k]

Signal (function) f defined on the vertices f 2 RN

derivative of f along edge j

ST f 2 RM gradient of f

L = SST fTLf = fTSST f

= kST fk22
=

X

i⇠k

(f [i]� f [k])2

fTLf =
X

i⇠k

W(i, k)(f [i]� f [k])2In general for a weighted graph:

This quadratic (Dirichlet) form is a measure of how smooth the signal is

Laplacian Eigenmaps

Spectral Graph Embedding
�7

Dataset is a large matrix X 2 RN⇥L

N is the number of data points
L is the dimension of each data points

Often L >> 1 and must be reduced (think images)

For computations

For visualisation, in which case we would like L = 2, 3

Q: can we reduce L in a way that resulting modified data stays faithful  
 to the original one ?

Formulation
�8

Find a mapping from the N high-dim data points to N low-dim points

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏
OR

THEN weighting these edges ex: W(i, j) = e�d(xi,xj)
2/t

Formulation
�9

W captures similarities among data points xi 2 RL

We want that similar points are embedded close to each other

Suppose we embed in 1 dimension (P=1)

arg min
y1,...,yN

X

i⇠j

W(i, j)(yi � yj)
2 arg min

y2RN
yTLy

Add a constraint to avoid collapse y=0: yTDy = 1

Avoid trivial eigenvector: yTD1 = 0

arg min
y 2 RN

yTDy = 1
yTD1 = 0

yTLy

Full problem
�10

When we embed in P dimension (P > 1)

arg min
y1,...,yN

X

i⇠j

W(i, j)kyi � yjk22

arg min
Y 2 RN⇥P

Y TDY = I

tr(Y TLY)

Collect the coordinates of embedded points as lines of matrix Y

Algorithm: Laplacian Eigenmaps

Laplacian Eigenmaps produces coordinate maps that are smooth
functions over the original graph. Note similarity with clustering !

Examples: synthetic
�11

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.

Examples: text
�12

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.

0 20 40

0

10

20

30

40

−5 0 5
x 10−3

−8

−6

−4

−2

0

2

4

6

8
x 10−3

−2 0 2
−4

−2

0

2

4

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

1

3

2

7 8 9 10
x 10−3

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

was

were

would

has

will
said

can

could

may

did

must

should

never
might

used

does

got

told

didn’t

going

felt

saw
want

began

0.015 0.016 0.017 0.018

−0.0125

−0.012

−0.0115

−0.011

of

in

on

at

from
than

between

under

against

during

upon

toward

among

along

2 4 6 8
x 10−3

0.024

0.0245

0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

be

do

make

see

get

know

go

take

say

put

find

look

give

becomehelp

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.01

−0.005

0

0.005

0.01

0.015

2

3
1

Examples: speech
�13

7 8 9 10
x 10−3

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

was

were

would

has

will
said

can

could

may

did

must

should

never
might

used

does

got

told

didn’t

going

felt

saw
want

began

0.015 0.016 0.017 0.018

−0.0125

−0.012

−0.0115

−0.011

of

in

on

at

from
than

between

under

against

during

upon

toward

among

along

2 4 6 8
x 10−3

0.024

0.0245

0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

be

do

make

see

get

know

go

take

say

put

find

look

give

becomehelp

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.01

−0.005

0

0.005

0.01

0.015

2

3
1

−8.2 −8 −7.8 −7.6 −7.4
x 10−3

4.94

4.96

4.98

5

5.02

5.04

5.06

x 10−3

sh

sh

sh

sh

sh

sh

sh
 sh

sh

sh

sh

sh

sh

0 10 20
x 10−4

−7.1

−7

−6.9

−6.8

−6.7

−6.6

x 10−3

aa

aa

ao

ao

ao

ao

ao
 ao

ao

ao
 ao

ao

ao

ao

ao

ao

ao

ao

ao

ao

q

q

q

l

7.5 8 8.5 9 9.5
x 10−3

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

x 10−3

h#

h#

h#

dcl

kcl

gcl

h#

h#

h#

h#

h#

h#

h#

