
Some Elements of 
Spectral Graph Theory
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“Spectral graph theory”, Fan Chung
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Processing Data on/with Graphs
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Irregular Data Domains

Social Networks

Energy Networks

Transportation Networks
Biological Networks



Some Typical Processing Problems
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Semi-Supervised Learning

Analysis / Information Extraction

Compression / Visualization

Earth data source: Frederik Simons



Outline
! A (very short) introduction to spectral graph theory 

- Laplacian eigenvalues, eigenvectors, Cuts and Cheeger’s 
inequality 

! Unsupervised Learning: Spectral Clustering 
- several views, including smooth partition functions 

! Embedding and Visualization: Laplacian Eigenmaps 
- Connections with smooth partition functions 

! Signal Processing on Graphs 
- Signals, filters, algorithms and applications in ML
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Orientation-agnostic definitions
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d(v) = |{u 2 V s.t. (u, v) 2 E or (v, u) 2 E}|

D(G) = diag(d1, . . . dN )

V = {v1, . . . , vN} E = {e1, . . . , eM}

S(i, j) =

8
<

:

+1 if ej = (vi, vk) for some k
�1 if ej = (vk, vi) for some k
0 otherwise

Incidence Matrix:

Degrees and Degree Matrix:



Orientation-agnostic definitions
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V = {v1, . . . , vN} E = {e1, . . . , eM}

Adjacency matrix

A(i, j) =

⇢
+1 if there is an edge {vi, vj} 2 E
0 otherwise

A(i, j) =

⇢
+1 if there is an edge (vi, vj) or (vj , vi) 2 E
0 otherwise



Extensions to weighted graphs
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V = {v1, . . . , vN} E = {e1, . . . , eM}

Weight Matrix:

A symmetric N-by-N matrix W

W(i, j) > 0 W(i, i) = 0

W(i,j) is the weight (“strength”) of the edge between i,j (if any)

d(vi) =
X

j⇠i

W(i, j)
Degrees:



Orientation-agnostic definitions
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With these definitions we have:

SST = D�A

L = D - A is called unnormalized  Laplacian of G

L is a symmetric, positive semi-definite matrix

L does not depend on the orientation (so OK for undirected)

For a weighted graph we have L = D - W (attention to degrees)



Graph Laplacian
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Proposition: L is positive semi-definite

For any N-by-N weight matrix W, if L = D-W where D is the 
degree matrix of W, then

xTLx =
1

2

X

i,j

W(i, j)(x[i]� x[j])2 > 0 8x 2 RN

Rem: to ease notations we will sometimes use wij = W(i, j)
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Since L is real, symmetric and PSD:

• It has an eigendecomposition into real eigenvalues  
and eigenvectors 

• The eigenvalues are non-negative
�i, ui

0 = �1 6 �2 6 . . . 6 �N

L1 = 0

What can be learned from eigenvectors and eigenvalues ?



Some examples
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Path graph

�k = 2� 2 cos
⇡k

N
= 4 sin2

⇡k

2N
, k = 0, ..., N � 1

uk[`] = cos
�
⇡k(`+

1

2
)/N

�
, ` = 0, ..., N � 1

DCT II transform



Some examples
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Ring graph

�k = 2� 2 cos
⇡k

N
= 4 sin2

⇡k

2N
, k = 0, ..., N � 1

DCT transform
0

BBB@

2 �1 �1
�1 2 �1

. . .
�1 �1 2

1

CCCA

us
k[`] = sin

�
2⇡k`/N

�
, ` = 0, ..., N � 1

uc
k[`] = cos

�
2⇡k`/N

�
, ` = 0, ..., N � 1
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The number of connected components c of G is the dimension 
of the nullspace of L. Furthermore the null space of L has a  
basis of indicator vectors of the connected components of G

Proposition: eigendecomposition of L and structure of G

Indicator of a subset H of V is

x 2 RN s.t.

⇢
x[i] = 1 if 2 H

x[i] = 0 otherwise



Normalized Graph Laplacian
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Note: we will sometimes need to consider the generalised problem

Lu = �Du

In this case it makes sense to introduce the normalised Laplacian

Lnorm = D�1/2LD�1/2

Lnormf = �f ! u = D�1/2f

Eigenvectors are closely related



Normalized Graph Laplacian
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Eigenvalues of the normalised Laplacian

0 = �1 6 �2 6 . . . 6 �N 6 2

IFF bipartite graph!Algebraic connectivity



Algebraic Connectivity, Fiedler Vector
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Multiplicity of eigenvalue 0 gives connectedness of graph

What if �2 > 0 ?

where d(G) is the diameter of the graph�2 > 1

vol(G)d(G)

Experiment: 
Gradually increase connections 
between two Erdos-Renyi subgraphs



The Cheeger Constant
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Cheeger constant measures presence of a “bottleneck”

@A =
�
(u, v) 2 E s.t. u 2 A, v 2 A

 
A ⇢ V

h(G) = min
A⇢V

8
<

:
|@A|

min
⇣
vol(A), vol(A)

⌘ s.t. 0 < |A| < 1

2
|V |

9
=

;

vol(A) =
X

u2A

d(u)



The Cheeger Constant
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Bottleneck



A Cheeger Inequality
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The Cheeger constant and algebraic connectivity are related by  
Cheeger inequalities. A simple example:

For a general graph G, 

Theorem: Cheeger Inequality[Polya, Szego]

Remark: the eigenvector associated to the algebraic connectivity 
is called the Fiedler vector

2h(G) > �2 > h2(G)

2



Algebraic Connectivity, Fiedler Vector
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Set of 1490 US political blogs, labelled “Dem” or “Rep” 
Hyperlinks among blogs 
Removed small degrees (<12), keep N = 622 vertices 
Compute normalised Laplacian, Fiedler vector 
Assign attributes +1, -1 by sign of Fiedler vector

Ground truth



A Few Laplacian Eigenvectors
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