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INTRODUCTION
FUNDAMENTAL PROBLEM IN SIGNAL PROCESSING (1)

Deconvolution (process to reverse the effects of convolution) and more
generally signal estimation (recovery) from observed (received) signals

x = H[s]

s: acoustic/seismic, sonar, radar, speech, biomedical (EEG, ECG)...
signals.

H[.]: propagation in the Earth, water, air, body...
Operator Linear/NL, Instantaneous (memoryless)/convolutive,

SISO/MIMO (multiantenna system).
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DECONVOLUTION IN DIGITAL COMMUNICATIONS (2)

x = H[s] ⇒ Ideally: ŝ = H−1[x] ⇒ Approximate solution.

Brief history

In the 1980s: channel equalization ⇒ adaptive (LMS/RLS) equalizers.
(equalizer = device to compensate the distortion due to the
communication channel)

In the 1990s: blind deconvolution/equalization, blind source
separation ⇒ High order statistics (HOS)-based methods.

Since 2000: tensor approaches ⇒ deterministic joint semi-blind
channel/symbols estimation based on multimodal/multidimensional
representations of received signals.
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MOBILE COMMUNICATIONS EVOLUTION (3)

2G systems ⇒ SISO; GSM standard; since 1991 in Finland; 270
kbits/s.

3G systems ⇒ SU-MIMO (single user); UMTS (Universal Mobile
Telecom Service); EDGE (Enhanced Data Rates for GSM Evolution)
standard; Internet access, video calls and mobile TV; since 2001 in
Japon; > 2 Mbits/s.

4G systems ⇒ MU-MIMO (multi user); LTE (Long Term Evolution)
standard; HD mobile TV, video conference, mobile web access...;
since 2009 in Norway and Sweden; 1 Gbits/s.

5G systems ⇒ Massive MIMO (very large number of antennas at the
base station); from 2020; 100 Gbits/s.

A new generation of cellular standards approximately every ten years since
1G systems introduced in 1981. Each generation is characterized by new

frequency bands, and higher data rates.
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OBJECTIVES OF THE TALK

To give an overview of tensor models/decompositions.

To motivate and to illustrate the use of tensors for designing MIMO
wireless communication systems.

To present some tensor-based semi-blind receivers for joint
channel/symbols estimation, in the case of point-to-point
communication systems and of relaying systems.
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1. Basics on MIMO wireless communication systems

PART 1 : MIMO WIRELESS COMMUNICATION SYSTEMS

1 Brief description

2 Diversities and fundamental tradeoff

3 Motivations for tensor modeling

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 7 / 129



1. Basics on MIMO wireless communication systems

Brief description of MIMO communication systems (1)

MIMO communication systems studied since the 1990s

Multiple antennas at the transmitter (T) and the receiver (R):

M transmit antennas; K receive antennas

⇓

Multiple links between T and R ⇒ Multipath-induced fading
(Random fluctuations in the received signal power)

⇓

Propagation of information symbols through the channel H ∈ CK×M

or H ∈ CK×M×F .
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1. Basics on MIMO wireless communication systems

CDMA and OFDM systems (2)

CDMA and OFDM are wireless communication techniques widely used for
fixed as well as for mobile applications.

CDMA (Code Division Multiple Access)
known as a spread-spectrum technique.

Used in the UMTS/3G (Universal Mobile Telecommunications System)
and in GPS (Global Positioning System).

The information symbols are spread using a (spreading) pseudo-random
code of length J, i.e. a sequence of chips, with values -1 and 1, or 0 and 1

⇒ J repetitions on chip.

OFDM (Orthogonal Frequency Division Multiplexing)
Used in ADSL/VDSL (Asymmetric/Very-high-bit rate Digital Subscriber

Line), broadcast standards (DAB, DVB), and LTE/4G (Long Term
Evolution) system.

Concept: multicarrier modulation technique with orthogonal subcarriers.
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1. Basics on MIMO wireless communication systems

MIMO channels (3)

H ∈ CK×M

hk,m = SISO channel gain between the kth receive antenna and the
mth transmit antenna.

hk,m modeled as a zero-mean circularly symmetric complex Gaussian
random variable.

Amplitude |hk,m| is Rayleigh distributed.

Two types of channels

Rich scattering ⇒ i.i.d. frequency flat Rayleigh fading MIMO channel
⇔ decorrelated channel coefficients (if adequate antenna spacing
(≥ λ/2) to ensure decorrelation).

Frequency-selective fading ⇒ channel is frequency-dependent:
H ∈ CK×M×F (increased bandwidth).

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 10 / 129



1. Basics on MIMO wireless communication systems

Wireless networks (4)

Wireless networks may be classified as cellular or ad hoc networks

A cellular network is characterized by centralized communications:
multiple users within a cell communicate with a base station that
controls all transmissions and forwards data to the users ⇒
Point-to-point communication systems.
(Uplink/downlink: terminal→ base station / station→ terminal.)

In an ad hoc network, any user can act as a sender or receiver of
data, or as a relay for other users ⇒ Relaying/Cooperative systems
⇒ Distributed MIMO systems: multiple users cooperate to form a
virtual antenna array
⇒ Cooperative diversity: MIMO space diversity with single-antenna
terminals (users).
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1. Basics on MIMO wireless communication systems

Cellular systems (5)

Base-station
User 1

User 2

User 3

User P

User 4
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1. Basics on MIMO wireless communication systems

Cooperative systems (6)

Base-station

User 1

User 2

User 3

User P
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1. Basics on MIMO wireless communication systems

Relaying protocols (7)

Two main relaying protocols:

Amplify-and-forward (AF) protocol: the relay amplifies/re-encodes
the noisy received signals (without decoding) before forwarding.

Decode-and-forward (DF) protocol: the relay decodes the received
signals, and re-encode information signals before forwarding them.

Advantages/Drawbacks:

AF: Simpler/Less efficient (because of noise propagation) at
destination

DF: More complex (because of decoding)/More efficient at
destination
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1. Basics on MIMO wireless communication systems

Fundamental tradeoff (8)

MIMO can be exploited to:

Increase the rate of data transmission (transmission rate) through
multiplexing.

Improve system performance and reliability owing to space diversity.

⇓
Fundamental tradeoff between multiplexing and diversity

(i.e. transmission rate/performance).
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1. Basics on MIMO wireless communication systems

Modulations and transmission rate (9)

Transmitted information symbols as sequences of bits depending on the
used modulation

In practice, the emitter transmits data streams, each one being composed
of N symbols ⇒ Symbol matrix S ∈ CN×R .

Two main modulations (constellation/finite alphabet)

Quadrature Amplitude Modulation (QAM)
M-QAM finite alphabet of cardinality M = 2q ⇒ q bits/symbol.

16-QAM ⇒ 24 symbols ⇒ 4 bits/symbol
Real and imaginary parts in {−3,−1, 1, 3}.

Phase Shift Keying (PSK)
M-PSK ⇒ symbols equally spaced on a circle with argument

2π
M m, m ∈ {0, 1, · · · ,M − 1}.

8-PSK ⇒ 23 symbols ⇒ 3 bits/symbol.
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1. Basics on MIMO wireless communication systems

16-QAM and 8-PSK modulations (10)
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8-PSK16-QAM
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1. Basics on MIMO wireless communication systems

Transmission rate and performance (11)

Transmission rate

Tr = Number of bits per channel use (symbol period)

Example for TST system

Transmission of R data streams composed of N symbols (S∈ CN×R)
belonging to M-QAM constellation,

spread with a spreading code of length P
(i.e. with P temporal repetitions):

Tr = NR
NP log2(M) = R

P log2(M) bits/channel use.

Performance

in SER (Symbol Error Rate) or BER (Bit Error Rate)
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1. Basics on MIMO wireless communication systems

Diversity gain (12)

Performance is directly linked with the diversity gain due to multiple copies
of transmitted signals

m
Signal redundancy in space/time/frequency domains.

If number of copies (diversity order) ↗
then

Quality and reliability of reception ↗
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1. Basics on MIMO wireless communication systems

Space/Time/Frequency spreading and multiplexing (13)

Space/Time/frequency spreading by:
- Transmitting the same symbols (or data streams) by means of
several Tx antennas, and using several Rx antennas at the receiver.

⇒ Space diversity

- Repeating the same symbols during several chip periods (CDMA
systems) or/and multiple time blocks

⇒ Code/Time diversities

- Transmitting same symbols using several subcarriers (OFDM syst.)

⇒ Frequency diversity

⇓
Performance and reliability improvement

Space multiplexing by transmitting independent data streams in
parallel on multiple Tx antennas ⇒ Transmission rate increase
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1. Basics on MIMO wireless communication systems

Main blocks in a MIMO system (14)

Data streams containing information symbols to be transmitted ⇒
Symbol matrix S ∈ CN×R : R data streams of N symbols.

Coding matrices/tensors.

Resource allocation matrices/tensors.
Resource constraints:

I Numbers of transmit and receive antennas.
I Limited power.
I Frequency bandwidth.

Channel matrices/tensors.

Receiver
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1. Basics on MIMO wireless communication systems

Design of receiver (15)

Objective: Best tradeoff between transmission rate and performance.

Design of transmitter (Choice of coding).

Choice of relaying protocol (for relaying systems).

Design of receiver.

Three types of receiver:

Zero-forcing (ZF): Perfect knowledge of channel (ideal performance).

Supervised (with a training sequence): to estimate the channel and,
in a second stage, the information symbols.

Semi-blind (only a few pilot symbols are known at the receiver): to
jointly estimate the channels and the symbols.
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1. Basics on MIMO wireless communication systems

Motivations for tensor modeling of MIMO systems (1)

MIMO systems ⇒ Multidimensional data ⇒ Third- to fifth-order
tensors for transmitted and received signals

Structure of tensor model results from system design

Structure parameters (rank, mode dimensions) are design parameters
(code lengths, numbers of Tx/Rx antennas, of data streams, of
subcarriers, of time slots, ...)

Tensor ST/STF coding

Tensor of resource allocation

Uniqueness properties of tensor models ⇒ ambiguities eliminated with
knowledge of a few pilot symbols (no training sequence is required)

Deterministic semi-blind receivers (joint channels/symbols estimation)
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1. Basics on MIMO wireless communication systems

Motivations for tensor modeling of MIMO systems (2)

Aims:
I Best tradeoff between error performance (SER or BER), transmission

rate (in symbols or bits per channel use), and receiver complexity for
symbol recovery.

I Semi-blind receivers for joint channels/symbols estimation (i.e. without
training sequence).

Performance improvement by jointly exploiting several diversities.

m

To exploit redundancy into information-bearing signals at the receiver.

m

Tensor spreading/Coding in space, time and/or frequency domains.
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1. Basics on MIMO wireless communication systems

Block-diagram of tensor-based MIMO systems (3)
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2. Tensor models/decompositions

PART 2 : TENSOR MODELS/DECOMPOSITIONS

1 Brief history

2 Examples and definitions

3 Notations, operations and matricizations

4 Tensor models/decompositions
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2. Tensor models/decompositions Background on tensors

Brief history (1)

From the sixties: Tensor decompositions were used for analysing
collections of data matrices viewed as three-way data arrays
(third-order tensors):

- 1966: Tucker decomposition in psychometrics.

- 1970: PARAFAC (parallel factor) decomposition introduced by
Harshman in phonetics, and independently under the name
CANDECOMP (canonical decomposition) by Carroll and Chang in
psychometrics, also called CP (CANDECOMP/PARAFAC) by Kiers
(2000). Rediscovered by Möcks (1988) under the name ”topographic
component model” in EEG analysis.
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2. Tensor models/decompositions Background on tensors

Brief history (2)

From 1990: Tensor decompositions were used in:
- Chemistry, especially in chemometrics (R. Bro’s Ph.D. thesis, 1998).
- Signal processing: blind source separation (BSS) using cumulant
tensors (J.F. Cardoso, P. Comon, 1990; L. de Lathauwer’s, 1997).

Since 2000: Tensor decompositions/models are used for designing
wireless communication systems (N. Sidiropoulos et al., 2000), and
analysing image ensembles (Vasilescu and Terzopoulos, 2002).

During the last decade: we developed several tensor models for
designing MIMO comm. syst.: block constrained PARAFAC,
CONFAC, generalized PARATUCK, nested PARAFAC, Tucker train.

Nowadays: High order tensors, also called multi-way arrays, are used
for representing and analysing multidimensional data under the form
of signals, images, speech, music sequences, or texts.
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2. Tensor models/decompositions Background on tensors

Motivations for using tensor decompositions (1)

7→ Separation of data sets into components/factors in order to extract the
multimodal structure of data and useful information from noisy
measurements.

7→ Dimensionality reduction of multidimensional data:
⇒ Approximate low-rank tensor decompositions,
⇒ Tensor train decompositions.

7→ Completion of data tensors in presence of missing data.

⇒ Use of a low-rank tensor decomposition for modeling the data tensor of
interest.
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2. Tensor models/decompositions Background on tensors

Motivations for using tensors in SP (2)

Moments and cumulants of RV and stochastic processes are tensors.

⇒ Development of tensor SP methods based on high order statistics
(HOS).

Design of MIMO wireless communication systems.

⇒ Semi-blind receivers for joint channel and symbols estimation.

Modeling and analysis of multidimensional and nonlinear systems.

⇒ Development of Volterra-PARAFAC models, with reduced
parametric complexity, by considering Volterra kernels as tensors.
(Favier et al.; GRETSI’2009 and 2011, TS’2010, IJACSP’2012, SP’2012)

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 30 / 129



2. Tensor models/decompositions Background on tensors

Some examples of tensors

Tensors of statistics (moments and cumulants).

Kernels of Volterra models for nonlinear system modeling.

Tensors of transmitted and received signals in MIMO communication
systems.

Tensors of biomedical signals (EEG, ECG, MEG).

Tensors of images and video data.

Tensors for data analysis in phonetics, chemometrics, bioinformatics,...

Tensors for data mining and web search.

FaceTensors for face recognition.
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2. Tensor models/decompositions Background on tensors

Tensors of image and video data

Datasets Modes

Color images Spatial column × Spatial row × Color

Hyperspectral images Spatial column × Spatial row × Spectral

Gray-level video sequences Spatial column × Spatial row × Time

Color video sequences Column × Row × Color × Time

Applications for compression and recognition/classification

Medical image analysis.

3D object recognition.

Surveillance: Biometrics (Face recognition); hyperspectral surveillance
(military).

Human-computer-interaction (HCI): space-time analysis of video
sequences for gesture and activity recognition.

Hyperspectral imaging used in agriculture, food industry,
environment...
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2. Tensor models/decompositions Background on tensors

Notations, definitions, and tensor operations

Scalars, column vectors, matrices, and tensors of order higher than two:

a, a,A,A

◦: vector outer product (also called tensor product).

�: Hadamard (element-wise) product.

�: Khatri-Rao (column-wise Kronecker) product.

⊗: Kronecker product.

×n: Mode-n product of a tensor X with a matrix A.
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2. Tensor models/decompositions Background on tensors

Definitions

Nth-order tensor X ∈ CI1×···×IN = multidimensional array of
data/measurements.

Order N = number of indices that characterize each element xi1,··· ,iN .

Each index in (in = 1, · · · , In, for n = 1, · · · ,N) is associated with a way,
also called a mode, and In = mode-n dimension.

Particular cases:

Cases N Elements Coefficients

Vectors 1 x ∈ CI×1 xi

Matrices 2 X ∈ CI×J xij

Three-way arrays 3 X ∈ CI×J×K xijk
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2. Tensor models/decompositions Background on tensors

Matrix slices of a third-order tensor (horizontal, lateral,frontal slices)
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2. Tensor models/decompositions Background on tensors

Vector slices of a third-order tensor X ∈ CI×J×K

By fixing two indices:

Columns: j and k fixed ⇒ JK columns x.jk ∈ CI×1.

Rows: i and k fixed ⇒ IK rows xi .k ∈ CJ×1.

Tubes: i and j fixed ⇒ IJ tubes xij . ∈ CK×1.
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2. Tensor models/decompositions Background on tensors

Matrix slices of a third-order tensor

Matrix slices of X ∈ CI×J×K (horizontal, lateral, frontal slices):

By fixing one index

Xi .. ∈ CJ×K ,X.j . ∈ CK×I ,X..k ∈ CI×J .

Horizontal slices

Xi .. =


xi11 xi12 · · · xi1K

xi21 xi22 · · · xi2K
...

...
. . .

...
xiJ1 xiJ2 · · · xiJK

 ∈ CJ×K .
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2. Tensor models/decompositions Background on tensors

Matrix slices of a third-order tensor

Lateral slices

X.j . =


x1j1 x2j1 · · · xIj1

x1j2 x2j2 · · · xIj2
...

...
. . .

...
x1jK x2jK · · · xIjK

 ∈ CK×I .

Frontal slices

X..k =


x11k x12k · · · x1Jk

x21k x22k · · · x2Jk
...

...
. . .

...
xI 1k xI 2k · · · xIJk

 ∈ CI×J .
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2. Tensor models/decompositions Background on tensors

Matricization of a third-order tensor

Matricization = transformation of a tensor under the form of a matrix

Two different forms of matricization, called flat and tall matrix unfoldings:

Flat unfoldings: XI×JK ,XI×KJ ,XJ×KI ,XJ×IK ,XK×IJ ,XK×JI

Tall unfoldings: XJK×I ,XKJ×I ,XKI×J ,XIK×J ,XIJ×K ,XJI×K

XI×KJ = [X..1 · · ·X..K ] = XT
KJ×I

XJ×IK = [X1.. · · ·XI ..] = XT
IK×J

XK×JI = [X.1. · · ·X.J.] = XT
JI×K

Convention: order of dimensions in a product IJK is linked to order of
variation of the corresponding indices (i , j , k).
XJK×I ∈ CJK×I ⇒ combination of modes (j ,k) such that j varies more
slowly than k ⇒ xi ,j ,k = [XJK×I ](j−1)K+k,i = [XK×IJ ]k,(i−1)J+j .

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 39 / 129



2. Tensor models/decompositions Background on tensors

Matricization of an Nth-order tensor X ∈ CI1×···×IN

(Favier, de Almeida; EURASIP JASP’2014)

Partitioning of {1, . . . ,N} into two ordered subsets S1 and S2, constituted
of p ∈ [1,N − 1] and N − p indices, respectively.

General matricization formula

XS1;S2 =

I1∑
i1=1

· · ·
IN∑

iN =1

xi1,··· ,iN

(
⊗

n∈S1

e
(In)
in

)(
⊗

n∈S2

e
(In)
in

)T

∈ CJ1×J2

with Jn1 =
∏

In
n∈Sn1

, for n1 = 1 and 2.

S1 ⇔ Combination of modes to form the rows of XS1;S2

S2 ⇔ Combination of modes to form the columns of XS1;S2

e
(In)
in

= in
th canonical vector of the Euclidean space RIn .
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2. Tensor models/decompositions Background on tensors

Mode-n matrix unfolding of X ∈ CI1×···×IN

Flat matrix unfolding XS1;S2 with
S1 = {n} and S2 = {n + 1, · · · ,N, 1, · · · , n − 1}

Xn = XIn×In+1···IN I1···In−1

=

I1∑
i1=1

· · ·
IN∑

iN =1

xi1,··· ,iN e
(In)
in

(
⊗

n∈S2

e
(In)
in

)T

∈ CIn×In+1···IN I1···In−1 .

Column vectors of Xn = mode-n vectors of X , and rank of Xn, i.e. the
dimension of the mode-n linear space spanned by the mode-n vectors, is

called mode-n rank of X , denoted by Rn = rankn(X ).

N-uplet (R1, · · · ,RN) = multilinear rank (mrank) of X .
In general, the mode-n ranks Rn are different, unlike the matrix case

(R1 = R2).
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2. Tensor models/decompositions Background on tensors

Mode-n product (1)

Mode-n product of a tensor X ∈ CI1×···×IN with a matrix A ∈ CJn×In

denoted X×nA, gives the tensor Y of order N and dimensions
I1 × · · · × In−1×Jn × In+1 × · · · × IN , such as

yi1,··· ,in−1,jn,in+1,··· ,iN =
In∑

in=1

ajn,in xi1,··· ,in−1,in,in+1,··· ,iN

Yn = AXn.

where Xn ∈ CIn×In+1···IN I1···In−1 = Mode-n matrix unfolding of X .

Property: for A ∈ CJn×In and B ∈ CKn×Jn .

X×nA×nB = X×n(BA) ∈ CI1×···×In−1×Kn×In+1×···×IN
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2. Tensor models/decompositions Background on tensors

Mode-n product (2)

Y = X×nA ⇔ Yn = AXn

Interpretation as a linear transformation of the mode-n space of X , with
the matrix A

Generalization

Y = X×1A(1)×2A(2) · · · ×NA(N)

= X×N
n=1A(n)

Multilinear (N-linear) transformation of X
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2. Tensor models/decompositions Background on tensors

Rank-one tensor

Rank-one matrix

X = u ◦ v = uvT ∈ CI×J ⇔ xij = ui vj

Rank-one tensor of third-order

X = u ◦ v ◦w ∈ CI×J×K ⇔ xijk = ui vj wk ,

Rank-one tensor of order N = outer product of N vectors

X = u(1) ◦ u(2) ◦ · · · ◦ u(N) =
N◦

n=1
u(n) ∈ CI1×···×IN

xi1,··· ,iN =

(
N◦

n=1
u(n)

)
i1,··· ,iN

=
N∏

n=1

u
(n)
in
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2. Tensor models/decompositions Tensor models/decompositions

Generalization of matrix decompositions

Matrix BD (bilinear decompos.) → PARAFAC/CANDECOMP models
also called canonical polyadic decomposition (CPD)

Harshman 1970; Carroll and Chang 1970; Hitchcock, 1927

Matrix SVD → HOSVD/Tucker models
Tucker 1966; De Lathauwer 1997
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2. Tensor models/decompositions Tensor models/decompositions

Constrained tensor models

PARALIND/CONFAC models
Bro, Harshman, Sidiropoulos, 2005; de Almeida, Favier, Motta; IEEE TSP’2008

PARATUCK / Generalized PARATUCK models
Harshman, Lundy; 1996

Favier et al.; SP’2012; Favier, de Almeida; EURASIP JASP’2014

Tensor trains (TT)
Oseledets, 2011

Special cases
Tucker trains (also called Nested Tucker (NT) models)

Favier et al., SP’2016

Nested PARAFAC models
de Almeida, Favier; IEEE SPL’2013
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC models/CPD (1)
Case of third-order tensors X ∈ CI×J×K (Harshman, 1970)

PARAFAC = Sum of R rank-one tensors (triadic decompositions)
.

xijk =
R∑

r=1

air bjr ckr

X =
R∑

r=1

A.r ◦ B.r ◦ C.r = IR×1A×2B×3C = ‖A,B,C‖

Matrix factors: A ∈ CI×R ,B ∈ CJ×R ,C ∈ CK×R
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2. Tensor models/decompositions Tensor models/decompositions

Variants of third-order PARAFAC models (2)

Models Ref xi ,j ,k Applications

CP Harshman 1970
R∑

r=1
air bjr ckr Many fieds

INDSCAL Carroll et al. 1970
R∑

r=1
air ajr ckr Psychometrics

Sym. CP Comon et al. 2008
R∑

r=1
air ajr akr Volterra models

DSym CP Favier et al. 2012
R∑

r=1
air ajr ākr NL com. chan.

ShiftCP Morup et al. 2011
R∑

r=1
air bj−tk ,r ckr Neuroimaging

Harshman et al., 2003

ConvCP Morup et al. 2011
R∑

r=1

T∑
t=1

air bj−t,r ck,r ,t Neuroimaging
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC models (3)
Uniqueness issue

Case of a third-order tensor X ∈ CI×J×K

PARAFAC decomposition ‖A,B,C‖ of rank R

Kruskal’s condition (Kruskal; 1977):

kA + kB + kC ≥ 2R + 2

where kA denotes the k-rank of A, i.e. the largest integer such that any
set of kA columns of A is linearly independent.

Remarks

This condition is sufficient but not necessary for essential uniqueness
(i.e. for column permutation and scaling ambiguities).

This condition does not hold when R = 1. It is also necessary for
R = 2 and R = 3 but not for R > 3 (ten Berge, Sidiropoulos; 2002).
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC models (4)
Uniqueness issue

Case of an Nth order PARAFAC model

xi1,··· ,iN =
R∑

r=1

N∏
n=1

a
(n)
in,r

X = IN,R×N
n=1A(n)

Sufficient uniqueness condition (Sidiropoulos, Bro; 2000)

N∑
n=1

kA(n) ≥ 2R + N − 1

Generic case (full rank factor matrices; kA(n) = rA(n) = min(In,R)):

N∑
n=1

min(In,R) ≥ 2R + N − 1
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC models (5)
Matricization

Third-order tensors

XIJ×K = (A � B)CT

XJK×I = (B � C)AT

XKI×J = (C � A)BT

Trilinear model w.r.t. (A,B,C)

Nth-order tensors

XS1;S2 =

(
�

n∈S1

A(n)

)(
�

n∈S2

A(n)

)T

.
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC model estimation (6)
Alternating Least Squares (ALS) algorithm

Identification of a PARAFAC model = estimation of (A,B,C) from
the data tensor X , by minimizing

min
A,B,C

∥∥∥XJK×I − (B � C)AT
∥∥∥2

F
⇒ NL optimization.

Alternating minimization of three conditional LS cost functions:

min
A

∥∥∥XJK×I − (Bt−1 � Ct−1)AT
∥∥∥2

F
⇒ At

min
B

∥∥∥XKI×J − (Ct−1 � At)BT
∥∥∥2

F
⇒ Bt

min
C

∥∥∥XIJ×K − (At � Bt)CT
∥∥∥2

F
⇒ Ct .

I Trilinear LS problem requiring a nonlinear optimization method
transformed into three linear LS problems successively solved by means
of the standard LS solution.
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC model estimation (7)
ALS algorithm

ALS algorithm

1 Initialize B0 and C0 and set t = 0.

2 Increment t and compute:

I (At)T = (Bt−1 � Ct−1)†XJK×I .
I (Bt)T = (Ct−1 � At)†XKI×J .
I (Ct)T = (At � Bt)†XIJ×K .

3 Return to step 2 until convergence.
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2. Tensor models/decompositions Tensor models/decompositions

PARAFAC model estimation (8)
ALS algorithm

Advantages:
I Simplicity.
I Easy extension to higher-order PARAFAC models and other tensor

models.

Drawbacks:
I Slow convergence (iterative algorithm).
I Convergence towards the global minimum is not guaranteed, depending

on the initialization.

Solutions exist for improving the convergence speed:
Levenberg-Marquardt, conjugate gradient, enhanced line search (ELS)
methods.

In certain applications : certain factors are known (partial estimation).
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2. Tensor models/decompositions Tensor models/decompositions

Closed form algorithm (Kibangou, Favier; EUSIPCO’2009)
Assumption: C known and full-column rank ⇒ CT right invertible

XIJ×K = (A � B)CT

⇓
W = A � B = XIJ×K (CT )† ∈ CIJ×R

⇓
W.r = A.r ⊗ B.r ∈ CIJ×1; r = 1, · · · ,R

⇓ (vec(uvT ) = v ⊗ u ⇔ unvec(v ⊗ u) = uvT )

F(r) = unvecJ×I (W.r ) = unvecJ×I (A.r ⊗ B.r ) = B.r AT
.r

⇓ SVD of a rank-one matrix

F(r) = σ1u1vH
1

⇓
A.r =

√
σ1v∗1 ; B.r =

√
σ1u1

⇒ Computation of R SVDs to estimate (A,B).
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Tucker models (1)
Case of third-order tensors X ∈ CI×J×K (Tucker, 1966)

xijk =
P∑

p=1

Q∑
q=1

S∑
s=1

gpqsaipbjqcks

X =
P∑

p=1

Q∑
q=1

S∑
s=1

gpqs A.p ◦ B.q ◦ C.r

= G×1A×2B×3C

Core tensor G ∈ CP×Q×S ; Matrix factors A ∈ CI×P ,B ∈ CJ×Q ,C ∈ CK×S

Special cases:

HOSVD ⇒ A ∈ CI×I , B ∈ CJ×J and C ∈ CK×K unitary (orthog.).
Truncated HOSVD ⇒ A ∈ CI×P , B ∈ CJ×Q and C ∈ CK×S

column-orthonormal.
PARAFAC ⇒ G = I; P = Q = S = R.
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2. Tensor models/decompositions Tensor models/decompositions

Tucker model of third-order tensors X ∈ CI×J×K (2)
Matricization

Matrix representations

XIJ×K = (A⊗ B)GPQ×S CT

XJK×I = (B⊗ C)GQS×PAT

XKI×J = (C⊗ A)GSP×QBT

Quadrilinear model w.r.t. (G,A,B,C)
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2. Tensor models/decompositions Tensor models/decompositions

Tucker model estimation (3)

ALS algorithm

Closed-form algorithm (HOSVD)

Closed-form algorithm based on Kronecker product approximation,
when the core tensor and one factor matrix are known.
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2. Tensor models/decompositions Tensor models/decompositions

Tucker model estimation (4)

For orthogonal factor matrices (A† = (AT A)−1AT = AT ):

XIJ×K = (A⊗ B)GPQ×S CT

⇓
GPQ×S = (A⊗ B)†XIJ×K (CT)†

= (A⊗ B)T XIJ×K C

HOSVD

1. A equals first P left singular vectors of XI×JK .

2. B equals first Q left singular vectors of XJ×KI .

3. C equals first S left singular vectors of XK×IJ .

4. GPQ×S = (A⊗ B)T XIJ×K C.
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2. Tensor models/decompositions Tensor models/decompositions

Tucker models - Case of N th-order tensor X ∈ CI1×···×IN (5)

xi1,··· ,iN =

R1∑
r1=1

· · ·
RN∑

rN =1

gr1,··· ,rN

N∏
n=1

a
(n)
in,rn

Writing in terms of vector outer products:

X =

R1∑
r1=1

· · ·
RN∑

rN =1

gr1,··· ,rN

N◦
n=1

A
(n)
.rn

⇔ Decompos. into a weighted sum of
N∏

n=1
Rn outer products of N vectors.

Writing in terms of mode-n products:

X = G×N
n=1A(n)

⇒ Interpretation as mode-n product-based transformations of the core
tensor, i.e. N linear transformations defined by the matrices A(n) ∈ CIn×Rn

applied to each mode-n vector space of G ∈ CR1×···×RN .
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2. Tensor models/decompositions Tensor models/decompositions

Tucker models (6)

Uniqueness issue

Generally, Tucker models are not essentially unique: their matrix
factors can be only determined up to nonsingular transformations
characterized by nonsingular matrices.

Uniqueness results from the knowledge of the core tensor.

Uniqueness can be obtained by imposing some constrained structure
on the core tensor or the matrix factors.
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2. Tensor models/decompositions Tensor models/decompositions

Tucker-(N1,N) models of an N th-order tensor
X ∈ CI1×···×IN , with N > N1

(Favier, de Almeida; EURASIP JASP’2014)

N − N1 factor matrices are equal to identity matrices. For instance,
assuming that A(n) = IIn , which implies Rn = In, for n = N1 + 1, · · · ,N:

xi1,··· ,iN =

R1∑
r1=1

· · ·
RN1∑

rN1
=1

gr1,··· ,rN1
,iN1+1,··· ,iN

N1∏
n=1

a
(n)
in,rn

X = G×1A(1)×2 · · · ×N1A(N1)×N1+1IIN1+1
· · · ×N IIN

= G ×N1
n=1A(n).
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2. Tensor models/decompositions Tensor models/decompositions

Tucker-(2,3) models
Case of third-order tensors

Tucker-(2,3) models, also called Tucker-2 models

Third-order tensor X ∈ CI×J×K : core tensor G ∈ CP×Q×S and matrix
factors A ∈ CI×P ,B ∈ CJ×Q ,C = IK , which implies S = K

xijk =
P∑

p=1

Q∑
q=1

gpqkaipbjq

X = G×1A×2B×3IK = G×1A×2B

XIJ×K = (A⊗ B)GPQ×K
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Constrained tensor models
CONFAC models (1)
(de Almeida, Favier; IEEE TSP’2008)

Tucker model with PARAFAC core tensor:

X = G×1A×2B×3C

G = IN ×1Ψ×2Φ×3Ω

⇓
X = IN ×1(AΨ)×2(BΦ)×3(CΩ)

m

Constrained PARAFAC model (PARAFAC with Constrained Factors)

Constraint matrices Ψ ∈ RP×N , Φ ∈ RQ×N and Ω ∈ RR×N whose
columns are chosen as canonical vectors of the Euclidean spaces RP , RQ

and RR , respectively, with N ≥ max(P,Q,R).
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2. Tensor models/decompositions Tensor models/decompositions

Third-order CONFAC models (2)

CONFAC(3) = Tucker(3) model with PARAFAC(3) core tensor:

X
= I

K

G

P

Q

J

R

P

Q

R

A B

C

=
Ψ.1

...Φ.1

Ψ.Ν

Φ.Ν

Ω.1 Ω.Ν

G

+ +
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CONFAC models (3)

In a telecommunications context, constraint matrices
(Ψ ∈ RP×N ,Φ ∈ RQ×N ,Ω ∈ RR×N), are used for allocating (P,Q,R)
resources, like data streams, codes, and transmit antennas, to the N
components that form the signal to be transmitted.

xi ,j ,k =
P∑

p=1

Q∑
q=1

R∑
r=1

( N∑
n=1

ψp,nφq,nωr ,n

)
ai ,pbj ,qck,r

=
N∑

n=1

(
P∑

p=1

ai ,pψp,n)(
Q∑

q=1

bj ,qφq,n)(
R∑

r=1

ck,rωr ,n)
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2. Tensor models/decompositions Tensor models/decompositions

Constrained tensor models
PARATUCK models (1)

PARATUCK-2 (or PARATUCK-(2,3)) model (Harshman, Lundy; 1996)

xi ,j ,k =
P∑

p=1

Q∑
q=1

(wp,qψp,kφq,k )ai ,pbj ,q

=
P∑

p=1

Q∑
q=1

gp,q,k ai ,pbj ,q ⇔ Tucker-(2,3) model

⇓

gp,q,k = wp,qcp,q,k with cp,q,r =
K∑

k=1

ψp,kφq,kδr ,k = ψp,kφq,k

⇓
C = PARAFAC(‖Ψ,Φ, IK‖) ⇒ PARATUCK-(2,3).
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Constrained tensor models
PARATUCK-2 models (2)

xi ,j ,k =
P∑

p=1

Q∑
q=1

(wp,qψp,kφq,k )ai ,pbj ,q

=
P∑

p=1

Q∑
q=1

wp,q(ai ,pψp,k )(bj ,qφq,k )

Two interpretations of Ψ and Φ: Interaction or allocation matrices:

- Interactions between columns p and q of the factor matrices A and B
along the mode-k of X , with the weights wp,q.

- Allocation of resources p and q to the mode-k of X : allocation tensor
C ∈ CP×Q×K such as cp,q,k = ψp,kφq,k ; W ∈ CP×Q = code matrix.
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Applications of PARATUCK-2 models (3)

Applications in data analysis (Bro, 1998; Kiers et Smilde, 1998)

First application in SP (Kibangou, Favier; EUSIPCO’2007)
”Blind joint identification and equalization of Wiener-Hammerstein

communication channels using PARATUCK-2 tensor decomposition”.
⇒ Structured PARATUCK-2 model with Toeplitz and Vandermonde factor

matrices (A,B).

First application in the context of wireless communication systems

(de Almeida, Favier; SP’2009)
”Space-time spreading-multiplexing for MIMO wireless communication

systems using PARATUCK-2 tensor model”:

xk,n,p =
M∑

m=1

R∑
r=1

wm,r︸︷︷︸
code

hk,m︸︷︷︸
channel

sn,r︸︷︷︸
symbol

φp,m ψp,r︸ ︷︷ ︸
allocations
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Constrained tensor models
PARATUCK-(N1,N) models (4)

PARATUCK-(2,4) model of fourth-order tensors
TST coding system (Favier et al., EUSIPCO’2011)

xi ,j ,k,l =
P∑

p=1

Q∑
q=1

wp,q,l ai ,pbj ,qψp,kφq,k

PARATUCK-(N1,N) (Favier et al., SP’2012).
Tucker-(N1,N) model with PARAFAC core

X ∈ CI1×···×IN , with N > N1

xi1,··· ,iN1+1,··· ,iN =

R1∑
r1=1

· · ·
RN1∑

rN1
=1

cr1,··· ,rN1
,iN1+2,··· ,iN

N1∏
n=1

a
(n)
in,rn

φ
(n)
rn,iN1+1

a
(n)
in,rn

, and φ
(n)
rn,iN1+1

are entries of the factor matrix A(n) ∈ CIn×Rn and of the allocation

matrix Φ(n) ∈ CRn×IN1+1 , ∀n = 1, · · · ,N1, respectively.
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Constrained tensor models
Generalized PARATUCK models (5)
(Favier, de Almeida; IEEE TSP’2014)

PARATUCK-(N1,N) models with tensor factors A(n), and allocation
tensor C

xi1,··· ,iN =
R1∑

r1=1
· · ·

RN1∑
rN1

=1
wr1,··· ,rN1

,S

N1∏
n=1

a
(n)
in,rn,Sn

cr1,··· ,rN1
,T

{r1, · · · , rN1}: input (or resource) modes,
{i1, · · · , iN}: output (or diversity) modes,

S , T , and Sn ⊆ S
⋃

T (for n = 1, · · · ,N1): subsets of {iN1+1, · · · , iN},

a
(n)
in,rn,Sn

, cr1,··· ,rN1
,T (equal to 0 or 1), and wr1,··· ,rN1

,S are entries of A(n), of
C, and of the core/code tensor W, respectively.
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Tensor train decompositions (TTD) (Oseledets, 2011) (1)
Case of an N th-order tensor X ∈ CI1×···×IN

Objective: Approximation of an Nth-order tensor whose parametric
complexity is free from exponential dependence on N.

�����

)1(
A ��(1) ��(2)

��(N-2) )1( −N
A

=
�

Concatenation of third-order tensors C(n) ∈ CRn×In+1×Rn+1 , n = 1, ...,N − 2
and two matrix factors A(1) ∈ CI1×R1 , A(N−1) ∈ CIN×RN−1

xi1,i2,··· ,iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

a
(1)
i1,r1

c
(1)
r1,i2,r2

c
(2)
r2,i3,r3

· · · c(N−2)
rN−2,iN−1,rN−1

a
(N−1)
iN ,rN−1

Rn (n = 1, · · · ,N) = TT ranks, also called compression ranks.
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Tensor train (TT) decompositions (2)
Parametric complexity

Other writing as a product of a row vector, (N − 2) matrices, and a
column vector:

xi1,i2,··· ,iN = A
(1)
i1,.

C
(1)
.,i2,.
· · ·C(N−2)

.,iN−1,.
(A

(N−1)
iN ,.

)T

A
(1)
i1,.
∈ C1×R1 , A

(N−1)
iN ,.

∈ C1×RN−1 , C
(n−1)
.,in,.

∈ CRn−1×Rn , n = 2, · · · ,N − 1

Parametric complexity of the TT representation of X
when In = I and Rn = R, ∀n:

Total number of entries of TT = 2RI + (N − 2)IR2 instead of I N for X .
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Tucker train/Nested Tucker decompositions (NTD) (1)
(Favier et al., SP 2016)

X ∈ CI1×···×IN

�����

)1(
A

��(1) )2(
A ��(2)

��(N-2) )1( −N
A

=
�

)2( −N
A

Each third-order tensor C(n) ∈ CR2n−1×In+1×R2n , n ∈ [1,N − 2], can be
considered as the core tensor of a Tucker-(2,3) model having
(A(n), IIn+1 ,A

(n+1)) as matrix factors, with:

A(n+1) ∈ CR2n×R2n+1 , n ∈ [1,N − 3],A(1) ∈ CI1×R1 ,A(N−1) ∈ CIN×R2N−4

Two successive third-order Tucker-(2,3) models in the train have a matrix
factor in common ⇒ NTD

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 74 / 129



2. Tensor models/decompositions Tensor models/decompositions

NTD(4) for a fourth-order tensor X ∈ CI1×I2×I3×I4 (2)

B
C (1) C (2)U

D
=

X

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

bi1,r1c
(1)
r1,i2,r2

ur2,r3︸ ︷︷ ︸
Tucker-(2,3)

c
(2)
r3,i3,r4

di4,r4

=

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

bi1,r1c
(1)
r1,i2,r2

ur2,r3c
(2)
r3,i3,r4

di4,r4︸ ︷︷ ︸
Tucker-(2,3)
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2. Tensor models/decompositions Tensor models/decompositions

Nested PARAFAC model of a fourth-order tensor
X ∈ CI1×I2×I3×I4 (1)
(de Almeida, Favier; IEEE SPL’2013)

Special case of nested Tucker model with the following correspondences:

(r1, r2, r3, r4) ↔ (r1, r1, r2, r2)

(B, C(1),U, C(2),D) ↔ (A,B,U,C,D)

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

ai1,r1bi2,r1ur1,r2︸ ︷︷ ︸
PARAFAC

ci3,r2di4,r2

=

R1∑
r1=1

R2∑
r2=1

ai1,r1bi2,r1 ur1,r2ci3,r2di4,r2︸ ︷︷ ︸
PARAFAC
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2. Tensor models/decompositions Tensor models/decompositions

Nested PARAFAC (2)

Define the third-order tensors W ∈ CI3×I4×R1 and Z ∈ CI1×I2×R2 such as

wi3,i4,r1 =

R2∑
r2=1

ci3,r2di4,r2ur1,r2

zi1,i2,r2 =

R1∑
r1=1

ai1,r1bi2,r1ur1,r2

or equivalently in terms of mode-n products

W = I3,R2 ×1 C×2 D×3 U

Z = I3,R1 ×1 A×2 B×3 UT

⇒ W and Z satisfy two PARAFAC models.
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2. Tensor models/decompositions Tensor models/decompositions

Nested PARAFAC (3)

Combining the last two modes and the first two ones of X , by means of
k1 = (i4− 1)I3 + i3 and k2 = (i2− 1)I1 + i1, the 4th-order nested PARAFAC
model can be rewritten as two third-order PARAFAC models of the tensors
X (1) ∈ CI1×I2×K1 and X (2) ∈ CK2×I3×I4 , where K1 = I4I3 and K2 = I2I1

x
(1)
i1,i2,k1

=

R1∑
r1=1

ai1,r1bi2,r1wk1,r1

x
(2)
k2,i3,i4

=

R2∑
r2=1

zk2,r2ci3,r2di4,r2

X (1) and X (2) are two contracted forms of X , which satisfy two PARAFAC
models ‖A,B,WK1×R1‖ and ‖ZK2×R2 ,C,D‖ where WK1×R1 and ZK2×R2

are unfoldings of W and Z which satisfy their proper PARAFAC models.
The matrices (A,B,U,C,D) of the nested PARAFAC model can be
estimated using a five-step ALS algorithm, or two stages of BALS algo.
If some factors are known ⇒ closed-form solution.
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2. Tensor models/decompositions Tensor models/decompositions

Parametric complexities of tensor models

Data tensor: X ∈ CI1×···×IN ⇒
∏N

n=1 In ' I N

PARAFAC(A(n) ∈ CIn×R) ⇒ R
∑N

n=1 In ' NRI

Tucker(G ∈ CR1×···×RN ; A(n) ∈ CIn×Rn )

⇒
∏N

n=1 Rn +
∑N

n=1 InRn ' RN + NRI

Tensor train ⇒ I1R1 + INRN−1 +
∑N−2

n=1 RnIn+1Rn+1

' 2RI + (N − 2)IR2

Tucker train
⇒ I1R1 + INR2N−4 +

∑N−2
n=1 R2n−1In+1R2n +

∑N−3
n=1 R2nR2n+1

' 2RI + (N − 2)IR2 + (N − 3)R2
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3. Tensor approaches for designing wireless communication
systems

PART 3 : TENSOR-BASED MIMO COMMUNICATION SYSTEMS

1 Point to point communication systems

2 Relaying communication systems

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 80 / 129



3. Tensor approaches for designing wireless communication
systems

Tensors of signals received by three communication systems

(CDMA, Oversampled, OFDM)

X ∈ CM×N×J or ∈ CM×N×P or ∈ CM×N×F : received signals tensors
M receive antennas ; N symbol periods ; F subcarriers
P: oversampling rate ; J: spreading code length.
Modes: receive antenna (m), symbol period (n),
oversampling period (p), chip (j), frequency (f ).

Unified Block constrained PARAFAC modeling (de Almeida, Favier; SP’2007)
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA (code division multiple access) system (1)
(Sidiropoulos, Giannakis, Bro, IEEE TSP 2000)

Q users, K Rx antennas, N symbol periods, J chips (spreading length)

n-th coded (spread) symbol of user q

uq,n,j = sn,qwj ,q

sn,q= symbol transmitted by the q-th user, at the n-th symbol period.

wj ,q= j-th code used for spreading each symbol sn,q of the q-th user.

⇒ J repetitions of each symbol sn,q.
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA system (2)

Assumption: Multiuser (Q); Rayleigh flat fading channel

hk,q= fading coefficient of the channel between
q-th user and k-th receive antenna ⇒ SIMO system/user.

Signals received by antenna k, during symbol period n

xk,n,j =
Q∑

q=1

hk,quq,n,j =
Q∑

q=1

hk,qsn,qwj ,q ⇒ X ∈ CK×N×J

⇓
PARAFAC model

with factors H ∈ CK×Q ,S ∈ CN×Q ,C ∈ CJ×Q

Channel, Symbol, Code matrices

Three diversities: space (K ), time (N), code (J).
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA system (3)

Joint channel/symbols estimation

X∈ CK×N×J

Code known at the receiver ⇒ BALS receiver

XKJ×N = (H � C)ST ⇒ ŜT = (H � C)†XKJ×N

XNJ×K = (S � C)HT ⇒ ĤT = (S � C)†XNJ×K
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA system (4)

Uniqueness issue

Kruskal’s condition:

kH + kS + kC ≥ 2Q + 2 (1)

Assumptions:

User-wise independent channel gains ⇒ H is full k-rank with
probability one.

S is full k-rank (if N is large enough).

C is full k-rank (by construction).

⇒ min(K ,Q) + min(N,Q) + min(J,Q) ≥ 2Q + 2 (2)
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA system (5)

Practical consequences:

If N and J ≥ Q: K ≥ 2 antennas are sufficient ⇒ possibility of more
users than sensors.

If N and K ≥ Q: J ≥ 2 chips are sufficient.

If some or all of H, S,C are flat instead of tall, condition (2) may still
be satisfied. Example: K = N = J = 4,Q = 5.
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3. Tensor approaches for designing wireless communication
systems PARAFAC-CDMA system

PARAFAC-CDMA system (6)

Properties

Deterministic approach for system parameters estimation using
received signals only.

Possibility to have more users (Q) than sensors (K ), and/or less
spreading (J) than users.

No need of finite-alphabet, statistical independence, and
constant-modulus assumptions.

Code matrix C can be estimated ⇒ Trilinear ALS algorithm.
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3. Tensor approaches for designing wireless communication
systems PARAFAC-KRST coding system

Khatri-Rao space-time coding (1) (Sidiropoulos et al., 2002)

M transmit antennas, two coding matrices Θ ∈ CM×M and W ∈ CJ×M ,
symbol matrix S ∈ CN×M , N symbol periods, J time blocks (temporal repetitions).

Precoded signal vn,m =
M∑

l=1

sn,lθm,l which combines M symbols of sn. onto

each transmit antenna m + Time spreading ⇒ um,n,j = vn,mwj ,m .

⇒ Third-order tensor of coded signals: U ∈ CM×N×J

UNJ×M =

 UT
.1.
...

UT
.N.

 =

 WD1(V)
...

WDN(V)

 = V �W

= SΘT︸ ︷︷ ︸
space-precoding

� W︸︷︷︸
time-postcoding

⇒ Khatri-Rao space-time (KRST) coding.
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3. Tensor approaches for designing wireless communication
systems PARAFAC-KRST coding system

Khatri-Rao space-time coding (2)

Signal received by antenna k , during symbol period n of time block j :

xk,n,j =
M∑

m=1

hk,mum,n,j =
M∑

m=1

M∑
l=1

hk,msn,lθm,l wj ,m

=
M∑

m=1

hk,mvn,mwj ,m

⇒ Third-order PARAFAC model (H,V,W)

Known code matrix W ⇒ Estimation of (H,V) by means of BALS
algorithm.

Drawback: Decoding to estimate S from the estimate of V = SΘT .
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (1)
(Favier et al.; SP 2012)

• MIMO communication system with M transmit antennas and K receive antennas.

• Transmission of R data streams composed of N symbols each.

• Transmission decomposed into P time blocks formed of N time slots each.
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (2)

Tensor of transmitted signals (R data streams of N symbols)

ST coded signal transmitted from the transmit antenna m, during the time slot n of
block p, and associated with the chip j :

um,n,p,j =
R∑

r=1
wm,r,j︸ ︷︷ ︸
code

sn,r︸︷︷︸
symbol

φp,m ψp,r︸ ︷︷ ︸
allocations

↓ ↓ ↓
W ∈ CM×R×J S ∈ CN×R Φ ∈ RP×M ,Ψ ∈ RP×R


sn,r = nth symbol of r th data stream.

ψp,r = 1⇔ data stream r allocated to block p.

φp,m = 1⇔ transmit antenna m allocated to block p.

⇒ sn,r transmitted using antenna m, during time block p.
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (3)

Tensor of received signals

• Rayleigh flat fading propagation channel H ∈ CK×M with i.i.d. CN(0,1) entries.

• Channel assumed to be constant during at least P time blocks.

Signal received by antenna k , associated with chip j of symbol period n of
time block p:

xk,n,p,j =
M∑

m=1

hk,m um,n,p,j

=
M∑

m=1

R∑
r=1

wm,r,j hk,m sn,r φp,m ψp,r

⇒X ∈ CK×N×P×J satisfies a PARATUCK-(2,4) model

X..pj = HG..pj ST ; G..pj = Dp(Φ)W..j Dp(Ψ)
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (4)

Semi-blind joint symbol and channel estimation
Matrix representations of the received signal tensor

XJPK×N =



X··1,1

.

.

.
X··P,1

.

.

.
X··1,J

.

.

.
X··P,J


, GJPM×R =



G··1,1

.

.

.
G··P,1

.

.

.
G··1,J

.

.

.
G··P,J


, XJPN×K =



XT
··1,1

.

.

.

XT
··P,1

.

.

.

XT
··1,J

.

.

.

XT
··P,J



, GJPR×M =



GT
··1,1

.

.

.

GT
··P,1

.

.

.

GT
··1,J

.

.

.

GT
··P,J


∈ CJPK×N ∈ CJPM×R ∈ CJPN×K ∈ CJPR×M

XJPK×N = (IJP ⊗H) GJPM×R ST ⇒ ST = [(IJP ⊗H) GJPM×R ]†XJPK×N (3)

XJPN×K = (IJP ⊗ S) GJPR×M HT ⇒ HT = [(IJP ⊗ S) GJPR×M ]†XJPN×K (4)

S and H are estimated by alternately solving (3)-(4) in the LS sense w.r.t. one matrix
conditionally to the knowledge of previously estimated value of the other matrix (BALS algo).
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (5)

Advantages

Tensor coding and resource allocation (Tx antennas and data streams
to time blocks).

Three diversities are exploited: space (K ), time (P), chip (J)
⇒ Performance improvement w.r.t. the PARAFAC-CDMA system
due to the P block repetition of each transmitted data stream, and
multiple transmit antennas (M).

Transmission rate: R
P log2(µ) bits/channel use, where µ is the

constellation cardinality

Scalar scaling ambiguity ⇒ a single pilot symbol is sufficient ⇒ No
training sequence is needed for acquiring CSI (channel state
information).

Semi-blind joint channel/symbol estimation.
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3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (6)
Simulation results with QPSK constellation
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Figure: Impact of the spreading length: BER versus SNR.

BER is improved when J is increased (increase of spreading length).

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 95 / 129



3. Tensor approaches for designing wireless communication
systems PARATUCK-Tensor space-time (TST) coding system

PARATUCK-TST coding system (7)
Simulation results
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Figure: Impact of P and J: BER versus SNR.

BER ↘ when P and/or J ↗ (diversity gain proportional to KPJ).

Gérard Favier TENSOR DECOMPOSITIONS WITH APPLICATIONS TO MIMO WIRELESS COMMUNICATION SYSTEMSJune 2017 96 / 129



3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

Tensor space/time/frequency (TSTF) coding system (1)
(Favier, de Almeida; IEEE TSP’2014)

MIMO system with M transmit and K receive antennas.

Transmission decomposed into P time blocks of N symbol periods, each
one being composed of J chips.

During each time block p, the transceiver uses F subcarriers to send R
data streams containing N information symbols each, which form the
symbol matrix S ∈ CN×R with entries sn,r , n=1, ...,N; r=1, ...,R.

⇒ CDMA-OFDM system.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (2)

Transmitter characterized by two tensors: a fifth-order coding tensor
W ∈ CM×R×F×P×J and a fourth-order resource allocation tensor
C ∈ RM×R×F×P composed uniquely of 1’s and 0’s.

cm,r ,f ,p =1 ⇒ data stream r transmitted using transmit antenna m and
subcarrier f , during time-block p.

Transmission of a linear combination of R coded signals:

um,n,f ,p,j =
R∑

r=1

wm,r ,f ,p,j︸ ︷︷ ︸
code

sn,r cm,r ,f ,p︸ ︷︷ ︸
allocations

Multiplication by wm,r ,f ,p,j ⇒ each symbol sn,r is replicated four times, in
the space (m), frequency (f ), time (p), and chip (j) dimensions.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (3)

Frequency-selective fading channel coefficients hk,m,f between each pair
(m, k) of transmit and receive antennas, at frequency f , assumed constant
during P time-blocks, independent, and circularly symmetric complex
Gaussian variables, with zero-mean and unit variance.

Received signals define a fifth-order tensor X ∈ CK×N×F×P×J :

xk,n,f ,p,j =
M∑

m=1

hk,m,f um,n,f ,p,j =
M∑

m=1

R∑
r=1

gm,r ,f ,p,j hk,m,f sn,r ,

gm,r ,f ,p,j = wm,r ,f ,p,j cm,r ,f ,p.

Core tensor G ∈ CM×R×F×P×J can be interpreted as the Hadamard
product of coding tensor with allocation tensor, along their common
modes: G =W �

{m,r ,f ,p}
C.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (4)

X satisfies a generalized PARATUCK-(2,5) model:

xi1,i2,i3,i4,i5 =

R1∑
r1=1

R2∑
r2=1

gr1,r2,i3,i4,i5 a
(1)
i1,r1,i3

a
(2)
i2,r2

,

gr1,r2,i3,i4,i5 = wr1,r2,i3,i4,i5 cr1,r2,i3,i4 .

with(
I1, I2, I3, I4, I5,R1,R2,A(1),A(2)

)
↔ (K ,N,F ,P, J,M,R,H,S) .
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (5)

Matrix unfoldings for designing semi-blind receivers

XJPFK×N = (IJP ⊗ bdiag(H..f ))GJPFM×R ST ,

XJPFN×K = (IJPF ⊗ S)GJPFR×FM HFM×K

⇒ BALS semi-blind receiver (Favier, de Almeida; IEEE TSP’2016)

XNK×FPJ = (S⊗HK×FM)GRFM×FPJ

⇒ Closed form (Kronecker-based) semi-blind receiver
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (6)

Uniqueness issue

Generalized Tucker-(2,5) model of TSTF system

From the unfolding XNK×FPJ = (S⊗HK×FM)GRFM×FPJ , it can be
proved that the symbol matrix and the channel tensor are unique up
to an unknown scalar factor.

Ambiguity can be eliminated with the knowledge of a single pilot
symbol at the receiver.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (7)

BALS receiver

1. Initialization (it=0): randomly draw Ŝ(0) from the symbol alphabet.
2. it=it+1.
3. Calculate the LS estimate of the channel tensor

(ĤFM×K )(it) = ((IJPF ⊗ Ŝ(it−1))GJPFR×FM)†X̃JPFN×K

4. Calculate the LS estimate of the symbol matrix

ŜT
(it) = ((IJP ⊗ bdiag(Ĥ..f )(it))GJPFM×R)†X̃JPFK×N

5. Return to Step 2 until convergence.
6. Eliminate the scaling ambiguity

Ŝ(final) = Ŝ(∞)

[
D1(Ŝ(∞))

]−1

7. Project the estimated symbols onto the symbol alphabet.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (8)
Diversity gain and transmission rate
(Costa,Favier; submitted to Elsevier SP 2017)

The performance analysis is based on the pairwise error probability (PEP)
of the maximum likelihood (ML) estimator of the symbol matrix S.

The diversity gain is defined as the negative of the asymptotic slope of the
plot PEP(ρ) on a log-log scale, where ρ denotes the received SNR.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

TSTF coding system (9)
Diversity gain and transmission rate

Define α(f ,p) and β(f ,p) as the numbers of transmit antennas used and of
data streams transmitted with the subcarrier f , during the time block p.

For a full allocation strategy: α(f ,p) =M, β(f ,p) =R, for all (f , p).

Maximal diversity gain: KJ
F∑

f =1

P∑
p=1

min
(
α(f ,p), β(f ,p)

)
.

Transmission rate (in bits per channel use): Tr = R
FP log2(µ) where µ

is the cardinality of the symbol constellation.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

Tensor modeling of MIMO communication systems
Comparison of tensor-based systems (Costa, Favier; submitted to SP’2017)

Simulation results

Comparison of ZF receivers (channel perfectly known at the receiver)
for ST(1), TST, STF(2), and TSTF systems, with full allocation and
same product FP = 8 ⇒ same transmission rate (1 bit/channel use).

M=K=R=2, N=10, 16-PSK.

I (1) de Almeida, Favier, Mota, Space-time spreading-multiplexing for MIMO wireless
communication systems using the PARATUCK-2 tensor model, Signal Process.
89(11):2103-2116, Nov. 2009.

I (2) de Almeida, Favier, Ximenes, Space-time-frequency (STF) MIMO
communication systems with blind receiver based on a generalized PARATUCK2
model, IEEE TSP 61(8):1895-1909, April 2013.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system
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TSTF: F=4,P=2,J=1

TSTF: F=2,P=4,J=2

TSTF: F=1,P=8,J=4
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Figure: ZF receivers: Impact of the design parameters (F ,P, J) on the BER.
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3. Tensor approaches for designing wireless communication
systems Generalized PARATUCK-TSTF coding system

Tensor modeling of MIMO communication systems
Comparison of tensor-based systems (7)

Comments on simulation results

Worst BER performance with ST, due to the smallest diversity gain.

TSTF with (F ,P, J)=(4, 2, 1) and STF with (F ,P)=(4, 2) give
nearly the same BER.

TSTF with (F ,P, J)=(1, 8, 4) and TST with (P, J)=(8, 4) provide
close BERs, with FPJ =32, explaining the BER improvement.

Impact of FPJ on the BER performance, i.e. the diversity gain:
TSTF with (F ,P, J)={(4, 2, 1), (2, 4, 2), (1, 8, 4), (2, 4, 6)},
corresponding to FPJ ={8, 16, 32, 48} ⇒ Best performance with
(F ,P, J)=(2, 4, 6) corresponding to FPJ =48.

TSTF allows more flexibility for choosing the design parameters and best
performance, due to the fifth-order coding tensor which exploits four

spreading dimensions (space, frequency, time, chip).
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3. Tensor approaches for designing wireless communication
systems Tensor relaying communication systems

Tensor-based relaying communication systems (1)
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1
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D
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Figure: Block diagram of one-way two-hop MIMO relay system, with AF protocol.

MD , (MR1 ,MR2 ), and MS antennas at destination (D), relay (R) and source
(S).

H(SR),H(RD): source-relay, and relay-destination channels.

Symbol S ∈ CN×MS and code (C ∈ CP×MS and G ∈ CJ×MR ) matrices.
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3. Tensor approaches for designing wireless communication
systems Tensor relaying communication systems

Tensor-based relaying communication systems (2)

Three different tensor models and semi-blind receivers depending on
source and relay codings:

(AF protocol)

KRST source coding ⇒ PARATUCK model (IEEE TSP 2014).

Double KRST coding ⇒ Nested PARAFAC model (IEEE TSP 2015).

Double TST coding ⇒ Nested Tucker model (Elsevier SP 2016).
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3. Tensor approaches for designing wireless communication
systems Nested PARAFAC two-hop relaying system

Nested PARAFAC MIMO relay system (1)
(Ximenes, Favier, de Almeida; IEEE TSP’2015)

KRST coding (without precoding) at the source and the relay
(MR 1 = MR 2 = MR)

Signals received at antenna mR of relay

ymR ,p,n =

MS∑
mS =1

h
(SR)
mR ,mS cp,mS

sn,mS
⇔ PARAFAC(H(SR),C,S)

Signals received at antenna mD of destination node

x
(SRD)
mD ,j ,p,n

=

MR∑
mR =1

h
(RD)
mD ,mR gj ,mR

ymR ,p,n︸ ︷︷ ︸
PARAFAC(H(RD),G,YPNxMR

)

=
∑
mR

∑
mS

h
(RD)
mD ,mR gj ,mR

h
(SR)
mR ,mS cp,mS

sn,mS︸ ︷︷ ︸
Nested PARAFAC

⇒ X (SRD) ∈ CMD×J×P×N .
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3. Tensor approaches for designing wireless communication
systems Nested PARAFAC two-hop relaying system

Nested PARAFAC MIMO relay system (2)

x
(SRD)
mD ,j ,p,n

=
∑
mS

∑
mR

h
(RD)
mD ,mR gj ,mR

h
(SR)
mR ,mS︸ ︷︷ ︸

zmD ,j,mS

cp,mS
sn,mS

=
∑
mS

zmD ,j ,mS
cp,mS

sn,mS︸ ︷︷ ︸
PARAFAC(ZMD JxMS

,C,S)

⇒ (Ẑ, Ŝ); Z = effective channel

zmD ,j ,mS
=

∑
mR

h
(RD)
mD ,mR gj ,mR

h
(SR)
mR ,mS︸ ︷︷ ︸

PARAFAC(H(RD),G,H(SR)T
)

⇒ (Ĥ(RD), Ĥ(SR))
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3. Tensor approaches for designing wireless communication
systems Nested PARAFAC two-hop relaying system

Nested PARAFAC MIMO relay system (3)

Channel and symbol estimation
C and G assumed to be known at destination

Two solutions

Solution based on PARAFAC model of Z
1 PARAFAC(ZMD JxMS

,C,S) of X (SRD) Two-step ALS→ (Ẑ,Ŝ).

2 PARAFAC(H(RD),G,H(SR)T
) of Z Two-step ALS→ (Ĥ(SR),Ĥ(RD)).

Solution based on PARAFAC model of Y

1 PARAFAC(H(RD),G,YPNxMR
) of X (SRD) Two-step ALS→ (Ĥ(RD), Ŷ).

2 PARAFAC(H(SR),C,S) of Y Two-step ALS→ (Ĥ(SR),Ŝ).
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3. Tensor approaches for designing wireless communication
systems Nested PARAFAC two-hop relaying system

Nested PARAFAC MIMO relay system (4)

Rewriting the nested PARAFAC model in terms of the tensors Z or Y
which satisfy themselves two PARAFAC models, allows to estimate
the system’s parameters in two stages using a two-step ALS algorithm
at each stage.

G and C being assumed to be known at destination, each PARAFAC
model contains only two unknown matrix factors ⇒ estimation can be
solved using a closed-form (SVD-based) solution at each stage.
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (1)
(Favier, Fernandes, de Almeida; SP 2016)

TST coding at the source and the destination

)(RD
H

��(R)
��(S) )(SR

HS
=

��
�SRD�

x
(SRD)
mD ,j ,p,n

=

MR2∑
mR2

=1

MR1∑
mR1

=1

MS∑
mS =1

R∑
r=1

h
(RD)
mD ,mR2

c
(R)
mR2

,j ,mR1︸ ︷︷ ︸
Relay code

h
(SR)
mR1

,mS c
(S)
mS ,p,r︸ ︷︷ ︸

Source code

sn,r

⇒ Nested Tucker model ⇒ Semi-blind ALS-based receiver for joint
estimation of symbols (S) and channels (H(SR),H(RD)).
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (2)

X (SRD) ∈ CMD×J×P×N

Matrix unfoldings

X
(SRD)
JPN×MD

=
(
IJ ⊗ (IP ⊗ S)C

(S)
PR×MS

H(SR)T )
C

(R)
JMR1

×MR2
H(RD)T

X
(SRD)
PJMD×N =

(
IP ⊗ (IJ ⊗H(RD))C

(R)
JMR2

×MR1
H(SR)

)
C

(S)
PMS×RST

x
(SRD)
PNJMD

= vec(X
(SRD)
JMD×PN)

=
(
(IP ⊗ S)⊗ (IJ ⊗H(RD))

)(
C

(S)
PR×MS

⊗ C
(R)
JMR2

×MR1

)
vec(H(SR)).

Define the noisy received signals tensor as: X̃ = X +N , where N is the
additive noise tensor.
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (3)
Three-step ALS receiver

1. Initialization (it=0): randomly draw Ĥ
(SR)
0 and Ŝ0 from symbol alphabet.

2. it=it+1.

3. Calculate the LS estimate of the channel H(RD)

(Ĥ
(RD)
it )T =

((
IJ ⊗ (IP ⊗ Ŝit−1)C

(S)
PR×MS

(Ĥ
(SR)
it−1 )T

)
C

(R)
JMR1

×MR2

)†
X̃

(SRD)
JPN×MD

.

4. Calculate the LS estimate of the symbol matrix

ŜT
it =

((
IP ⊗ (IJ ⊗ Ĥ

(RD)
it )C

(R)
JMR2

×MR1
Ĥ

(SR)
it−1

)
C

(S)
PMS×R

)†
X̃

(SRD)
PJMD×N .

5. Calculate the LS estimate of the channel H(SR) from vec(X̃
(SRD)
JMD×PN)

6. Return to Step 2 until convergence.
7. Eliminate the scaling ambiguities.
8. Project the estimated symbols onto the symbol alphabet.
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (4)
System identifiability and ambiguities elimination

Necessary identifiability conditions

J ≥ max(
MR2

MR1

,
MR1

MR2

), P ≥ max(
R

MS
,

MS

R
), MD ≥ MR2 , N ≥ R, PN ≥ MR1 , JMD ≥ MS .

Equations for elimination of ambiguities

Ŝfinal =
Ŝ∞
ŝ1,1

, Ĥ
(RD)
final =

Ĥ
(RD)
∞

ĥ
(RD)
1,1

, Ĥ
(SR)
final = ŝ1,1ĥ

(RD)
1,1 Ĥ(SR)

∞ .
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (5)
Closed-form receiver (Known coding tensors)

Two stages of Kronecker product approxim. for estimating S and
H(RD).

One LS stage for estimating H(SR).

X
(SRD)
MD PN×J = (H(RD) ⊗ V)C

(R)
MR2

MR1
×J ⇒ (Ĥ(RD), V̂)

X
(SRD)
NJMD×P = (S⊗W)C

(S)
RMS×P ⇒ (Ŝ, Ŵ)

V = (IP ⊗ S)C
(S)
PR×MS

H(SR)T ∈ CPN×MR1 ⇒ Ĥ(SR)

W = (IJ ⊗H(RD))C
(R)
JMR2

×MR1
H(SR) ∈ CJMD×MS ⇒ Ĥ(SR)
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (6)
Simulations

ZF performance for different values of P and J
(diversity gain proportional to PJ)

BER ↘ when PJ ↗
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (7)
Simulations

ZF performance for different values of MS and MD

⇒ MS ↗ better than MD ↗
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Nested Tucker MIMO relay system (8)
Simulations

Comparison of Nested Tucker and nested PARAFAC systems
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Global design procedure (1)

Design of the transmission system:
Choice of coding, allocations, modulation
(CDMA/OFDM/CDMA-OFDM), symbol constellation, (QAM, PSK),
relaying protocol
⇒ Tensor modeling of transmitted signals.

Channel model
⇒ Tensor modeling of received signals.

Theoretical performance analysis: determination of diversity gain and
transmission rate.

Study of uniqueness of the tensor model of received signals, and
determination of ambiguity relations.
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3. Tensor approaches for designing wireless communication
systems Tucker train two-hop relaying system

Global design procedure (2)

Determination of matrix unfoldings of the received signals tensor.

Design of receivers:
I ZF
I Iterative semi-blind (ALS, Levenberg-Marquardt...)
I Closed-form semi-blind (based on Khatri-Rao or Kronecker product)

Study of parameter identifiability depending on the receiver.

Experimental evaluation:

I Test of BER performance in the case of perfect knowledge of channel
(with ZF receiver)

I Test of BER, convergence speed, computational time in the case of
joint channel/symbols estimation.
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4. Conclusion and perspectives

Conclusion
Benefits of tensor models

Tensor models are very useful for:

Representing, analysing and estimating multidimensional signals/data,

Modeling and designing MIMO communication systems,

Joint semi-blind estimation of symbols and channels in cooperative
relay systems.

Tensor representations are particularly interesting when a tensor model is
underlined in data as in communication systems.
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4. Conclusion and perspectives

Future works

Development of new tensor models and study of their uniqueness and
identifiability properties. Parameter estimation algorithms.

Tensor-based multi-hop cooperative relay systems.

Tensor completion (Estimation of data tensors with missing data):
- Different solutions depending on the model used for representing the
data tensor (PARAFAC, Tucker, TT...), the criterion to minimize, the
choice of the modal projectors, the algorithm for optimization.
- Applications to traffic data, sparse channel estimation for massive
MIMO systems...
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End

Thank you for your attention

List of publications available at
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