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Introduction

Development of antenna arrays in the 20-th century

1905. First known use of an array of antennas by Braun (Physics Nobel
Prize), who discovers transmit beamforming.

1940. Germany builds the �rst uniform circular array, called Wullenweber, for
radio direction �nding.

1960. USA builds the active radar array ESAR (over 8000 elements).

1983. 30-elements array used in the TDRSS satellite system.

1995. Phased array embedded in combat aircrafts.

(a) ESAR
(b) TDRSS (c) Aircraft radar
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Introduction

Antenna arrays and mobile communications (1)

Figure : Evolution of downlink data rates (Mbps), from 2G to 4G

TDMA, FDMA, CDMA, OFDMA.

SDMA: No exploitation until LTE (MIMO 4x4) and LTE Adv. (MIMO 8x8).
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Introduction

Antenna arrays and mobile communications (2)

Figure : Requirements for future 2020 mobile standards (source: Nokia)
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Introduction

Antenna arrays and mobile communications (3)

Key features

Extreme densi�cation of cells

mmWave (30 GHz to 300 GHz)

Massive MIMO (up to 120 antennas at base stations)

Challenges

Green communications

Co-user and co-channel interference

Propagation of mmWaves
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Introduction

SDMA (1)

Scenario.

I BS equipped with a URA of M ×M antennas,

I K UTs equipped with a single antenna,

I Line of sight between BS and UTs (single path model).
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Introduction

SDMA (2)

Model. At discrete time n, the k-th UT receives the (baseband) signal,

y(k)n = αkb(θk, φk)∗xn + v(k)n ,

I αk ∈ C is a fading coe�cient,

I xn ∈ CM
2

in the BS transmit signal,

I v
(k)
n is an additive noise,

I b(θk, φk) = a(θk)⊗ a(φk) represents the UT steering vector with

a(u) =
(

1, exp (iu) , . . . , exp (i(M − 1)u)
)T
,

and where θk, φk are two angles characterizing the direction of the UT.
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Introduction

SDMA (3)

Downlink beamforming. Assuming K ≤M2 and perfectly known directions
(θ1, φ1), . . . , (θK , φK), the BS transmits

xn = B (B∗B)
−1

sn,

where

I sn =
(
s
(1)
n , . . . , s

(K)
n

)T
∈ CK contains the K symbols sent to the UTs ;

I B = [b(θ1, φ1), . . . ,b(θK , φK)].

Beamforming eliminates spatial interference between UTs, regardless the spacing
between angles (θ1, φ1), . . . , (θK , φK) :

y(k)n = αks
(k)
n + v(k)n .
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Introduction

SDMA (4)
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Figure : Minimal number of antennas M for DoA (azimuthal component) separation
against UTs distance d in meters (uplink), for a standard beamformer and antennas
spacing of half the wavelength (distance UTs-BS = 100m)
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Introduction

SDMA (5)

UTs separation. Massive antenna arrays are needed to separate the DoA of
closely spaced UT, with a spacing of the order of a beamwidth

∆θ ≈ 2π

M
.

Sample size. To estimate closely spaced DoA, usual techniques require a
large number N of samples, usually N �M , which may not be possible with
future requirements.

"Spatial"cognitive radio. Secondary BS must be able to perform detection
on narrow angular sectors, with a limited number of observations.
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Introduction

SDMA (6)

Limitations may essentially come from the uplink transmission, where
accurate detection and DoA estimation, and reliable beamforming methods
are needed to perform SDMA.

Beamforming with large arrays in other contexts.

I [Adhikary et al.'13] SDMA via conventional beamforming (using eigenvectors
of the channel spatial correlation matrix)

I [Sharif-Hassibi'05] SDMA via random beamforming and capacity analysis

I [Alkhateeb et al.'15] Digital-analog hybrid beamforming
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Introduction

Statistical model and usual inference problems (1)

Scenario.

I ULA of M sensors

I K < M narrowband and far-�eld source signals with spatial frequencies
θ1, . . . , θK

I N observations y1, . . . ,yN

Figure : ULA with 2 sources at wavelength λ, with "physical" angle (DoA) θ̃1, θ̃2, and

with corresponding "electrical" angle θk = 2π d
λ

cos
(
θ̃k
)
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Introduction

Statistical model and usual inference problems (2)

Received signal.

yn =

K∑
k=1

a(θk)sk,n + vn = Asn + vn

I Steering vectors. A = [a(θ1), . . . ,a(θK)] and a(θ) = (1, eiθ, . . . , ei(M−1)θ)T

I Source signals. sn = (s1,n, . . . , sK,n)T

I Additive noise. vn = (v1,n, . . . , vM,n)T

Statistical model. For the remainder, we consider s1, . . . , sN i.i.d.
NCK (0,Γ) and v1, . . . ,vN i.i.d. NCM (0, σ2I) which implies

y1, . . . ,yN i.i.d. NCM (0,R)

where R is the spatial covariance matrix given by

R = AΓA∗ + σ2I.
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Introduction

Statistical model and usual inference problems (3)

Detection.

I Test for the presence of one or more sources

I Estimation of the source number K

DoA estimation.

Beamforming.

I Estimation of the transmit signals s1,n, . . . , sK,n

I Estimation of the SINR
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Introduction

Statistical model and usual inference problems (4)

2nd order statistics. All the information on K and θ1, . . . , θK is contained
in the eigenvalues and eigenvectors of R.

Spectral decomposition.

R =

K∑
k=1

λkuku
∗
k + σ2

M∑
k=K+1

uku
∗
k︸ ︷︷ ︸

:=Π

I λ1 ≥ . . . ≥ λK > λK+1 = . . . = λM = σ2 are the eigenvalues

I u1, . . . ,uM are the associated orthonormal eigenvectors

I Π is the orthogonal projection matrix onto the noise subspace
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Introduction

Statistical model and usual inference problems (5)

Detection and eigenvalues.

K = card
{
k : λk > σ2

}
DoA and eigenvectors. θ1, . . . , θK are the unique zeros of the function

θ 7→ ‖Πa(θ)‖22 = 1−
K∑
k=1

|a(θ)∗uk|2

R is not observable in practice and is usually replaced by the Sample Covariance
Matrix (SCM)

R̂N =
1

N

N∑
n=1

yny∗n

which is a su�cient statistic.
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Introduction

Statistical model and usual inference problems (6)

Source detection DoA estimation Beamforming

AIC, MDL Spatial filtering
(Periodogram, 
Capon, MMSE)

Subspace methods
(MUSIC, ESPRIT)

Capon, MMSE, 
reduced rank

Eigenvalues and eigenvectors of

MLGLRT
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Introduction

Statistical model and usual inference problems (7)

Standard asymptotic regime. For M , N �xed, the statistical performance
of array processing methods is usually hard to predict, and the large sample
size regime is considered:

M �xed, N →∞

SCM. Asymptotic performance results are mostly based on the fact that

R̂N
a.s.−−−−→

N→∞
R

with Gaussian �uctuations.

Practical use. Theoretical results in the large sample size can be used
"safely" as long as

N �M .
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Introduction

Towards large dimensional array processing (1)

Large dimension paradigm. If M is large and/or N is limited (short time
duration/stationarity), N should be assumed to be of the same order of
magnitude than M :

M � N .

New asymptotic regime. This situation is better described by the large
dimensional regime

M,N →∞ and
M

N
→ c > 0.
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Introduction

Towards large dimensional array processing (2)

SINR. When M →∞ and E[sns∗n] = I, the SINR after beamforming is
unbounded

SINR =
‖a(θk)‖4 E |sk,n|2∑

` 6=k |a(θk)∗a(θ`)|2 E |s`,n|2 + ‖a(θk)‖2 σ2
=
M

σ2
+O(1)

Normalization. To keep the SINR bounded, we consider the modi�ed model

yn =

K∑
k=1

a(θk)sk,n + vn,

where a(θ) = 1√
M

(
1, exp (iθ) , . . . , exp (i(M − 1)θ)

)T
is now unit norm.

I The SINR after beamforming is O(1)

I The SINR per sensor is O
(

1
M

)
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Introduction

Towards large dimensional array processing (3)

Small number of sources. K �M (single path propagation, after spatial
�ltering ...)

K �xed while M →∞

Large number of sources. K �M (multipath propagation, clutter, ...)

K →∞ such that K
M → d > 0.
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Introduction

Towards large dimensional array processing (4)

Widely spaced DoA. |θk − θ`| � 2π
M

θ1, . . . , θK �xed as M →∞

Closely spaced DoA. |θk − θ`| � 2π
M

θk = θ` + α
M , α �xed as M →∞
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Introduction

Towards large dimensional array processing (5)

Behaviour of the SCM R̂N , the sample eigenvalues and eigenvectors as
M,N →∞ ?

Performance of standard methods in the large dimensional regime vs large
sample size regime ? Closely spaced DoA scenario ?

New methods exploiting the behaviour of R̂N ? Theoretical performance ?
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Introduction

Summary of the main notations (1)

M sensors, N samples, K sources, DoA θ1, . . . , θK

A = [a(θ1), . . . ,a(θK)] and a(θ) =
1√
M

(
1, eiθ, . . . , ei(M−1)θ

)T
.

Large sample size regime. Denoted N →∞. M,K, θ1, . . . , θK are �xed.

Large dimensional regime. M = M(N) is a function of N such that

cN =
M

N
−−−−→
N→∞

c > 0.

This regime is denoted for clarity'sake M,N →∞. K, θ1, . . . , θK may or
may not depend on N , and we will add subscript N for all quantities
depending on M,N .
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Introduction

Summary of the main notations (2)

Covariance matrix.

R = AΓA∗ + σ2I =

K∑
k=1

λkuku
∗
k + σ2

M∑
k=K+1

uku
∗
k

where λ1 ≥ . . . ≥ λK > σ2 (mult. M −K) are the eigenvalues associated
with the orthonormal eigenvectors u1, . . . ,uM .

Sample covariance matrix (SCM).

R̂N =
1

N

N∑
n=1

yny∗n =

M∑
k=1

λ̂k,N ûk,N û∗k,N

where λ̂1,N ≥ . . . ≥ λ̂M,N ≥ 0 are the eigenvalues associated with the
orthonormal eigenvectors û1,N , . . . , ûM,N .

Projections. Π =
∑M
k=K+1 uku

∗
k and Π̂N =

∑M
k=K+1 ûk,N û∗k,N .
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Introduction

Contents

1 Detection

2 DoA estimation

3 Other models, other problems and some perspectives

4 Conclusion
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Detection

Contents

1 Detection

2 DoA estimation

3 Other models, other problems and some perspectives

4 Conclusion
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Detection

Single source detection

Formulation. The detection of a single source is usually formulated through
a hypothesis test, by "forgetting" the array manifold parametrization:

H0 : yn = vn ∼ NCM
(
0, σ2I

)
(pure noise)

H1 : yn = hsn + vn ∼ NCM
(
0,hh∗ + σ2I

)
(one source)

where h ∈ CM\{0} is a deterministic unknown vector.

GLRT

The GLRT is equivalent to compute the test

T̂N =
λ̂1,N

1
M trR̂N

≷H1

H0
ε

where the threshold ε is set according to a desired false alarm probability.
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Detection

False alarm probability

Finite M,N . Under H0, expression of the exact distribution of T̂N is
well-known [Schuurmann et al. '73].

I Untractable expression and computationaly expensive even for moderate M

I No insight on the �uctuations of T̂N

Large sample size. Under H0, from the LLN,

T̂N
a.s.−−−−→
N→∞

1.

No simple expression of the asymptotic distribution of λ̂1,N (under
convenient renormalization) is known in the regime N →∞.
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Detection

Large dimensional regime - Marcenko-Pastur distribution (1)

Considering the joint distribution of λ̂1,N , . . . , λ̂M,N is not relevant any
regime where M →∞. Instead, we focus on the proportion of sample
eigenvalues inside a Borel set A ⊂ R:

µ̂N (A) =
1

M
card

{
m : λ̂m,N ∈ A

}
Empirical spectral distribution.

µ̂N =
1

M

M∑
m=1

δλ̂m,N

where δx is the Dirac measure at point x.

Random probability measure representing the histogram of the
sample eigenvalues
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Detection

Large dimensional regime - Marcenko-Pastur distribution (2)

Theorem [Marcenko-Pastur'67]

If y1, . . . ,yN i.i.d. NCM
(
0, σ2I

)
, then with probability one,

µ̂N
w−−−−−−→

M,N→∞
µσ2,c

where µσ2,c is a deterministic probability measure given by

dµσ2,c(λ) =

(
1− 1

c

)+

δ0(dλ) +

√
(λ− λ−) (λ+ − λ)

2πσ2cλ
1[λ−,λ+](λ)dλ.

and λ− = σ2(1−√c)2, λ+ = σ2(1 +
√
c)2.
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Detection

Large dimensional regime - Marcenko-Pastur distribution (3)

Corollary. R̂N is no more a consistent estimator of RN , i.e.∥∥∥R̂N −RN

∥∥∥
2 �

��
a.s.−−−→
M,N

0.

Histogram. For all ϕ ∈ Cb(R), with probability one as M,N →∞,

1

M

M∑
m=1

ϕ(λ̂m,N ) =

(
1− N

M

)+

ϕ(0) +
1

2π

∫ λ+
N

λ−N

ϕ(λ)

√(
λ− λ−N

) (
λ+N − λ

)
λσ2M/N

dλ+ o(1)

with λ±N = σ2
(

1 +
√
M/N

)2
.
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Detection

Large dimensional regime - Marcenko-Pastur distribution (4)

Universality. The Marcenko-Pastur theorem also holds in the non-Gaussian
case, still assuming that E[y1] = 0 and E[y1y

∗
1] = σ2I. [Yin'86]

Spectral statistics. For all ϕ analytic on a neighborhood of [λ−M , λ
+
M ],

N

(
1

M

M∑
m=1

ϕ(λ̂m,N )−
∫

R
ϕ(λ)dµσ2,cN (λ)

)
D−−−−−−→

M,N→∞
N (0, γ2).

⇒ Fast convergence [Bai-Silverstein'04]

ϕ(z) = z`

ϕ(z) = log(z)

...
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Detection

Large dimensional regime - Marcenko-Pastur distribution (5)
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Figure : Marcenko-Pastur distribution and histogram of the sample eigenvalues for
M = 200, N = 400, σ2 = 1
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Detection

Large dimensional regime - Marcenko-Pastur distribution (6)
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Figure : Marcenko-Pastur distribution and histogram of the sample eigenvalues for
M = 200, N = 2000, σ2 = 1
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Detection

Large dimensional regime - Marcenko-Pastur distribution (7)
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Figure : Marcenko-Pastur distribution and histogram of the sample eigenvalues for
M = 200, N = 20000, σ2 = 1
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Detection

Large dimensional regime - Marcenko-Pastur distribution (8)
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Figure : Marcenko-Pastur distribution and histogram of the sample eigenvalues for
M = 200, N = 400, σ2 = 0.1
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Detection

Large dimensional regime - Extreme eigenvalues (1)

−0.1 0.0 0.1 0.2 0.3 0.4

0

2

4

6

8

Sample eigenvalues
Marcenko-Pastur pdf
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(b) M = 200, N = 400

Figure : Location of the sample eigenvalues w.r.t. the MP distribution
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Detection

Large dimensional regime - Extreme eigenvalues (2)

Theorem [Yin-Bai-Krishnaiah'88, Bai-Yin'93]

Under the assumptions of the Marcenko-Pastur theorem and if c ≤ 1,

λ̂1,N
a.s.−−−−−−→

M,N→∞
σ2
(
1 +
√
c
)2

and λ̂M,N
a.s.−−−−−−→

M,N→∞
σ2
(
1−√c

)2
.

Corollary. For any ε > 0, all the sample eigenvalues concentrate insideσ2

(
1−

√
M

N

)2

− ε, σ2

(
1 +

√
M

N

)2

+ ε


w.p.1 for all large M,N .

Universality. The result holds in the non-Gaussian case under the �nite
fourth moment assumption E|y1,1|4 <∞.
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Detection

Large dimensional regime - Extreme eigenvalues (3)

Theorem [Johnstone'01]

Under the assumptions of the Marcenko-Pastur theorem,

N2/3 λ̂1,N − σ2
(
1 +
√
cN
)2

σ2
(
1 +
√
cN
) (

1 + 1√
cN

)1/3 D−−−−−−→
M,N→∞

TW(2)

Tracy-Widom distribution. TW(2) is the 2nd Tracy-Widom distribution
[Tracy-Widom'96] with cdf

F (x) = exp

(
−
∫ ∞
x

(t− x)q(t)2dt

)
,

where q solves the Painlevé II di�erential equation q(2)(t) = tq(t) + 2q(t)3

with some boundary condition.

Pascal Vallet (Bdx INP/IMS) Large dim. array proc. Peyresq 2017 40 / 127



Detection

Large dimensional regime - Extreme eigenvalues (4)

Fluctuations. The �uctuations of λ̂1,N around its limiting value are smaller
than the "usual" N−1/2 rate:

λ̂1,N = σ2

(
1 +

√
M

N

)2

+OP

(
1

N2/3

)

Extensions. A similar result holds for the smallest sample eigenvalue λ̂M,M .
The Tracy-Widom also holds for certain non-Gaussian distributions.
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Detection

Large dimensional regime - Extreme eigenvalues (5)
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Figure : Tracy-Widom distribution and histogram of λ̂1,N , for M = 20, N = 40 and
20000 realizations
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Detection

False alarm probability - Conclusion (1)

Fluctuations. The denominator in T̂N satis�es

1

M
trR̂N = σ2 +OP

(
1

N

)
.

and its �uctuations are smaller than λ̂1,N .

Asymptotic False Alarm Probability

Under H0 and the conditions of Johnstone's theorem,

N2/3 T̂N −
(
1 +
√
cN
)2(

1 +
√
cN
) (

1 + 1√
cN

)1/3 D−−−−−−→
M,N→∞

TW(2).
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Detection

False alarm probability - Conclusion (2)
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(a) M = 20, N = 40
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(b) M = 100, N = 200

Figure : Empirical cdf of T̂N under H0 (recentered and rescaled) and TW cdf

In [Nadler'11], a correction to the TW distribution is proposed to improve the
PFA approximation for moderate M,N .
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Detection

Detection probability (1)

Finite M,N . Under H1, no expression seems available in the literature.

LSS regime - 1st order. From the LLN,

λ̂1,N
a.s.−−−−→
N→∞

σ2(1 + ρ)

M∑
k=2

λ̂k,N
a.s.−−−−→
N→∞

(M − 1)σ2,

and thus

T̂N
a.s.−−−−→
N→∞

1 + ρ

1 + ρ/M

where ρ = ‖h‖2
σ2 represents the SNR.
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Detection

Detection probability (2)

LSS regime - 2nd order. On the other hand, a straightforward application
of the CLT leads to

√
N
(
λ̂1,N − λ1

)
D−−−−→

N→∞
N
(
0, σ4(1 + ρ)2

)
√
N

M∑
k=2

(
λ̂k,N − λk

)
D−−−−→

N→∞
N
(
0, σ4(M − 1)

)
from which we deduce

√
N

(
T̂N −

1 + ρ

1 + ρ/M

)
D−−−−→

N→∞
N
(

0,
(1− 1/M) (1 + ρ)2

(1 + ρ/M)4

)
.
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Detection

Detection probability (3)
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(a) M = 10, N = 1000
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Figure : Empirical cdf of Û =
√
N (1+ρ/M)2√

1−1/M(1+ρ)

(
T̂ − 1+ρ

1+ρ/M

)
and N (0, 1) cdf (ρ = 5)
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Detection

Large dimensional regime - Escape from the bulk (1)

Let y1, . . . ,yN i.i.d. NCM (0,RN ), with RN having eigenvalues
λ1,N ≥ . . . ≥ λK,N > σ2 (mult. M −K) s.t lim supλ1,N <∞.

When K is �xed with respect to M , RN is a �xed rank perturbation of σ2I
(Spiked Models).

In that case, it holds (again)

µ̂N =
1

M

M∑
k=1

δλ̂k,N
w−−−−−−→

M,N→∞
µσ2,c a.s.,

where µ is the Marcenko-Pastur distribution.

What about the individual behaviour of the sample eigenvalues
λ̂1,N , . . . , λ̂K,N ?
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Detection

Large dimensional regime - Escape from the bulk (2)
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Figure : Phase transition in the spectrum of R̂N under H1 (M = 100, N = 200, σ2 = 1)
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Detection

Large dimensional regime - Escape from the bulk (3)

Theorem [Baik-Silverstein'06]

Let y1, . . . ,yN i.i.d. NCM (0,RN ), with RN having eigenvalues
λ1,N ≥ . . . ≥ λK,N > σ2 (mult. M −K) such that K si �xed w.r.t. N .

Then, for k ∈ {1, . . . ,K},

If λk,N −−−−−−→
M,N→∞

λk > σ2 (1 +
√
c),

λ̂k,N
a.s.−−−−−−→

M,N→∞
λk +

σ2cλk
λk − σ2

.

If λk,N −−−−−−→
M,N→∞

λk ≤ σ2 (1 +
√
c),

λ̂k,N
a.s.−−−−−−→

M,N→∞
σ2
(
1 +
√
c
)2
.

Moreover, λ̂K+1,N → σ2 (1 +
√
c)

2 → 0 a.s.
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Detection

Large dimensional regime - Escape from the bulk (4)

Remark 1. In particular, w.p.1 as M,N →∞,

λ̂1,N = λ1,N +
M

N

σ2λ1,N
λ1,N − σ2

+ o(1),

Remark 2. The function

φσ2,c(λ) = λ+
λσ2c

λ− σ2

is a one-to-one increasing mapping from
[
σ2 (1 +

√
c) ,+∞

)
to[

σ2 (1 +
√
c)

2
,+∞

)
. It relates the spectra of RN and R̂N . In particular,

φσ2,c

(
σ2
(
1 +
√
c
))

= σ2
(
1 +
√
c
)2
.
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Detection

Large dimensional regime - Escape from the bulk (5)
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Figure : Plot of function λ 7→ φc,σ2(λ), with red points indicating couples(
σ2 (1±

√
c) , σ2 (1±

√
c)

2
)
, with σ2 = 1, c = 0.5
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Detection

Large dimensional regime - Escape from the bulk (6)

Critical value. If λk ≤ σ2(1 +
√
c), the corresponding λ̂k,N is asymptotically

absorbed in the support of the M-P distribution. Otherwise, it escapes.

Extension. The results still holds in the non-Gaussian case under the
assumption that

yk = R
1/2
N wk,

where w1, . . . ,wN are i.i.d. zero mean, with E|w1,1|2 = 1 and E|w1,1|4 <∞.
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Detection

Large dimensional regime - Escape from the bulk (7)

Theorem [Baik et al.'05]

Under the assumptions of the previous theorem, and if

λ1 > . . . > λK > σ2(1 +
√
c),

then

√
N
λ̂k,N − φσ2,cN (λk,N )√
λ2k,N −

λ2
k,Nσ

4cN

(λk,N−σ2)2

D−−−−−−→
M,N→∞

N (0, 1) .

Additionally, λ̂1,N , . . . , λ̂K,N and the vector
(
λ̂K+1,N , . . . , λ̂M,N

)
are

asymptotically mutually independent.
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Detection

Large dimensional regime - Escape from the bulk (8)

Fluctuations. In particular, as M,N →∞,

λ̂1,N = λ1,N +
M

N

σ2λ1,N
λ1,N − σ2

+OP

(
1√
N

)
,

with an asymptotic variance given by

ξ2N = λ2k,N −
M

N

λ2k,Nσ
4

(λk,N − σ2)
2 .

Remark 1. If cN ≈ 0, then ξ2N ≈ λ2k,N ⇒ large sample size regime.

Remark 2. If λk,N ≈ σ2(1 +
√
cN ), then ξ2N ≈ 0 ⇒ di�erent �uctuations

(Tracy-Widom).
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Detection

Detection probability - Conclusion (1)

Detectability threshold. If λ1 > σ2(1 +
√
c), that is

√
c < lim

M,N→∞

‖h‖2
σ2

<∞,

the λ̂1,N escapes from the support of the M-P distribution.

In the large dimensional regime, if for M,N large enough, the SNR ρN
satis�es

ρN =
‖h‖2
σ2

>

√
M

N
+ ε,

for a �xed ε > 0, then the source is detectable.

Fluctuations. Under H1, the denominator in T̂N satis�es

1

M
trR̂N = σ2 +OP

(
1

N

)
.
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Detection

Detection probability - Conclusion (2)

Asymptotic detection probability

Under H1, if limM,N→∞
ρN√
cN

> 1,

√
N
T̂N − αN

ξN

D−−−−−−→
M,N→∞

N (0, 1).

where

αN =
(1 + ρN )

(
1 + cN

ρN

)
1− 1

M + 1
M (1 + ρN )

(
1 + cN

ρN

) = (1 + ρN )

(
1 +

cN
ρN

)
+O

(
1

N

)
.

ξ2N =
(1 + ρN )

2
(

1− cN
ρ2N

)
(√

M−1
M +

(1+ρN )
(
1+

cN
ρN

)
√
M(M−1)

)4 = (1 + ρN )
2

(
1− cN

ρ2N

)
+O

(
1

N

)
.
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Detection

Detection probability - Conclusion (3)
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(a) M = 40, N = 80
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(b) M = 120, N = 240

Figure : Empirical cdf of Û and Ũ =
√
N T̂N−αN

ξN
and N (0, 1) cdf (ρN = 5)
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Detection

Detection probability - Conclusion (4)

Correction. By assuming K may increase with M,N , and keeping the terms
O
(
K
N

)
, we can prove that [Mestre'08]

λ̂1,N = σ2 (1 + ρN )

(
1 +

(
1− 1

M

)
cN
ρN

)
+ o(1),

1

M − 1

M∑
k=2

λ̂k,N = σ2

(
1− cN (1 + ρN )

MρN

)
+ o(1).

w.p.1 for all large M,N , which gives the following correction for the
asymptotic mean αN (see Section 3 below):

αN =
(1 + ρN )

(
1 +

(
1− 1

M

)
cN
ρN

)
(
1− 1

M

) (
1− cN (1+ρN )

MρN

)
+ 1

M (1 + ρN )
(

1 + cN
ρN

) .
A similar correction can be obtained for the asymptotic variance ξ2N .
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Detection

Detection probability - Conclusion (5)
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(a) M = 20, N = 40
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(b) M = 40, N = 80

Figure : Empirical cdf of Û and Ũ =
√
N T̂N−αN

ξN
with and without correction, and

N (0, 1) cdf (ρN = 5)
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Detection

Detection probability - Conclusion (6)

Exponential rate. [Bianchi et al.'11] obtained a Large Deviations Principle
for T̂N under H1, in the large dimensional regime.

Other works.

I [Nadler'10] Analysis of AIC/MDL for source number estimation

I [Kritchman-Nadler'11] Multiple hypothesis test for source detection
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DoA estimation
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DoA estimation

The MUSIC method (1)

Model. y1, . . . ,yN i.i.d. where

yn =

K∑
k=1

a(θk)sk,n + vn = Asn + vn ∼ NCM (0,R) ,

with R = AΓA∗ + σ2I

Subspace method. span {a(θ1), . . . ,a(θK)} = span {u1, . . . ,uK}

Pseudo-Spectrum. θ1, . . . , θK are the unique zeros of the function

η(θ) = ‖Πa(θ)‖22 = a(θ)∗

(
I−

K∑
k=1

uku
∗
k

)
a(θ).
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DoA estimation

The MUSIC method (2)

The MUSIC method [Schmidt'79]

Estimate θ1, . . . , θK as the K deepest local minimizers θ̂1,N , . . . , θ̂K,N of

η̂N (θ) =
∥∥∥Π̂Na(θ)

∥∥∥2
2

= a(θ)∗

(
I−

K∑
k=1

ûk,N û∗k,N

)
a(θ)
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DoA estimation

The MUSIC method (3)
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Figure : E[η̂N (θ)], pseudo-spectrum η(θ) for M = 20, N = 40, σ = 1, Γ = I
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DoA estimation

The MUSIC method (4)

Consistency. In the large sample size regime N →∞, the LLN implies∥∥∥Π̂N −Π
∥∥∥
2

a.s.−−−−→
N→∞

0,

and thus

sup
θ∈[−π,π]

|η̂N (θ)− η(θ)| a.s.−−−−→
N→∞

0 and θ̂k,N
a.s.−−−−→
N→∞

θk.

Asymptotic normality. In [Stoica-Nehorai'89], it was shown that

√
N
(
θ̂k,N − θk

)
D−−−−→

N→∞
N
(
0, ω2

k

)
with

ω2
k =

σ2

2 ‖Πa′(θk)‖22

K∑
`=1

λ` |a(θk)∗u`|2
(λ` − σ2)2

.
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DoA estimation

The MUSIC method (5)
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Figure : MSE of θ̂1,N (MUSIC) and CRB for M = 20 and N = 100, θ1 = 0,
θ2 = 5× 2π

M
, Γ = I, against SNR = -10 log(σ2).
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DoA estimation

Large dimensional regime - Spectral projections (1)

Context. y1, . . . ,yN i.i.d. NCM (0,RN ), with RN having eigenvalues
λ1,N ≥ . . . ≥ λK,N > σ2 (mult. M −K) such that K si �xed w.r.t. N .

Detectability condition. The K sources are detectable if for all
k ∈ {1, . . . ,K},

λk,N −−−−−−→
M,N→∞

λk > σ2
(
1 +
√
c
)
.

We assume this condition from now on.

Behaviour of the spectral projections ûk,N û∗k,N and Π̂N ?

Due to the increasing dimension, we consider sesquilinear forms
d∗
1,N ûk,N û

∗
k,Nd2,N .
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DoA estimation

Large dimensional regime - Spectral projections (2)

Theorem [Paul'07]

Let y1, . . . ,yN i.i.d. NCM (0,RN ), with RN having eigenvalues
λ1,N ≥ . . . ≥ λK,N > σ2 (mult. M −K) such that K is �xed w.r.t. N .

If, for k ∈ {1, . . . ,K}, λk,N −−−−−−→
M,N→∞

λk and

λ1 > . . . > λK > σ2
(
1 +
√
c
)
,

then for all deterministic unit norm vectors d1,N ,d2,N ,

d∗1,N ûk,N û∗k,Nd2,N − hσ2,c(λk)d∗1,Nuk,Nu∗k,Nd2,N
a.s.−−−−−−→

M,N→∞
0,

where

hσ2,c(λ) =

(
λ− σ2

)2 − σ4c

(λ− σ2) (λ− σ2(1− c)) .
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DoA estimation

Large dimensional regime - Spectral projections (3)

Remark 1. Natural extension when multiplicity of λk greater than 1.

Remark 2. d∗1,N ûk,N û∗k,Nd2,N is an asymptotically biased estimator of
d∗1,Nuk,Nu∗k,Nd2,N due to the factor hσ2,c(λk). Moreover,

hσ2,c(λk) ≈ 1 if c ≈ 0 or σ2 ≈ 0.

Corollary 1. Setting d1,N = d2,N = u`,N , we have for all k, ` ∈ {1, . . . ,K},∣∣û∗k,Nu`,N
∣∣2 = hσ2,c(λk)δk−` + o(1).

Corollary 2. Concerning the noise subspace projection,

d∗1,NΠ̂Nd2,N = d∗1,NΠNd2,N +

K∑
k=1

(
1− hσ2,c(λk)

)
d∗1,Nuk,Nu∗k,Nd2,N .
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DoA estimation

MUSIC in the large dimensional regime (1)

Asymptotic behaviour of the MUSIC cost function
[Mestre-Lagunas'08]

Under the conditions of the previous theorem, it holds

sup
θ∈[−π,π]

|η̂N (θ)− η̄N (θ)| a.s.−−−−−−→
M,N→∞

0

where the asymptotic equivalent η̄N (θ) is given by

η̄N (θ) = ηN (θ)︸ ︷︷ ︸
Pseudo-spectrum

+

K∑
k=1

(
1− hσ2,c(λk)

)
|a(θ)∗uk,N |2︸ ︷︷ ︸

Bias

.

What is the impact of this bias on the DoA estimates ?
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DoA estimation

MUSIC in the large dimensional regime (2)

Widely spaced DoA. If θ1, . . . , θK are �xed w.r.t. M,N , and Ik is a
compact interval of [−π, π] enclosing only θk, we can show that

sup
θ∈Ik

∣∣∣η̄N (θ)−
(

1− χk,N |a(θ)∗a(θk)|2
)∣∣∣ −−−−−−→

M,N→∞
0,

with χk,N bounded away from 0 and 1 as M,N →∞.

Function θ 7→ 1− χk,N |a(θ)∗a(θk)|2 has a unique global minimum at θK .

Thus η̂N (θ) has its K most deepest local minina converging w.p.1 to
θ1, . . . , θK .
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DoA estimation

MUSIC in the large dimensional regime (3)
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Figure : E[η̂N (θ)], pseudo-spectrum ηN (θ) and asymptotic equivalent η̄N (θ), M = 40,
N = 80, SNR=4 dB, Γ = I, θ1 = 0, θ2 = 5× 2π

M
.
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DoA estimation

MUSIC in the large dimensional regime (4)

Performance of MUSIC for widely spaced DoA

Assuming that K, θ1, . . . , θK are �xed with respect to M,N , and that the K
sources are detectable. Then we have

M
(
θ̂k,N − θk

)
a.s.−−−−−−→

M,N→∞
0.

Moreover,

N3/2 θ̂k,N − θk
ωk,N

D−−−−−−→
M,N→∞

N (0, 1),

where ωk,N depends explicitely on λ1,N , . . . , λK,N , σ
2,u1,N , . . . ,uM,N , and if

Γ = diag(γ1, . . . , γK),

ω2
k,N −−−−−−→

M,N→∞

6σ2(γk + σ2)

c2(γ2k − σ4c)
.
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DoA estimation

MUSIC in the large dimensional regime (5)

De�ning ρk = γk
σ2 as the SNR of the k-th source, we have in the uncorrelated

case

1

N3
ω2
k,N ≈

M,N�1

6(1 + ρk)

NM2(ρ2k − c)
≈

ρk�1

6

NM2ρk

which coincides with the CRB for large SNR.

Spatial periodogram. We can obtain the same results for the "low
resolution" spatial periodogram method which estimates the DoA at the K
most signi�cant local maxima of

θ 7→ a(θ)∗R̂Na(θ).
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DoA estimation

MUSIC in the large dimensional regime (6)
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Figure : MUSIC and spatial periodogram for widely spaced DoA, M = 40, N = 80,
K = 2 sources with DoA θ1 = 0, θ2 = 5× 2π

M
and Γ = I.
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DoA estimation

MUSIC in the large dimensional regime (7)

Closely spaced DoA. We assume K = 2, Γ = I and

θ2,N = θ1,N +
α

M
, α > 0.

In this case, we have

λ1,N −−−−−−→
M,N→∞

λ1 = 1 + |sinc(α/2)|+ σ2

λ2,N −−−−−−→
M,N→∞

λ2 = 1− |sinc(α/2)|+ σ2.

and the detectability threshold is now |sinc(α/2)| < 1− σ2
√
c.

For any compact K ⊂ R,

sup
β∈K

∣∣∣∣η̄N (θ1,N +
β

M

)
− κ(β)

∣∣∣∣ −−−−−−→M,N→∞
0,

where κ does not have local maxima at β = 0 or α in general.
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DoA estimation

MUSIC in the large dimensional regime (8)
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Figure : E[η̂N (θ)], pseudo-spectrum ηN (θ) and asymptotic equivalent η̄N (θ), M = 40,
N = 80, SNR=12 dB, Γ = I and θ1 = 0, θ2 = 0.25× 2π

M
.

Pascal Vallet (Bdx INP/IMS) Large dim. array proc. Peyresq 2017 78 / 127



DoA estimation

MUSIC in the large dimensional regime (9)

Performance of MUSIC for closely spaced DoA [Vallet et al.'15]

If K = 2, Γ = I, and

θ2,N = θ1,N +
α

M
,

where α > 0 is such that |sinc(α/2)| < 1− σ2
√
c, then for k ∈ {1, 2},

lim inf
M,N→∞

M
∣∣∣θ̂k,N − θk,N ∣∣∣ > 0.

Failure of MUSIC for closely spaced DoA ...
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DoA estimation

The G-MUSIC method (1)

Reminder. For k = 1, . . . ,K, w.p.1 as M,N →∞

λ̂k,N = φσ2,cN (λk,N ) + o(1),

|a(θ)∗ûk,N |2 = hσ2,cN (λk,N ) |a(θ)∗uk,N |2 + o(1).

where φσ2,cN , hσ2,cN are de�ned above, when K is �xed and the
detectability condition is satis�ed (limλK,N > σ2(1 +

√
c)).

Estimation.

φ−1σ2,cN

(
λ̂k,N

)
= λk,N + o(1),

|a(θ)∗ûk,N |2

hσ2,cN

(
φ−1σ2,cN

(
λ̂k,N

)) = |a(θ)∗uk,N |2 + o(1).
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DoA estimation

The G-MUSIC method (2)

G-MUSIC [Mestre-Lagunas'08]

De�ne

η̃N (θ) = 1−
K∑
k=1

|a(θ)∗ûk,N |2

hσ2,cN

(
φ−1σ2,cN

(
λ̂k,N

))
If K is �xed and the K sources are detectable, it holds that

sup
θ∈[−π,π]

|η̃N (θ)− ηN (θ)| a.s.−−−−−−→
M,N→∞

0

The G-MUSIC method consists in estimating the DoA as the K deepest local
minimizers of θ 7→ η̃N (θ), denoted in what follows θ̃1,N , . . . , θ̃K,N .

Pascal Vallet (Bdx INP/IMS) Large dim. array proc. Peyresq 2017 81 / 127



DoA estimation

The G-MUSIC method (3)

G for generalized (based of Girko's G-estimation ideas)

Large sample size. If cN ≈ 0,

hσ2,cN

(
φ−1σ2,cN

(
λ̂k,N

))
≈ 1,

and

η̃N (θ) ≈ η̂N (θ).

High resolution. Since the asymptotic G-MUSIC cost function is exactly the
pseudo-spectrum, the performance is expected to be better for closely spaced
DoA.
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DoA estimation

The G-MUSIC method (4)
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Figure : E[η̃N (θ)],E[η̂N (θ)], pseudo-spectrum ηN (θ) and asymptotic equivalent η̄N (θ),
M = 40, N = 80, SNR=4 dB, Γ = I, θ1 = 0, θ2 = 4× 2π

M
.
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DoA estimation

The G-MUSIC method (5)

Performance of G-MUSIC for widely spaced DoA [Vallet et al.'15]

Assuming that K, θ1, . . . , θK are �xed with respect to M,N , and that the K
sources are detectable. Then we have

M
(
θ̃k,N − θk

)
a.s.−−−−−−→

M,N→∞
0.

Moreover,

N3/2 θ̂k,N − θk
ωk,N

D−−−−−−→
M,N→∞

N (0, 1),

where ωk,N depends explicitely on λ1,N , . . . , λK,N , σ
2,u1,N , . . . ,uM,N , and if

Γ = diag(γ1, . . . , γK),

ω2
k,N −−−−−−→

M,N→∞

6σ2(γk + σ2)

c2(γ2k − σ4c)
.
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DoA estimation

The G-MUSIC method (6)
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Figure : MSE of DoA estimate of θ1 for G-MUSIC, MUSIC and spatial periodograms, for
M = 20 and N = 100, θ1 = 0, θ2 = 5× 2π

M
, Γ = I, against SNR = -10 log(σ2).
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DoA estimation

The G-MUSIC method (7)
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Figure : E[η̃N (θ)],E[η̂N (θ)], pseudo-spectrum ηN (θ) and asymptotic equivalent η̄N (θ),
M = 40, N = 80, SNR=14 dB, Γ = I and θ1 = 0, θ2 = 0.25× 2π

M
.
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DoA estimation

The G-MUSIC method (8)

Performance of G-MUSIC for closely spaced DoA [Vallet et al.'15]

If K = 2, Γ = I, and

θ2,N = θ1,N +
α

M
,

where α > 0 is such that |sinc(α/2)| < 1− σ2
√
c, then for k ∈ {1, 2},

M
∣∣∣θ̂k,N − θk,N ∣∣∣ a.s.−−−−−−→

M,N→∞
0.

Moreover,

N3/2 θ̂k,N − θk
ωk,N

D−−−−−−→
M,N→∞

N (0, 1),

where ωk,N depends explicitely on λ1,N , . . . , λK,N , σ
2,u1,N , . . . ,uM,N , and
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DoA estimation

The G-MUSIC method (9)
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Figure : MSE of DoA estimate of θ1 for G-MUSIC, MUSIC and spatial periodograms, for
M = 40 and N = 80, θ1 = 0, θ2 = 0.25× 2π

M
, Γ = I, against SNR = -10 log(σ2).
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DoA estimation

The G-MUSIC method (10)
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Figure : MSE of DoA estimate of θ1 for G-MUSIC, MUSIC and spatial periodograms, for
M = 40 and N = 80, θ1 = 0, θ2 = 0.25× 2π

M
, Γ = [1, 0.5; 0.5, 1], against SNR =

-10 log(σ2).
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DoA estimation

The G-MUSIC method (11)

Outlier probability. POUT = P
(⋃2

k=1

{∣∣∣θ̃k − θk∣∣∣ > |θ1−θ2|
2

})
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Figure : Outlier probability for GMUSIC and MUSIC, with M = 40 and N = 80, θ1 = 0,
θ2 = 0.25× 2π

M
, Γ = I, against SNR = -10 log(σ2).
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DoA estimation

Two ways to get rid o� the detectability condition (1)

G-MUSIC drawback. The main limitation of G-MUSIC lies in the K source
detectability condition: for all k ∈ {1, . . . ,K},

λk,N −−−−−−→
M,N→∞

λk > σ2(1 +
√
c),

which requires a su�ciently large SNR.

Solution 1. Decrease c, that is, reduce the dimension M , or in the best case,
trade sensors for samples.

Solution 2. Estimate consistently the covariance RN in the large
dimensional regime, i.e. �nd an estimator R̃N of RN such that∥∥∥R̃N −RN

∥∥∥
2

a.s.−−−−−−→
M,N→∞

0.
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DoA estimation

Two ways to get rid o� the detectability condition (2)

Beamspace MUSIC. Pre�ltering the data to focus the array onto an angular
sector Θ where the DoA are located, before applying MUSIC.

DFT Beamformer. Form L orthonormal beams a(ψ1,N ), . . . ,a(ψL,N ) with

{ψ1, . . . , ψL} =

{
−π +

2π(m− 1)

M
: m = 1, . . . ,M

}
∩Θ.
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DoA estimation

Two ways to get rid o� the detectability condition (3)

Filtered model. New samples ỹ1, . . . , ỹN i.i.d. with

ỹn = B∗Nyn

= Ãsn + ṽn,

where

I B = [a(ψ1), . . . ,a(ψL)] (beamforming matrix)

I Ã = [ã(θ1), . . . , ã(θK)], with ã(θ) = B∗a(θ).

I ṽn = B∗vn ∼ NCL(0, σ2I)

New SCM. R̃N = 1
N

∑N
n=1 ỹnỹ∗n.
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DoA estimation

Two ways to get rid o� the detectability condition (4)

Beamspace MUSIC algorithm [Forster-Vezzosi'87]

Estimate the DoA as the K deepest minima of

θ 7→
∥∥∥Π̃N ã(θ)

∥∥∥2
2
,

where Π̃N is the noise projector estimate based on the new samples ỹ1, . . . , ỹN .

Pascal Vallet (Bdx INP/IMS) Large dim. array proc. Peyresq 2017 94 / 127



DoA estimation

Two ways to get rid o� the detectability condition (5)

Dimensionality reduction 1. If Θ is �xed w.r.t. M,N (L scales with M,N)

L

N
−−−−−−→
M,N→∞

d =
|Θ|
2π

c ≤ c.

The minimal SNR for source detectability decreases.

Dimensionality reduction 2. If L is �xed w.r.t. M,N (thus |Θ| = O
(

1
M

)
)

The detectability condition disappears and we can recover
consistency with rate o

(
1
M

)
in a closely spaced DoA scenario.
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DoA estimation

Two ways to get rid o� the detectability condition (6)
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Figure : MSE of DoA estimate of θ1 for Beamspace-MUSIC, G-MUSIC, for M = 20 and
N = 100, θ1 = 0, θ2 = 0.25× 2π

M
, Γ = I, against SNR = -10 log(σ2) and focusing sector

s.t. |Θ| = 10 ∗ |θ2 − θ1|.
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DoA estimation

Two ways to get rid o� the detectability condition (7)

SCM drawback. In the case of ULA, the covariance matrix

R =

K∑
k=1

a(θk)a(θk)∗ + σ2I

is Toeplitz while the SCM

R̂N =
1

N

N∑
n=1

yny∗n

is not.
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DoA estimation

Two ways to get rid o� the detectability condition (8)

Toeplitz recti�cation. To improve the estimation of R, one can use the
orthogonal projection of R̂N onto the space T of Toeplitz matrices:

R̃N = πT

(
R̂N

)
,

where

πT (X) =

M−1∑
m=−(M−1)

tr (XE∗m) Em, Em =
1√

M − |m|
Jm

and

J =


1

. . .

1

 , J−1 := J∗ =

1
. . .

1

 .
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DoA estimation

Two ways to get rid o� the detectability condition (9)

R-MUSIC [Cazdow'87, Forster'01]

Estimate the DoA as the K deepest minimizers θ̃1,N , . . . , θ̃K,N of

θ 7→ η̃N (θ) =
∥∥∥Π̃Na(θ)

∥∥∥2
2
,

where Π̃N is the noise projector estimate based on the recti�ed SCM R̃N .
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DoA estimation

Two ways to get rid o� the detectability condition (10)

Performance of R-MUSIC [Vallet-Loubaton'17]

The following assertions hold:

∥∥∥R̃N −RN

∥∥∥
2

a.s.−−−−−−→
M,N→∞

0.

supθ |η̃N (θ)− ηN (θ)| a.s.−−−−−−→
M,N→∞

0.

For widely/closely spaced DoA scenarios introduced above,

M
∣∣∣θ̃k,N − θk∣∣∣ a.s.−−−−−−→

M,N→∞
0.
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DoA estimation

Two ways to get rid o� the detectability condition (11)

Remark. The operator norm consistency of R̃N holds whatever the order of
magnitude of the eigenvalues of RN compared to σ2(1 +

√
c).

CLT.

M3/2 θ̃k,N − θk
ρk,N

D−−−−−−→
M,N→∞

N (0, 1).

where

ρ2k,N =
cN

∥∥∥R1/2
N Tk,NR

1/2
N

∥∥∥2
F∥∥∥ΠN

a′(θk)
M

∥∥∥4
2

.

with Tk,N independent of σ2 (explicitly known).

⇒ MSE stagnation for large SNR
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DoA estimation

Two ways to get rid o� the detectability condition (12)
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Figure : MSE of DoA estimate of θ1 for Recti�ed-MUSIC, G-MUSIC, for M = 40 and
N = 80, θ1 = 0, θ2 = 0.25× 2π

M
, Γ = I, against SNR = -10 log(σ2)
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Other models, other problems and some perspectives
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (1)

In general, R is not a small rank perturbation of σ2I.

Motivation 1. The number of sources K may not be small compared to M .

Motivation 2. In the context of clutter/jammers,

R = AΓA∗ + C + σ2I,

where C = M
∫ π
−π a(θ)a(θ)∗dν(θ) with ν a certain measure representing the

spatial energy distribution of the clutter. For example, if dν(θ) = f(θ)dθ,
with supp(f) = [θ−, θ+] ⊂ (−π, π) and f continuous on (θ−, θ+), then

rank(C)

M
−−−−→
M→∞

1− θ+ − θ−
2π

.
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (2)

Theorem [Silverstein-Bai'95]

If y1, . . . ,yN i.i.d. NCM (0,RN ), with lim sup ‖RN‖ <∞ as M,N →∞. Then
with probability one,

µ̂N − µN w−−−−−−→
M,N→∞

0

where µM is a deterministic probability measure given through its Stieltjes
transform

mµN (z) =

∫
R

dµN (λ)

λ− z ,

which satis�es the following equation for all z ∈ C\R:

mµN (z) =
1

M
tr (RN (1− cN − cNzmµN (z))− zI)

−1
.
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (3)

Density. µN admits a density with compact support given by
[Silverstein-Choi'95]

dµN (λ)

dλ
=

1

π
lim
ε→0+

Im (mµN (λ+ iε)) .

Marcenko-Pastur distribution. When RN = σ2I, mµN (z) is solution to
the quadratic equation

mµN (z) =
1

σ2 (1− cN − cNzmµN (z))− z

and admits an analytical expression, from which the Marcenko-Pastur
distribution is obtained.
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (4)
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Figure : Silverstein-Bai distribution and histogram of the sample eigenvalues for
M = 200, N = 400, and R having eigenvalues 1, 8, 13 with proportions 6
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (5)

Support separation. In general, the support of µN splits in several
"clusters" with each eigenvalue of RN being related to a cluster.

Detectability condition. If σ2 = λK+1,N = . . . = λM,N is su�ciently
spaced from λ1,N , . . . , λK,N , then the �rst cluster is related to the eigenvalue
σ2 and splits from the others [Mestre'08].

Separation of the sample eig. In that case, with probability one,

λ̂K+1,N , . . . , λ̂M,N ∈
(
λ−, λ+

)
for all large M,N , while lim inf λ̂K+1,N > λ+, where (λ−, λ+) is any �xed
open interval enclosing only the �rst cluster.
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (6)
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Figure : Location of the sample eigenvalues w.r.t. the Silverstein-Bai distribution, for
M = 200, N = 400, and R having eigenvalues 1, 8, 13 with proportions 6
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (7)
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Figure : Location of the sample eigenvalues w.r.t. the Silverstein-Bai distribution, for
M = 200, N = 400, and R having eigenvalues 1, 8, 13 with proportions 198
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Other models, other problems and some perspectives

Large dimensional regime - non-�xed rank (8)

[Mestre-Lagunas'08] G-MUSIC in its most generality, assuming the source
number K dependent of M,N .

[Vinogradova et al.'13] Detection in spatially correlated noise, DoA
estimation in temporally correlated noise.

[Najim et al.'16] Performance of MUSIC in the presence of spatially spread
clutter.

[Mestre-Vallet'17] Signal detection through coherence tests.

[Combernoux et al.'15] Performance of LR-ANMF detector.
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Other models, other problems and some perspectives

Towards wideband array processing in large dimensions (1)

Wideband model. When considering uncorrelated wideband source signals,
the covariance matrix of the obserbations writes

R =

K∑
k=1

∫ 1/2

−1/2
bM (θk, ν + νc)bM (θk, ν + νc)

∗d%k(ν)︸ ︷︷ ︸
Rs

+σ2I,

where %k is the spectral measure of the k-th source and

bM (θ, ν) =
(

1, exp (iCθν) , . . . , exp (iC(M − 1)θν)
)T
,

with C > 0 a constant and νc the carrier frequency renormalized by the
sampling frequency.

In general, Rs is not rank-de�cient nor has well separated
signal/noise subspaces.
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Other models, other problems and some perspectives

Towards wideband array processing in large dimensions (2)

Spatio-temporal covariance matrix. To increase the dimensionality, a
standard technique [Bienvenu'83] consists in building the M × L stacked
vectors

y(L)
n = (y1,n, . . . , y1,n+L−1, . . . , yM,n, . . . , yM,n+L−1)

T

and R(L) = E
[
y
(L)
n y

(L)∗
n

]
= R

(L)
s + σ2IML,

R(L)
s =

K∑
k=1

∫ 1/2

−1/2
(bM (θ, ν + νc)⊗ bL(ν)) (bM (θ, ν + νc)⊗ bL(ν))

∗
d%k(ν)

with bL(ν) =
(

1, exp (iν) , . . . , exp (i(M − 1)ν)
)T

.

As L→∞ while M is �xed, a proportion of the eigenvalues of R
(L)
s related

to the K sources bandwidth split from the other ones which converge to 0.
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Other models, other problems and some perspectives

Towards wideband array processing in large dimensions (3)

Estimation. The ML×ML spatio-temporal covariance matrix R(L) is
usually estimated empirically by

R̂
(L)
N =

1

N

N∑
n=1

y(L)
n y(L)∗

n .

Large dimensional regime. Behaviour of the eigenvalues/eigenvectors of

R̂
(L)
N in the regime where M,L,N →∞ ?

y
(L)
1 , . . . ,y

(L)
N+L−1 are not i.i.d. (matrix Y

(L)
N =

[
y
(L)
1 , . . . ,y

(L)
N+L−1

]
has a

block-Hankel structure), and new results for this model are needed.
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Other models, other problems and some perspectives

Towards wideband array processing in large dimensions (4)

Theorem [Loubaton'16]

Let y1, . . . ,yN+L−1 i.i.d. NCM
(
0, σ2I

)
and µ̂N the e.s.d. of matrix R̂

(L)
N .

Assume M = M(N), L = L(N) s.t. dN := ML
N → d > 0 as N →∞.

With probability one,

µ̂N
w−−−−→

N→∞
µσ2,d,

where µσ2,d is the Marcenko-Pastur distribution with scale parameter d.

If moreover L = O (Nα) with α < 2
3 , then

λ̂
(L)
1,N

a.s.−−−−→
N→∞

σ2
(

1 +
√
d
)2

and λ̂
(L)
ML,N

a.s.−−−−→
N→∞

σ2
(

1−
√
d
)2

where λ̂
(L)
1,N ≥ . . . ≥ λ̂

(L)
M,N are the eigenvalues of R̂

(L)
N .
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Other models, other problems and some perspectives

Towards wideband array processing in large dimensions (5)

[Pham-Loubaton.'15] Test detection in the context of multipath channels
(sum of largest eigenvalues over the trace)

[Pham et al.'16] Analysis of the spatial smoothing on the MUSIC method
(narrowband model, but involves block-Hankel observations matrices)

[Pham-Loubaton'16] Optimization of the loading factor of trained
spatio-temporal Wiener �lters
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Other models, other problems and some perspectives

Other works

Robust array processing. [Couillet et al.'15], [Couillet'15]

Capacity of MIMO systems. [Telatar'99], [Chuah et al.'02], [Tulino et
al.'05], [Hachem et al.'08], ...
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Other models, other problems and some perspectives

Open problems in large dimensional array processing

Wideband array processing

Analysis of ESPRIT like methods

Higher-order detection and subspace methods, blind source separation
methods

Parametric detection
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Conclusion

Conclusion

Standard analysis of array processing methods based on large sample size
N � 1 is not reliable in practice when the number of sensors M is s.t.

M ≈ N.

The double asymptotic regime

M,N →∞, M
N
→ c > 0

is better suited to model this situation.

Large random matrix results provide accurate results on the behaviour of
eigenvalues/eigenvectors of the SCM to analyze standard detection/DoA
estimation methods, and to develop improved algorithms.
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