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Images are challenging
physical measurements,

not pictures!
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Outline

1 Maximum-a-posteriori estimation with Bayesian confidence regions

2 Maximum-a-posteriori estimation with unknown regularisation
parameters
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Imaging inverse problems

We are interested in an unknown image x ∈ Rn.

We measure y ∈ Cp, related to x by a statistical model p(y∣x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x.

For example, linear imaging problems of the form

y = Ax +w,

for some linear operator A with rank(A) < dim(x).
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior p(x), the posterior distribution of x given y

p(x∣y) = p(y∣x)p(x)/p(y)

models our knowledge about x after observing y.

In this talk we consider that p(x∣y) is log-concave; i.e.,

p(x∣y) = exp{−gy(x)}/Zy ,

where gy(x) is a convex function and Zy = ∫ exp{−gy(x)}dx.
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Convex formulations and log-concavity

For example, imaging inverse problems of the form

p(x∣y)∝ exp{−ψ(x) − φ(x)} (1)

where gy = ψ + φ is a convex function from Rn → (−∞,+∞]. Typically

ψ(x) = 1
2σ2 ∥y −Ax∥2

2

for some linear operator A ∈ Cp×n, and

φ(x) = α∥Bx∥† + 1S(x)

for some norm ∥ ⋅ ∥†, dictionary B ∈ Rn×n, and convex set S.
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rn

p(x∣y),

= argmin
x∈Rn

gy(x),
(2)

which can be computed very efficiently by convex optimisation (Combettes
& Pesquet 2011, Parikh & Boyd 2014).

Limitations

Raw MAP estimation fails to deliver basic elements of Bayesian
paradigm (x̂MAP provides very little information about p(x∣y)).

However, more advanced analyses require other tools (e.g. MCMC)
that are often very computationally expensive (Green et al. 2015).
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Illustrative example

Tomographic reconstruction of the Shepp-Logan phantom image from
noisy tomographic data (computing time 0.75 seconds).

Tomographic data Bayesian MAP estimate

Impressive results! but how confident are we about this result?
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Posterior credible regions

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert 2001)

C∗
α = {x ∶ gy(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α
p(x∣y)dx = 1 − α holds.

However, computing any Cα becomes intractable as n increases.
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Recent surveys on Bayesian computation

State-of-the art Bayesian computation - The big picture:

25th anniversary special issue on Bayesian computation
P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, ”Bayesian computation: a perspective on
the current state, and sampling backwards and forwards”, Statistics and Computing, vol. 25,
no. 4, pp 835-862, Jul. 2015.

Special issue on “Stochastic simulation and optimisation
in signal processing”
M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S.
McLaughlin, “A Survey of Stochastic Simulation and Optimization Methods in Signal Pro-
cessing” IEEE Sel. Topics in Signal Processing, in press.

M. Pereyra (UoB) Peyresq 2016 11 / 61



Outline

1 Maximum-a-posteriori estimation with Bayesian confidence regions
Bayesian uncertainty quantification in imaging inverse problems
Approximating Bayesian confidence regions by convex optimisation

Proposed approximation
Approximation error analysis

Applications to tomography and microscopy
Tomographic image reconstruction with a total-variation prior
Sparse image deblurring with an `1 prior

Conclusion

2 Maximum-a-posteriori estimation with unknown regularisation parameters
Hierarchical maximum-a-posteriori estimation
Proposed Bayesian inference methods
Applications to image processing

App. 1: Compressive sensing reconstruction with `1-wavelet analysis prior
App. 2: Image resolution enhancement with a total-variation prior

Conclusion

M. Pereyra (UoB) Peyresq 2016 12 / 61



Key observation: when n is large, if we use MYULA or Px-MALA to
generate a chain targeting p(x∣y), all samples score similarly w.r.t. gy!.

Figure : Trace of gy(Xk) for a Markov chain {Xk}Kk=1 related to a sparse
regression problem of dimension n = 104.
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Proposed approximation of C ∗
α

Theorem 1.1 (Pereyra (2016))

Suppose that the posterior p(x∣y) = exp{−gy(x)}/Zy is log-concave on Rn.
Then, for any α ∈ (4 exp (−n/3),1), the HPD region C∗

α is contained by

C̃α = {x ∶ gy(x) ≤ gy(x̂MAP) +
√
nτα + n)},

with positive constant τα =
√

16 log(3/α) independent of p(x∣y), and
where x̂MAP = argminx∈Rn gy(x) is the maximum-a-posteriori estimator of x.

Remark 1: C̃α is a conservative approximation of C∗
α , i.e.,

x ∉ C̃α Ô⇒ x ∉ C∗
α .

Remark 2: C̃α is available as a by-product in any convex inverse problem
that is solved by MAP estimation!
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Proof sketch (Theorem 1.1)

The proof is based on the following two information theory results:

Lemma 1

Suppose that p(x∣y) = exp{−gy(x)}/Zy is log-concave on Rn, then

P [∣gy(x) −E{gy(x)}∣ ≥ τn] ≤ 3 exp (−τ2n/16),

for any τ ∈ [0,2], and where E{gy(x)} = ∫Rn gy(x)p(x∣y)dx.

Lemma 2

Suppose that p(x∣y) = exp{−gy(x)}/Zy is log-concave on Rn, then

gy(x̂MAP) ≤ E{gy(x)} ≤ gy(x̂MAP) + n,

where x̂MAP = argminx∈Rn gy(x) is the maximum-a-posteriori estimator of x.
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Approximation error bounds

Is C̃α a “good” approximation of C∗
α?

Let γα and γ̃α = gy(x̂MAP) + n(τα + 1) be the thresholds defining the HDP
region C∗

α = {x ∶ gy(x) ≤ γα} and the approximation C̃α = {x ∶ gy(x) ≤ γ̃α}.

Theorem 1.2 (Finite-dimensional error bound (Pereyra 2016))

Suppose that p(x∣y) = exp{−gy(x)}/Zy is log-concave on Rn, then

0 ≤ γ̃α − γα ≤ ηα
√
n + n,

with positive constant ηα =
√

16 log(3/α) +
√

1/α independent of p(x∣y).

Remark 3: C̃α is stable (as n becomes large, the error γ̃α − γα ⪅ n).
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Approximation error bounds

Are the bounds of Theorem 1.2 tight?

Let X = {xn,n ∈ N} be discrete-time stochastic process. Assume that for
each n ∈ N the random vector x(n) = (x1,⋯, xn) has marginal distribution
pn(x(n)) = exp{−λ∑n

i=1 ∣xi ∣q}/λ−n/q with q ∈ [1,∞) and λ ∈ R+.

Corollary 3

For each n ∈ N, let γ(n)α and γ̃
(n)
α denote the threshold values of the HDP

region C
∗(n)
α and the approximation C̃

(n)
α associated with pn(x(n)). Then,

lim
n→∞

γ̃
(n)
α − γ(n)α

n
= 1 − 1/q.

Remark 4: The lower and upper error bounds of Theorem 1.2 are attained
by q = 1 and q →∞ (support constraint) when n →∞.
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Are the asymptotics of Corollary 3 relevant?

Laplace (q = 1) Gaussian (q = 2)

Figure : Normalised error e(n) = γ̃
(n)
α − γ(n)α

n
and asymptotics for q = 1 and q = 2,

and α = 0.2,0.1,0.05.
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Experiment 1: Tomographic reconstruction with TV prior

Recover x ∈ Rn from partially observed and noisy Fourier measurements

y = ΦFx +w,

where Φ is a (tomographic) mask and F is the 2D Fourier operator.

We use the Bayesian model

p(x∣y)∝ exp (−∥y −ΦFx∥2/2σ2 − λTV (x)), (3)

where TV (x) = ∥∇dx∥1−2 is the total-variation norm of x.

We compute the MAP estimator x̂MAP by convex optimisation.

x̂MAP = argmin
x∈Rn

∥y −ΦFx∥2/2σ2 − λTV (x).
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MRI reconstruction of the Shepp Logan phantom image

MAP estimation (Case 1: High SNR - σ = 7 × 10−3)

x0 y = ΦFx0 +w x̂MAP

MRI experiment (high SNR): (a) Shepp-Logan phantom image (128 × 128 pixels), (b) tomographic observation y (amplitude of

Fourier coefficients in logarithmic scale, σ = 7 × 10−3), (c) MAP estimate x̂MAP .

Suppose that the structure highlighted in red is clinically important (e.g., lesion).

Are we confident about this structure (its presence, intensity values, etc.)?

Idea: use C̃α to explore/quantify the uncertainty about this structure.
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Knockout hypothesis testing

Proposed “knockout” test: double negation approach - assume that the
structure is NOT present in the image and seek to REJECT the hypothesis.

Test procedure:

1 Generate a surrogate test image x† by modifying x̂MAP to remove the
structure of interest (in best agreement with prior).

2 If x† ∉ C̃α the model rejects x† with probability (1 − α), suggesting
that the structure is present in the true image with high probability.

3 Otherwise, if x† ∈ C̃α the posterior uncertainty about the structure is
too high to draw conclusions → increase measurements / reduce noise.
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MRI experiment - Knockout test (high SNR)

x̂MAP Test image x†

Knockout test result:
1 Score gy(x†) = 2.91 × 105.
2 The 99% threshold γ̃0.01 = gy(x̂MAP) + n(τ0.01 + 1) = 1.53 × 105.
3 Therefore x† ∉ C̃α, rejecting the knockout hypothesis and providing

evidence in favour of the structure considered.

Note: computing γ̃0.01 to perform this test required 75 milliseconds.
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MRI experiment - uncertainty quantification

Intensity uncertainty quantification
Find minimum and maximum structure intensity values within C̃α:

xmin
†

(structure intensity 0.27)

x̂MAP
(structure intensity 0.30)

xmax
†

(structure intensity 0.33)

Intensity of the structure in x̂MAP is 0.30 (surrounding intensity 0.20).

Surrogates xmin
† and xmax

† indicate uncertainty of the order of 10%.
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MRI experiment - Knockout test (low SNR)

MAP estimation (Case 2: Low SNR - σ = 7 × 10−2)

x̂′MAP Test image x′†

Knockout test result:

1 The 80% threshold γ̃0.80 = gy(x̂′MAP) + n(τ0.2 + 1) = 2.85 × 104.

2 Score gy(x′†) = 1.27 × 104, therefore x′† is a potential solution.

3 We conclude that, because of the lower SNR, it is not possible to
assert confidently that the structure is present in the image.

M. Pereyra (UoB) Peyresq 2016 25 / 61



MRI experiment - Approximation error analysis

To assess the approximation error we compute the exact HPD thresholds
γα by proximal Markov chain Monte Carlo integration (Pereyra 2015).

HDP threshold γα (high SNR) HDP threshold γα (low SNR)

Rel. approx. error (high SNR) Rel. approx. error (low SNR)
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Sparse image deblurring with an `1 prior

Recover a sparse high-resolution image x ∈ Rn from a blurred and noisy
observation

y = Ax +w,

where A is a linear blur operator and w is Gaussian noise.

We use the Bayesian model

p(x∣y)∝ exp (−∥y −Ax∥2/2σ2 − λ∥x∥1). (4)

with a Laplace or `1-norm prior for x promoting soft sparsity.

We compute the MAP estimator x̂MAP by convex optimisation

x̂MAP = argmin
x∈Rn

∥y −Ax∥2/2σ2 − λ∥x∥1.
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Microscopy experiment

Deblurring experiment - live cell microscopy dataset (Zhu et al. 2012):

Microscopic image y x̂MAP (log-scale)

Consider the molecular structure in the highlighted region:

Are we confident about this structure (its presence, position, etc.)?

Idea: use C̃α to explore/quantify the uncertainty about this structure.
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Microscopy experiment - Knockout test

Knockout test:

x̂MAP (log-scale) Test image x† (log-scale)

1 Score gy(x†) = 1.19 × 105.

2 The 99% threshold γ̃0.01 = gy(x̂MAP) + n(τ0.01 + 1) = 1.03 × 105.

3 Therefore x† ∉ C̃α, rejecting the knockout hypothesis and providing
evidence in favour of the structure considered.
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Microscopy experiment - uncertainty quantification

Position uncertainty quantification
Find maximum molecule displacement within C̃α:

x̂MAP
(log-scale)

Mocule position uncertainty
(±93nm × ±140nm)

Note: Uncertainty analysis (±93nm ×±140nm) in close agreement with the
experimental results (average precision 80nm) of Zhu et al. (2012).
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Microscopy experiment - Approximation error analysis

To assess the approximation error we compute the exact HPD thresholds
γα by proximal Markov chain Monte Carlo integration (Pereyra 2015).

HDP threshold γα Rel. approx. error
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Conclusion

New and general methodology to compute approximate HPD regions
for high-dimensional inverse problems that are convex.

Remarkable theoretical and computational properties: conservative,
stable, and available as by-product of MAP estimation.

Enables uncertainty exploration and quantification in imaging inverse
problems (e.g., knockout hypothesis testing).

Great potential for scientific imaging applications, particularly
medical, biological, and remote sensing.

Beyond point estimation: MCMC methods improve our understanding
and aid discovery.
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Bayesian model

We are interested in an unknown image x ∈ Rn.

We observe y ∈ Rp, related to x by p(y∣x) = exp{−`y(x)}.

The recovery of x from y is ill-posed or ill-conditioned.

We address this difficulty by using a prior distribution

p(x∣λ) = exp{−λh(x)}/C(λ)

with h ∶ Rn → [0,∞] promoting expected properties of x.

λ ∈ R+ is a “regularisation” (hyper-) parameter that controls the
delicate balance between observed and prior information.
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Maximum-a-posteriori estimation

Once p(x,y∣λ) = p(y∣x)p(x∣λ) is properly specified, x is typically estimated
by computing the MAP estimator

x̂λ = argmin
x∈Rn

`y(x) + λh(x)− logC(λ) − log p(y), (5)

which we assume computationally tractable and unique for a given λ.

We consider the infamous problem of (not) specifying λ.
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Bayesian treatment of unknown λ

The Bayesian framework allows estimating x without specifying λ.

We incorporate λ to the model by assigning it a gamma hyper-prior

p(λ) = βα

Γ(α)
λα−1 exp{−βλ}1R+(λ),

with fixed parameters α and β.

The extended model is

p(x, λ∣y) = p(y∣x)p(x∣λ)p(λ)
p(y)

∝
exp{−`y(x) − λh(x) − log p(λ)}

C(λ)

but C(λ) = ∫Rn exp{−λh(x)}dx is typically intractable!

If we had access to C(λ) we could either estimate x and λ jointly, or
alternatively marginalise λ followed by inference on x.
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Idea: Use MYULA or Px-MALA to estimate E[h(x)∣λ] over a λ-grid, and
then approximate logC(λ) via the identity d

dλ logC(λ) = E[h(x)∣λ].

Figure : Monte Carlo approximations of E [h(x)∣λ] for 4 widely used prior
distributions and for λ ∈ [10−3,102]. Surprise: they all coincide!
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Priors with k-homogenous sufficient statistics

Definition 2.1

k-homogeneity
The regulariser h is a k-homogeneous function if ∃k ∈ R+ such that

h(ηx) = ηkh(x), ∀x ∈ Rn,∀η > 0. (6)

Note: Property (6) holds for most models used in modern image
processing. In particular, all norms (e.g., `1, `2, total-variation, nuclear,
etc.), composite norms (e.g., `1 − `2), and compositions of norms with
linear operators (e.g., analysis terms of the form ∥Ψx∥1) are homogenous.
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Priors with k-homogenous sufficient statistics

A central contribution of this talk is to show that Pereyra et al. (2015):

Proposition 2.1

Suppose that h, the sufficient statistic of p(x∣λ), is k-homogenous. Then
the normalisation factor has the form

C(λ) = Dλ−n/k ,

with (generally intractable) constant D = C(1) independent of λ.

The proof follows straightforwardly by using the change of variables
u = λ1/kx and (6) to express C(λ) as a product of a function of λ and the
generally intractable constant D = ∫Rn exp{−h(u)}du.
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Joint maximum-a-posteriori estimation

Joint MAP estimation:

x̂∗, λ∗ = argmax
x, λ

log p(x, λ∣y),

Then 0n+1 ∈ ∂x,λ log p(x̂∗, λ∗∣y) which implies that

x̂∗ = x̂λ∗ = argmin
x∈Rn

`y(x) + λ∗h(x),

and, together with Proposition 2.1, that

λ∗ = n/k + α − 1

h(x̂λ∗) + β
. (7)
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Joint maximum-a-posteriori estimation

The values λ∗ can be identified by one-dimensional root-finding, and are
guaranteed to exist because t(λ) = h(x̂λ) is non-increasing.

In all our experiments p(x, λ∣y) is unimodal and λ∗ is unique, and can
computed by alternating maximisation of log p(x, λ∣y)

x(t) = argmin
x∈Rn

`y(x) + λ(t−1)h(x),

λ(t) = n/k + α − 1

h(x(t)) + β
,

(8)

which in our experiments converged within 5 to 10 iterations.

The theoretical conditions for uniqueness are currently under investigation.
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Marginal maximum-a-posteriori estimation

Marginal MAP estimation:

x̂† = argmax
x∈Rn

∫
∞

0
p(x, λ∣y)dλ,

= argmin
x∈Rn

`y(x) + (n/k + α) log{h(x) + β},
(9)

which incorporates the uncertainty about λ in the inferences.

We compute x̂† by majorisation-minimisation with the convex majorant

`y(x) + (α + n/k)q(x∣x(t)) ≥ `y(x) + (n/k + α) log{h(x) + β},

with

q(x∣x(t)) ≜ log{h(x(t)) + β} + h(x) − h(x(t))
h(x(t)) + β

≥ log{h(x) + β}.
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Marginal maximum-a-posteriori estimation

The resulting iterative scheme is

x(t) = argmin
x∈Rn

`y(x) + λ(t−1)h(x),

λ(t) = n/k + α
h(x(t)) + β

.
(10)

which is also an expectation-maximisation algorithm. Note that

x̂† = x̂λ† = argmin
x∈Rn

`y(x) + λ†h(x), λ† = (n/k + α)/(h(x†) + β).

Because n/k ≫ 1 we can expect x̂∗ and x̂† to be practically equivalent.

Again, the values λ† are guaranteed to exist and can be identified by
one-dimensional root-finding. In all our experiments λ† is unique.
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Application 1: CS with `1-wavelet analysis prior

Recover an original image x ∈ Rn of size n = 512 × 512 from a
compressed and noisy measurement

y = Φx +w,

of size p = n/2, where Φ ∈ Rp×n is a compressive sensing random matrix
and w ∼ N (0, σ2Ip) is Gaussian noise with σ2 = 10.

We use the analysis prior

p(x∣λ) = exp{−λ∥Ψx∥1}/C(λ)

where Ψ is a Daubechies 4 wavelet frame.

Note: ∥Ψ(x)∥1 is k-homogenous with k = 1.
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Experiment 1: Boat

Joint MAP x∗

(λ∗ = 56.4, PSNR=33.4)

Marg. MAP x†

(λ† = 56.4, PSNR=33.4)

Figure : Compressive sensing experiment with the Boat image. [Left:] Bayesian
joint MAP estimate (8). [Right:] Bayesian marginal MAP estimate (10).
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We compare the Bayesian methods (8) and (10) with the SURE-type
technique SUGAR Deledalle et al. (2014) and with the MSE oracle.

Experiment 1: Boat

Table : Values of λ, estimation accuracy (PSNR and SSIM), and computing
times for the Boat experiment.

λ PSNR SSIM time [sec]

Joint MAP (8) 56.4 33.4 0.96 299

Marginal MAP (10) 56.4 33.4 0.96 299

SUGAR 1.10 18.4 0.55 1137

MSE Oracle 38.2 33.5 0.96 n/a

Least-squares n/a 17.7 0.52 0.04
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PSNR vs λ Iterates λ(t)

Figure : Compressive sensing experiment with the Boat image. [Left] Estimation
PSNR as a function of λ. [Right] Evolution of the iterates λ(t) for the proposed
Bayesian methods (8) and (10) (left axis) and for SUGAR (right axis).
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Experiment 2: Mandrill

We compare the Bayesian methods (8) and (10) with the SURE-type
technique SUGAR and with the MSE oracle.

Table : Values of λ, estimation accuracy (PSNR and SSIM), and computing
times for the Mandrill experiment.

λ PSNR SSIM time [sec]

Joint MAP (8) 2.04 25.3 0.87 229

Marginal MAP (10) 2.04 25.3 0.87 229

SUGAR 0.95 22.9 0.80 984

MSE Oracle 4.65 26.0 0.90 n/a

Least-squares n/a 18.6 0.22 0.04
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Application 2: image deblurring with a total-variation prior

Recover an original image x ∈ Rn from a blurred and noisy observation

y = Hx +w,

where H is a 9× 9 blur operator and w is Gaussian noise (BSNR = 40dB).

Many image processing methods use the convex model

π(x∣y, λ)∝ exp (−∥y −Hx∥2/2σ2 − λTV (x)), (11)

where TV (x) = ∥∇dx∥1−2 is the total-variation pseudo-norm.

Note: TV (x) is k-homogenous with k = 1!

M. Pereyra (UoB) Peyresq 2016 53 / 61



Cameraman Boat

House Man

Figure : Deblurring experiment using the proposed Bayesian method (10).
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Table : Values of λ, PSNR and computing times [secs] for the Cameraman and
Boat experiments.

Cameraman Boat

λ PSNR time λ PSNR time

Joint MAP (8) 0.04 26.6 261 0.02 30.1 1118

Marg. MAP (10) 0.04 26.6 261 0.02 30.1 1118

SUGAR 0.01 26.5 1120 0.004 30.0 4790

MSE Oracle 0.03 26.6 37 0.02 30.1 160

Bayesian Oracle 0.02 26.6 37 0.01 30.1 160

Least-squares n/a 23.0 0.02 n/a 25.8 0.02
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Table : Values of λ, PSNR and computing times [secs] for the House and Man

experiments.

House Man

λ PSNR time λ PSNR time

Joint MAP (8) 0.03 33.6 221 0.03 30.2 1136

Marg. MAP (10) 0.03 33.6 221 0.03 30.2 1136

SUGAR 0.009 33.0 221 0.005 30.1 4870

MSE Oracle 0.03 33.6 37 0.015 30.2 162

Bayesian Oracle 0.02 33.5 37 0.016 30.1 162

Least-squares n/a 27.5 0.02 n/a 26.9 0.04
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Conclusion

Conclusions

We proposed two new hierarchical Bayesian methods for MAP
inference with unknown regularisation parameters.

When p(x∣λ) = exp{−λh(x)}/C(λ) with h k-homogenous, then

C(λ) = Dλ−n/k .

λ is estimated by one-dimensional root-finding, or by iterative
optimisation (convergence properties under investigation).

Promising performance on image compressive-sensing and deblurring
with analysis and total-variation priors.

Beyond point estimation: MCMC methods improve our understanding
and aid discovery.
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Thank you!

M. Pereyra (UoB) Peyresq 2016 59 / 61



Bibliography I

Combettes, P. L. & Pesquet, J.-C. (2011), Proximal splitting methods in signal
processing, in H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke
& H. Wolkowicz, eds, ‘Fixed-Point Algorithms for Inverse Problems in Science and
Engineering’, Springer New-York, pp. 185–212.
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