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Classification (2.5 hours)
Clustering (1.5 hours)
Practical sessions (1 hour)

Understand the difference between clustering and classification
Understand when to apply clustering

Understand the EM algorithm

Being able to derive the EM updates of a mixture models

Being able to learn by yourself!
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o The goal is to identify some structure in the .data

o Typically groups of data points sharing same properties
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© Mixture models
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Mixture of Gaussians

po, (x) = Gaussian(pg, X).

o How shall we learn the parameters?



pe, (x) = Gaussian (g, Xk).

o How shall we learn the parameters?

o By maximimum likelihood?

Ian(x;) = Zln mxGaussian(pg, Xk).



Mixture of Gaussians

pe,(x) = Gaussian(px, Xk).

o How shall we learn the parameters?

o By maximimum likelihood?
In H p(x;) = Z In Zﬂk(}aussian(uk, k).
i i k

o No closed form solution :-(
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Mixture models: latent variable view

p(x|z) = Gaussian(u,, X,), P(z) = Categorical () .

Do we recover the original model?

p(x) = Z P(z)p(x|z) = Z 7 Gaussian (g, Xk).
z k



o The differential is defined as
Hlp(x)] = —/p(x) In p(x) dx.

The entropy of a Gaussian random variable is given by 2 In2me + 3 In|%|.



o The differential is defined as
Hlp(x)] = —/p(x) In p(x) dx.
The entropy of a Gaussian random variable is given by 2 In2me + 3 In|%|.

o The measures the difference between two
densities:

KL[qllp] = /q(X)ln ZEX dx

The KL is asymmetric (thus not a distance) and only zero if g(x) = p(x) for
all x.



Expectation-Maximisation (EM)

The EM algorithm maximises a lower bound to the log-marginal likelihood (in
presence of latent variables, like parameters):
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The EM algorithm maximises a to the log-marginal likelihood (in
presence of latent variables, like parameters):

o Using Jensen's inequality, we get for a distribution g(Z) within a tractable
family:

In p(x|0) = In/p(x,Z|0)dZ
2/ n P 210) 5

=—F(q,0).

o The quantity F(q, ) can be interpretted as the (variational) free energy
from statistical physics.



The F(q,0) can be decomposed into two different ways:

~F(q,0) = Inp(x|6) — KL[q(Z)]| ], (E step)
~F(q,0) = + H[q(2Z)]. (M step)
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The F(q,0) can be decomposed into two different ways:

~F(q,0) = Inp(x|6) — KL[q(Z)]| ], (E step)
~F(q,0) = + H[q(2Z)]. (M step)

o EM maximises the lower bound by alternating between these two steps; it
converges to local optimum of In p(x|0).

By construction, the EM algorithm ensures a monotonic increase of the

bound.

Still ok if g is a good approximation of the true posterior (approximate E
step).

©
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EM can be viewed as type Il maximum likelihood (ML2).

©



EM in pictures
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KL(ql[p)

L(g,0)

Inp(X|0)

KL(gl[p) = 0

£(q,0”)

A

Inp(X]6°')

£(¢,0™)

In p(X[6"™)

o Maximise lower bound by alternating between:
Set g(Z) = p(Z]x, 0) for fixed 6.
Maximise (In p(x, Z|0)) for given q(Z).



EM in pictures

KL(ql[p)

L(q.0)

Inp(X|0)

KL(gl[p) = 0

L(g,6°)

A

Inp(X]6°')

£(¢,0™)

In p(X[6"™)

o Maximise lower bound by alternating between:
Set g(Z) = p(Z]x, 0) for fixed 6.
Maximise (In p(x, Z|0)) for given q(Z).

o Gradient ascent to local maxima of In p(x|6).
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Mixture of Gaussians

Zn

p(x|z) = Gaussian(p,, 3,),
Xn P(z) = Categorical () .

N

o Log-complete likelihood:

In H p(x;,z) = Z Z 0k(z) (Ing + In Gaussian (g, Xk)) -

ik



Mixture of Gaussians

Zn

p(x|z) = Gaussian(pu, X,),
*n P(z) = Categorical () .

o Log-complete likelihood:

In H p(xi,z) = Z Z 0k(zi) (In Tk + In Gaussian(pg, X)) -
i ik

o Responsibilities (E step):

mrGaussian (g, i)
i = P =k i) = " .
Pi (z Ixi) >, mGaussian (g, 3) ()




Mixture of Gaussians (Old Faithful geyser data)
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Q Assign data point x; to its closest cluster:

1 if k=argmin; |x; — w3,
= 0 otherwise.

Q Recompute the cluster means after having assigned all data points.
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[ 1 if k=argmin, llxi — pil)?,
=13 0 otherwise.

Q Recompute the cluster means after having assigned all data points.
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Q Assign data point x; to its closest cluster:

1 if k=argmin; |x; — w3,
= 0 otherwise.

Q Recompute the cluster means after having assigned all data points.

Let us consider pg, (x) = Gaussian(pk, c/):

lim pgj = lim mrexp (=5 llxi — p?)
e—0 1 € ’\OZ/WIGXP (_QLEHXI_H/H2)



Other use cases?

Density estimation:

p(:l?)“

<Y



Other use cases?

Density estimation:

p(r)y

<Y
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Failure mode
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Probabilistic principal component analysis (PPCA)

o PCA is a standard pre-processing tool for (linear) )
dimensionality reduction. , &

o It uses a maximal variance criterion (or minimal g .
mean squared reconstruction error). .

o Standard algorithms are O(D3) (e.g. Gaussian -
elimination).



Probabilistic principal component analysis (PPCA)

o PCA is a standard pre-processing tool for (linear) )
dimensionality reduction. , &

o It uses a maximal variance criterion (or minimal g .
mean squared reconstruction error). .

o Standard algorithms are O(D3) (e.g. Gaussian » w -
elimination).

y1 o PPCA assumes a single Gaussian latent variable
‘ and a Gaussian likelihood.
l o ML solution spans same subspace as PCA

solution.
X1 o Standard EM is O(DNd) per iteration.



Probabilistic principal component analysis (PPCA)
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Probabilistic principal component analysis (PPCA)

xi=Wz;+pu+e

o Likelihood (noise model):

0_2
\ xi|z; ~ Gaussian(Wz; + p, U2ID).




Probabilistic principal component analysis (PPCA)
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pa— L W o Continuous latent variable:
Xn
N

N z; ~ Gaussian(0, 1 4).
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Probabilistic principal component analysis (PPCA)

xi=Wz;+pu+e

)
2 Zn o Likelihood (noise model):
\ xi|z; ~ Gaussian(Wz; + /,L,UzID).
pa— L W o Continuous latent variable:
X
N z; ~ Gaussian(0, 1 4).

o ML estimate of the projection matrix: W = Uy(Ag — 0%14)/?R.
o ML estimate is equivalent to PCA solution up to a rotation R.

o Residual variance o is given by 515 ", 4 A






p(x) = Gaussian(u, WW ' + o21p).



Mixtures of probabilistic principal component analysers

p(x) = >4 mip(x|z = k),
p(x|z = k) = Gaussian(py, W, W, + o21p),
P(z) = Categorical (7).
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o Clustering (very) high-dimensional data:
Stable due to low rank approximation of the covariance matrices.
Captures correlations between local leading directions.
Rotational ambiguity vanishes.
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o Combining local analysers to obtain nonlinear generative models.



p(x) = >4 mip(x|z = k),
p(x|z = k) = Gaussian(p, +a?lp),
P(z) = Categorical (7).

o Clustering (very) high-dimensional data:

Stable due to low rank approximation of the covariance matrices.
Captures correlations between local leading directions.
Rotational ambiguity vanishes.

o Combining local analysers to obtain nonlinear generative models.

o Possible issues are component misalignments and dimension mismatches.
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Can we fix this?



@ Models based on Gaussian noise are sensitive to outliers!
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o A robust reformulation is based on the Student-t density:
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@ Models based on Gaussian noise are sensitive to outliers!

o A robust reformulation is based on the Student-t density:

PO
~log P(x)

o Replace the Gaussian components by Student-t components:

p(x) = 2kmep(x|z = k),
p(x|z = k) = Student(p, + 0?lp, ),
P(z) = Categorical () .



The Student-t density is defined as follows:!

v viD
r(5°) :

Student(p, 3, v) = QI ERE (1 + %(x —p) B (x — u))

Parameter v > 0 is the
o The Cauchy density is recovered for v = 1.

o The Gaussian density is recovered when v — co.

IStudent's t density was published in 1908 by William S. Gosset, while he worked at Guinness
Brewery in Dublin and was not allowed to publish under his own name.



The Student-t density is defined as follows:!

v+D
2

r(442) L
r(%)(vm)P/2|31/2 (1+y("_“) > (X—u)>

Student(p, 3, v) =

Parameter v > 0 is the :
o The Cauchy density is recovered for v = 1.

o The Gaussian density is recovered when v — co.

The Student-t density can be reformulated as an infinite mixture of scaled
Gaussians:

Student(u,E,l/):/ Gaussian(p, 3/ v) du,
0

where u is a

IStudent's t density was published in 1908 by William S. Gosset, while he worked at Guinness
Brewery in Dublin and was not allowed to publish under his own name.



For x € R™, the Gamma density is defined as follows:

Gamma(a, 8) = l_f:)xal exp{—pBx},

OC,B > 07
where T'(v) = foo

o vUteVdv is the gamma function.

p(x)
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o USPS data set: 16 x 16 pixels images of digits (0 to 9).
o Only (respectively 731 and 658) images of digits 2 and 3 are kept.
@ 100 (randomly chosen) images of digit 0.
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Revisiting the digit recognition problem
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o Pixelised digits converted from grey scale to binary images by thresholding.
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L4 9Y™dH

o Pixelised digits converted from grey scale to binary images by thresholding.

o Images are represented by a binary vector x = (xq, ..., xg).
o Goal is to cluster the images (~recognise digit automatically):

P(X):Zﬂ'kpgk(x), Zﬂk:]., 71';(20.
k k
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Pixelised digits converted from grey scale to binary images by thresholding.

Images are represented by a binary vector x = (xq, . .

.,Xd).

Goal is to cluster the images (~recognise digit automatically):

P(x) = mPe,(x),
k

Zﬂk = ].7
k

Each component is a product of Bernoulli distributions:

P, (x) = H Bernoulli( ).

J

71';(20.



Mixture of Bernoulli distributions

z

P(x|z) = H Bernoulli(p;),
j

. P(z) = Categorical () .



Mixture of Bernoulli distributions

z

P(x|z) = H Bernoulli(p;),
j

x P(z) = Categorical ().

o Log-complete likelihood:

In H p(xi,z) = Z Z 5k(z) (In Tk + Z In Bernoulli(,uzj)) .
i ik

J



P(x|z) = H Bernoulli(p;),
j

* P(z) = Categorical ().

o Log-complete likelihood:

Ian(x,-,z,-) = ZZ In 7k —|—Z|n Bernoulli(p;)
i ik

Jj
° (E step):

7 [ [; Bernoulli (1)

i = P = k i) = " .
Pr (z [xi) >~ ™ [1; Bernoulli (uy7)




P(x|z) = H Bernoulli(p;),
j

* P(z) = Categorical ().

o Log-complete likelihood:

Ian(x,-,z,-) = ZZ In 7k —|—Z|n Bernoulli(p;)
i ik

Jj
° (E step):

7 [ [; Bernoulli (1)
>~ ™ [1; Bernoulli ()

o Mean and mixture proportions (M step):

1 ng
= — E PikXi, Tk = —» ne= § Pk
ny = n .
1 1

Pki = P(Z = k‘X,‘) =



Cluster means

3 components



Cluster means

3 components 1 component
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Admixtures

o Mixture model:
7w~ Dirichlet (),
zj|w ~ Categorical (),

x|z ~ Poz,(Xi)-



Admixtures

o Mixture model:
7t~ Dirichlet (a),
zj|w ~ Categorical (),

Xi|Zi ~ PoZ,(Xi)-

o Admixture model:
7; ~ Dirichlet (ax) ,
zjj|wj~ Categorical (),

xij|zij ~ pe., (Xij)-



Dirichlet distribution

p ~ Dirichlet (@) =




TS ) 1 o

p ~ Dirichlet () = I (o ) wl
J .

OzJ'}O.

o Conjugate prior to the Multinomial distribution (and Categorical):

p(p|x) oc P(x|p)p H gt



Dirichlet distribution

r(z_] a;) aj—1

p ~ Dirichlet (@) = I, F (o ) wl
J .

OZJ'>O.

o Conjugate prior to the Multinomial distribution (and Categorical):

p(plx) o P(x|p)p H

o Defines a distribution over the simplex:

P
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Topic models

Q\\
=l stackoverflow

WIGEEDR
‘> ldeaScale flickr

where ideas come to life

o Extremely popular (e.g., more than 14k citations in Google Scholar)
o Organise and browse large document collections

o Capture underlying semantic structure (in an unsupervised way)

°

Easily extended to discover trends, to account for the author, to model
multilingual documents, to relate to the social network, etc.



Latent Dirichlet allocation (LDA)
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(Blei et al., JMLR 2003)

Observations are word counts per
document. LDA assumes an admix-
ture model:

X e NP

Ny
Xy ~ H Z OrgCategorical(¢y).

i=1 k



Observations are word counts per

document. LDA assumes an admix-

ture model:

3 VxD

7000 x E N ’

w00 Ny

Xq ~ H E 0raCategorical (¢ ).
el

LDA infers a low-rank approximation of the matrix of counts:
E(X)~ ®0", Xg ~ Multinomial(®64, Ny)

where ® ¢ ]RKXK, ®c REXK and K is small.
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= 6000f
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document index

Observations are word counts per
document. LDA assumes an admix-
ture model:

X e NVXD

Ny
Xq ~ H Z 0raCategorical (¢ ).

i=1 k

LDA infers a low-rank approximation of the matrix of counts:

E(X)~ ®0",

X4 ~ Multinomial($84, Ny)

where ® ¢ ]RKXK, ®c REXK and K is small.

Simple generative model for text, based on a

representation.



o Let V be the size of the vocabulary and K the number of topics.
o Topic k is defined as the categorical distribution ¢, over the vocabulary.
o Document d is summarised as a mixture of these topics.
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o Let V be the size of the vocabulary and K the number of topics.
o Topic k is defined as the categorical distribution ¢, over the vocabulary.
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@ The number of words Ny in document d is drawn from a Poisson.
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o Let V be the size of the vocabulary and K the number of topics.
o Topic k is defined as the categorical distribution ¢, over the vocabulary.
o Document d is summarised as a mixture of these topics.

me@ |
s i
- |

R O Y O |x\m

Document d is generated as follows:
@ The number of words Ny in document d is drawn from a Poisson.

@ The topic proportions @4 in document d are drawn from a Dirichlet; this vector
defines a categorical distribution over the topics.

© The topic z; associated to word w; is drawn from 8y; word w; is then drawn from
the categorical distribution ¢;.



a _-> z; > W )< @4— B

Ny K
D

64 ~ Dirichlet (alk), z;|04 ~ Categorical(8q),
¢k ~ Dirichlet (81v), wj|zj, { kY K_; ~ Categorical(,,).



«@ _.>-> Zj > W | @4'_ B

Nd K
D
64 ~ Dirichlet (alk), z;|04 ~ Categorical(8q),
¢k ~ Dirichlet (81v), wj|zj, { kY K_; ~ Categorical(,,).

Collapsed Gibbs sampler
p(zi = klw, z\') o p(w|z)p(2) :

where n4 is the number of times word v is assigned to topic k in document d.



Applications and extensions of topic models

“Budgets” “Children” “Education”
MILLION CHILDREN SCHOOL
TAX WOMEN TUDENTS
PROGRAM PEOPLE SCHOOLS
BUDGET CHILD EDUCATION
BILLION YEARS TEACHERS
FEDERAL FAMILIES HIGH
YEAR WORK PUBLIC
ENDING PARENTS TEACHER
NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA  MONEY MEN STATE
THEATER PROGRAMS PERCENT
GOVERNMENT ~ CARE
LOVE CONGRE:

‘The William Randolph Hearst Foundation will give 5125 million fo Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our boud felt that we had a
real opportunity to make a mark on the future of the performing arts with these crants an act
every bit as lmpmmm as our traditional areas of support in health, medical research. education
and the social services” Hearst Foundation President Randolph A, Hearst said Monday in
announcing the erants. Lincoln Center’s share will be $200.000 for its new buildine. which
will Louse young artists and provide new public facilities. The Metropolitan Opera Co. and

New York Philharmonic will receive $400.000 each. The Juilliard School. where music and
the performing arts are taught. will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make  its usual annual $100.000

donation. too.




Applications and extensions of topic models

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN  SCHOOL
TAX WOMEN STUDENTS
PROGRAM PEOPLE SCHOOLS
BUDGET CHILD EDUCATION
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OPERA  MONEY A STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS  GOVERNMENT ~CARE ELEMENTARY
LOVE CONGRE: FE

‘The William Randolph Hearst Foundation will give 5125 million fo Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our boud felt that we had a
real opportunity to make a mark on the future of the performing arts with these crants an act
every bit as important as our traditional areas of suppor in health, medical rescarch. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the erants. Lincoln Center’s share will be $200.000 for its new buildine. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and

o

New York Philharmonic will receive $400.000 each. The Juilliard School. where music and
the performing arts are taught. will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make  its usual annual $100.000

donation. too.

o Author topic model
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“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN ~ SCHOOL
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BILLION YEARS TEACHERS
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STATE MANIGAT
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MONEY MEN STATE
PROGRAMS PERCENT PRESIDENT
ACTRESS  GOVERNMENT ~CARE ELEMENTARY
LOVE CONGRE: LIFE

‘The William Randolph Hearst Foundation will give 5125 million fo Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our boud felt that we had a
real opportunity to make a mark on the future of the performing arts with these crants an act
every bit as important as our traditional areas of suppor in health, medical rescarch. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the erants. Lincoln Center’s share will be $200.000 for its new buildine. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School. where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make  its usual annual $100.000
donation, too.
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o Author topic model

o Topics over time
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FEDERAL FAMILIES HIGH
E. WORK PUBLIC
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MONEY MEN STATE
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‘The William Randolph Hearst Foundation will give 5125 million fo Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our boud felt that we had a
real opportunity to make a mark on the future of the performing arts with these crants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the erants. Lincoln Center’s share will be $200.000 for its new building. whi
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School. where music and
the performing arts are taught. will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make  its usual annual $100.000
donation, too.
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o Author topic model
o Topics over time

o N-gram topic models
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“Arts” “Budgets “Children” “Education’
NEW MILLION CHILDREN ~ SCHOOL
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MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL ~ YEAR WORK PUBLIC
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ACTOR  NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA  MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS  GOVERNMENT ~CARE ELEMENTARY

LOVE

‘The William Randolph Hearst Foundation will give $1.25 nullion to Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make amark on the future of the performing arts with these rants an act
every bit as important as our traditional areas of support in health. medical rescaich. education
and the social <crvices” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the Lincoln Center’s share will be $200.000 for its new build:

will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School. where music and

the performing arts are taught. will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make  its usual annual $100.000
donation. too.

Author topic model
Topics over time
N-gram topic models
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Hierarchical topic models
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“Arts” “Budgets “Children” “Education”
NEW MILLION CHILDREN ~ SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YE. WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR  NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA  MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS  GOVERNMENT ~CARE ELEMENTARY

LOVE CONGRE: LIFE HAITI

‘The William Randolph Hearst Foundation will give 5125 million fo Lincoln Center. Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our boud felt that we had a
real opportunity to make a mark on the future of the performing arts with these erants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
mnowncing the grants. Lincoln Center's share will be 00 for its new buildine. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will r $400.000 each. The Juilliard School. where music and
the performing arts are taught, will get 00, The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fnd. will make its usual anual 100,00

donation. too.

Author topic model Multi-lingual topic models

Topics over time Topic model for images

N-gram topic models Population genetics

e © o o

Hierarchical topic models



Outline

Q Summary



o Gaussian, Student, Bernoulli mixtures
o Alternative view of EM algorithm
o Latent Dirichlet Allocation




Outline

© Exercises



Derive the M step for a mixture of Gaussians.



C. Archambeau, et al. (2008): Mixtures of Robust Probabilistic Principal Component Analyzers.
Neurocomputing, 71(7-9):1274-1282, 2008.

C. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.

D. Blei, et al. (2003): Latent Dirichlet Allocation. Journal of Machine Learning Research
3:993-1022.

T. L. Griffiths and M. Steyvers (2003): Finding scientific topics. Proceedings of the PNAS.

R. M. Neal and G. Hinton (1998): A View of the EM Algorithm that Justifies Incremental,
Sparse, and Other Variants.
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