
Classification

Cédric Archambeau
cedrica@amazon.com

Peyresq Summer School
France, July 2016

mailto:cedrica@amazon.com

Overview

1 Classification (2.5 hours)

2 Clustering (1.5 hours)

3 Practical sessions (1 hour)

LEARNING GOALS

Understand what is a classification problem and when it can be applied.

Being able to reason about new models and derive learning algorithms.

Being able to learn more by yourself!

Overview

1 Classification (2.5 hours)

2 Clustering (1.5 hours)

3 Practical sessions (1 hour)

LEARNING GOALS

Understand what is a classification problem and when it can be applied.

Being able to reason about new models and derive learning algorithms.

Being able to learn more by yourself!

Overview

1 Classification (2.5 hours)

2 Clustering (1.5 hours)

3 Practical sessions (1 hour)

LEARNING GOALS

Understand what is a classification problem and when it can be applied.

Being able to reason about new models and derive learning algorithms.

Being able to learn more by yourself!

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

A first example: digit classification

MNIST handwritten digits

A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.

Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

MNIST handwritten digit sample

Can we learn f : x 7→ f (x) = t?

Pre-processed data set of handwritten digits: D = {(x i , ti)|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.

http://yann.lecun.com/exdb/mnist

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1}

or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f (x) = sign(y(x)) =

{
+1 if y(x) > 0,
−1 if y(x) < 0.

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.

Linear discriminant function (aka linear classifier)

We assume the instances can be separated by a
linear subspace (or hyperplane):

y(x) = w>x + b, fLIN(x) = sign(y(x)),

where w ∈ Rd\{0}, b ∈ R.

The decision boundary is the set {x : y(x) = 0}.
Learning is to find w and b such that ∀i : fLIN(x i) ≈ ti .

Linear discriminant function (aka linear classifier)

We assume the instances can be separated by a
linear subspace (or hyperplane):

y(x) = w>x + b, fLIN(x) = sign(y(x)),

where w ∈ Rd\{0}, b ∈ R.

The decision boundary is the set {x : y(x) = 0}.

Learning is to find w and b such that ∀i : fLIN(x i) ≈ ti .

Linear discriminant function (aka linear classifier)

We assume the instances can be separated by a
linear subspace (or hyperplane):

y(x) = w>x + b, fLIN(x) = sign(y(x)),

where w ∈ Rd\{0}, b ∈ R.

The decision boundary is the set {x : y(x) = 0}.
Learning is to find w and b such that ∀i : fLIN(x i) ≈ ti .

Relation to nearest neighbour classification?

How can we picture a linear discriminant function?

Vector w is orthogonal to any vector u in the hyperplane: w>u = 0.

Offset vector v 0 = −(b/‖w‖2)w is the projection of the origin.

We restrict weight vectors to be unit norm: {w : ‖w‖ = 1}.

How can we picture a linear discriminant function?

Vector w is orthogonal to any vector u in the hyperplane: w>u = 0.

Offset vector v 0 = −(b/‖w‖2)w is the projection of the origin.

We restrict weight vectors to be unit norm: {w : ‖w‖ = 1}.

How can we picture a linear discriminant function?

Vector w is orthogonal to any vector u in the hyperplane: w>u = 0.

Offset vector v 0 = −(b/‖w‖2)w is the projection of the origin.

We restrict weight vectors to be unit norm: {w : ‖w‖ = 1}.

How can we picture a linear discriminant function?

Vector w is orthogonal to any vector u in the hyperplane: w>u = 0.

Offset vector v 0 = −(b/‖w‖2)w is the projection of the origin.

We restrict weight vectors to be unit norm: {w : ‖w‖ = 1}.

Can instances always be separated?

Can instances always be separated?

Feature maps
Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

Let φ : Rd → Rp : x 7→ φ(x). The feature function φ(x) defines a mapping
of input space into a feature space.

We generalise linear classifiers by learning them in the feature space:

y(x) = w>φ(x) + b, fLIN(x) = sign(y(x)).

Example: linear classifier with quadratic features

φ(x) =



x1

.

.

.
xd

x1x1

.

.

.
x1xd
x2x2

.

.

.
x2xd

.

.

.
xd xd


∈ Rd(d+3)/2. y(x) = w>φ(x) + b =

∑
j

wjxj +
∑
j

∑
k6j

wjkxjxk + b

Feature maps
Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

Let φ : Rd → Rp : x 7→ φ(x). The feature function φ(x) defines a mapping
of input space into a feature space.

We generalise linear classifiers by learning them in the feature space:

y(x) = w>φ(x) + b, fLIN(x) = sign(y(x)).

Example: linear classifier with quadratic features

φ(x) =



x1

.

.

.
xd

x1x1

.

.

.
x1xd
x2x2

.

.

.
x2xd

.

.

.
xd xd


∈ Rd(d+3)/2. y(x) = w>φ(x) + b =

∑
j

wjxj +
∑
j

∑
k6j

wjkxjxk + b

Feature maps
Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

Let φ : Rd → Rp : x 7→ φ(x). The feature function φ(x) defines a mapping
of input space into a feature space.

We generalise linear classifiers by learning them in the feature space:

y(x) = w>φ(x) + b, fLIN(x) = sign(y(x)).

Example: linear classifier with quadratic features

φ(x) =



x1

.

.

.
xd

x1x1

.

.

.
x1xd
x2x2

.

.

.
x2xd

.

.

.
xd xd


∈ Rd(d+3)/2. y(x) = w>φ(x) + b =

∑
j

wjxj +
∑
j

∑
k6j

wjkxjxk + b

Feature maps
Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

Let φ : Rd → Rp : x 7→ φ(x). The feature function φ(x) defines a mapping
of input space into a feature space.

We generalise linear classifiers by learning them in the feature space:

y(x) = w>φ(x) + b, fLIN(x) = sign(y(x)).

Example: linear classifier with quadratic features

φ(x) =



x1

.

.

.
xd

x1x1

.

.

.
x1xd
x2x2

.

.

.
x2xd

.

.

.
xd xd


∈ Rd(d+3)/2. y(x) = w>φ(x) + b =

∑
j

wjxj +
∑
j

∑
k6j

wjkxjxk + b

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?
tiφ(x i)

>(w + tiφ(x i)) = tiφ(x i)
>w + ‖φ(x i)‖2 > tiφ(x i)

>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.

The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?
tiφ(x i)

>(w + tiφ(x i)) = tiφ(x i)
>w + ‖φ(x i)‖2 > tiφ(x i)

>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?
tiφ(x i)

>(w + tiφ(x i)) = tiφ(x i)
>w + ‖φ(x i)‖2 > tiφ(x i)

>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?

tiφ(x i)
>(w + tiφ(x i)) = tiφ(x i)

>w + ‖φ(x i)‖2 > tiφ(x i)
>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?
tiφ(x i)

>(w + tiφ(x i)) = tiφ(x i)
>w + ‖φ(x i)‖2 > tiφ(x i)

>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i)ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i)ti ,

where M = {i : w>φ(x i)ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i)ti .

Why does this algorithm work?
tiφ(x i)

>(w + tiφ(x i)) = tiφ(x i)
>w + ‖φ(x i)‖2 > tiφ(x i)

>w .

If the data is not linearly separable, then the perceptron will not converge :-(

How should we handle multi-class problems?
By combining binary classifiers?

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Are there other ways?

Ri

Rj

Rk

xA

xB

x̂

yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.

How should we handle multi-class problems?
By combining binary classifiers?

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Are there other ways?

Ri

Rj

Rk

xA

xB

x̂

yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.

How should we handle multi-class problems?
By combining binary classifiers?

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Are there other ways?

Ri

Rj

Rk

xA

xB

x̂

yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.

How should we handle multi-class problems?
By combining binary classifiers?

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Are there other ways?

Ri

Rj

Rk

xA

xB

x̂

yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.

How should we handle multi-class problems?
By combining binary classifiers?

R1

R2

R3

?

C1

not C1
C2

not C2

R1

R2

R3

?C1

C2

C1
C3

C2

C3

Are there other ways?

Ri

Rj

Rk

xA

xB

x̂

yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).

Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).

Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).

Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).

Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).

Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.
The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.

Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.

The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.

Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.
The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.

Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.
The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.

Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.
The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.

Example of a Bayes optimal classifier

Precision and recall

t = 1 t = −1
x > x0 TP FP
x < x0 FN TN

The precision is the proportion of positives in the instances classified as being
positive:

P(x) =
TP(x)

TP(x) + FP(x)
,

where TP are the true positives and FP the false positives.

The recall is the proportion of correctly classified positives:

R(x) =
TP(x)

TP(x) + FN(x)
,

where FN are the false negatives.

Precision and recall

t = 1 t = −1
x > x0 TP FP
x < x0 FN TN

The precision is the proportion of positives in the instances classified as being
positive:

P(x) =
TP(x)

TP(x) + FP(x)
,

where TP are the true positives and FP the false positives.

The recall is the proportion of correctly classified positives:

R(x) =
TP(x)

TP(x) + FN(x)
,

where FN are the false negatives.

Precision and recall

t = 1 t = −1
x > x0 TP FP
x < x0 FN TN

The precision is the proportion of positives in the instances classified as being
positive:

P(x) =
TP(x)

TP(x) + FP(x)
,

where TP are the true positives and FP the false positives.

The recall is the proportion of correctly classified positives:

R(x) =
TP(x)

TP(x) + FN(x)
,

where FN are the false negatives.

Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x . A classifier

f (x) is to predict whether the patient has cancer (t = 1) or not (t = −1). Is the cost of

predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

The expected loss is given by

E(L) =
∑
k

∑
l

∫
x∈Rl

Lklp(x ,Ck)dx .

Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x . A classifier

f (x) is to predict whether the patient has cancer (t = 1) or not (t = −1). Is the cost of

predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

The expected loss is given by

E(L) =
∑
k

∑
l

∫
x∈Rl

Lklp(x ,Ck)dx .

Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x . A classifier

f (x) is to predict whether the patient has cancer (t = 1) or not (t = −1). Is the cost of

predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

The expected loss is given by

E(L) =
∑
k

∑
l

∫
x∈Rl

Lklp(x ,Ck)dx .

Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x . A classifier

f (x) is to predict whether the patient has cancer (t = 1) or not (t = −1). Is the cost of

predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

The expected loss is given by

E(L) =
∑
k

∑
l

∫
x∈Rl

Lklp(x ,Ck)dx .

How can we make a trade-off?

t = 1 t = −1
x > x̂ TP FP
x < x̂ FN TN

P N

We defined the decision threshold of a linear classifier as follows:

x0 = {x : fLIN(x) = 0}

We can decide to threshold at any another score α:

xα = {x : f (x) = α}

What is the effect of chosing x̂?

How can we make a trade-off?

t = 1 t = −1
x > x̂ TP FP
x < x̂ FN TN

P N

We defined the decision threshold of a linear classifier as follows:

x0 = {x : fLIN(x) = 0}

We can decide to threshold at any another score α:

xα = {x : f (x) = α}

What is the effect of chosing x̂?

How can we make a trade-off?

t = 1 t = −1
x > x̂ TP FP
x < x̂ FN TN

P N

We defined the decision threshold of a linear classifier as follows:

x0 = {x : fLIN(x) = 0}

We can decide to threshold at any another score α:

xα = {x : f (x) = α}

What is the effect of chosing x̂?

How can we make a trade-off?

t = 1 t = −1
x > x̂ TP FP
x < x̂ FN TN

P N

We defined the decision threshold of a linear classifier as follows:

x0 = {x : fLIN(x) = 0}

We can decide to threshold at any another score α:

xα = {x : f (x) = α}

What is the effect of chosing x̂?

Area under the curve (AUC)

AUC enables us to compare classifiers irrespective of the decision threshold.

Receiver-operating characteristic (ROC):
I Monotonic
I AUC ≈ probability of scoring a positive higher than a negative.

Precision-recall:
I Non-monotonic
I One to one mapping with ROC

Area under the curve (AUC)

AUC enables us to compare classifiers irrespective of the decision threshold.

Receiver-operating characteristic (ROC):
I Monotonic
I AUC ≈ probability of scoring a positive higher than a negative.

Precision-recall:
I Non-monotonic
I One to one mapping with ROC

Area under the curve (AUC)

AUC enables us to compare classifiers irrespective of the decision threshold.

Receiver-operating characteristic (ROC):
I Monotonic
I AUC ≈ probability of scoring a positive higher than a negative.

Precision-recall:
I Non-monotonic
I One to one mapping with ROC

How do we measure the performance in multi-class
classification?

Confusion matrix:

t = 1 t = 2 t = 3
f (x) = 1 c11 c12 c13

f (x) = 2 c21 c22 c23

f (x) = 3 c31 c32 c33

P1 P2 P3

What are the expressions of
precision and recall?

How do we measure the performance in multi-class
classification?

Confusion matrix:

t = 1 t = 2 t = 3
f (x) = 1 c11 c12 c13

f (x) = 2 c21 c22 c23

f (x) = 3 c31 c32 c33

P1 P2 P3

What are the expressions of
precision and recall?

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Generative classifiers

Consider the data set D = {(x i , ti)|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).
where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).

Generative classifiers

Consider the data set D = {(x i , ti)|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).
where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).

Generative classifiers

Consider the data set D = {(x i , ti)|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).
where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).

Generative classifiers

Consider the data set D = {(x i , ti)|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).

where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).

Generative classifiers

Consider the data set D = {(x i , ti)|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).
where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).

Definitions

Multivariate Gaussian probability density:

x ∼ Gaussian (µ,Σ) =
1

(2π)D/2|Σ|1/2
e−

1
2 (x−µ)>Σ−1(x−µ).

Multinomial probability distribution:

x ∼ Multinomial (µ) =
(
∑

j xj)!∏
j xj !

d∏
j=1

µ
xj
j .

Categorical probability distribution:

t ∼ Categorical (p) =
m∏

k=1

p
δk (t)
k ,

where δz(·) is the kronecker delta centred at z .

Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

=
1

1 + p(x|t=−1)P(t=−1)
p(x|t=1)P(t=1)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

=
1

1 + p(x|t=−1)P(t=−1)
p(x|t=1)P(t=1)

=
1

1 + e
−ln

p(x|t=1)P(t=1)
p(x|t=−1)P(t=−1)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

=
1

1 + p(x|t=−1)P(t=−1)
p(x|t=1)P(t=1)

=
1

1 + e
−ln

p(x|t=1)P(t=1)
p(x|t=−1)P(t=−1)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

=
1

1 + p(x|t=−1)P(t=−1)
p(x|t=1)P(t=1)

=
1

1 + e
−ln

p(x|t=1)P(t=1)
p(x|t=−1)P(t=−1)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n ,

µ+1 = 1
n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i ,

µ−1 = 1
n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1,

S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti)
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti)x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti)x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti)(x i − µ±1)(x i − µ±1)> .

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(µ+1 − µ−1)>Σ−1x +−1

2
µ>+1Σ

−1µ+1 +
1

2
µ>−1Σ

−1µ−1 + ln
π

1− π

)

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(µ+1 − µ−1)>Σ−1x +−1

2
µ>+1Σ

−1µ+1 +
1

2
µ>−1Σ

−1µ−1 + ln
π

1− π

)
= σ

(
w>x + b

)
.

Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti)xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti)x i∑
i

∑
j δ+1(ti)xij

, µ−1

∑
i δ−1(ti)x i∑

i

∑
j δ−1(ti)xij

.

Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti)xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti)x i∑
i

∑
j δ+1(ti)xij

, µ−1

∑
i δ−1(ti)x i∑

i

∑
j δ−1(ti)xij

.

Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti)xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti)x i∑
i

∑
j δ+1(ti)xij

, µ−1

∑
i δ−1(ti)x i∑

i

∑
j δ−1(ti)xij

.

Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti)xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti)x i∑
i

∑
j δ+1(ti)xij

,

µ−1

∑
i δ−1(ti)x i∑

i

∑
j δ−1(ti)xij

.

Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti)xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti)x i∑
i

∑
j δ+1(ti)xij

, µ−1

∑
i δ−1(ti)x i∑

i

∑
j δ−1(ti)xij

.

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)
= σ

(
w>x + b

)
.

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)
= σ

(
w>x + b

)
.

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)
= σ

(
w>x + b

)
.

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.

What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)
= σ

(
w>x + b

)
.

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.

Maximum likelihood (ML) estimation: summary

The likelihood is the joint probability of observing i.i.d. data:

`(θ; t) = ln p(t;θ) = ln
n∏

i=1

p(ti ;θ).

The goal is to find the parameters that maximise the log-likelihood function:

θ∗ = arg max
θ

`(θ; t).

ML leads to a point estimate of θ and is asymptotically consistent.

The likelihood is unbounded, so ML estimator can overfit!

Maximum likelihood (ML) estimation: summary

The likelihood is the joint probability of observing i.i.d. data:

`(θ; t) = ln p(t;θ) = ln
n∏

i=1

p(ti ;θ).

The goal is to find the parameters that maximise the log-likelihood function:

θ∗ = arg max
θ

`(θ; t).

ML leads to a point estimate of θ and is asymptotically consistent.

The likelihood is unbounded, so ML estimator can overfit!

Maximum a posteriori (MAP) estimation: summary

Penalise unreasonable values (∼ regularisation) by imposing a prior distribution on
the parameters:

p(θ|X) ∝ p(X |θ)p(θ).

The goal is to maximise the penalised log-likelihood :

`MAP(θ; t) = `(θ; t) + ln p(θ).

MAP leads to a point estimate of θ and asymptotically agrees with ML
estimate.

MAP is not invariant under reparametrisation!

Maximum a posteriori (MAP) estimation: summary

Penalise unreasonable values (∼ regularisation) by imposing a prior distribution on
the parameters:

p(θ|X) ∝ p(X |θ)p(θ).

The goal is to maximise the penalised log-likelihood :

`MAP(θ; t) = `(θ; t) + ln p(θ).

MAP leads to a point estimate of θ and asymptotically agrees with ML
estimate.

MAP is not invariant under reparametrisation!

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Generative versus discriminative classification

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Generative classifiers:

P(t = k|x) ∝ p(x |t = k)P(t = k)

I Require explicit class-conditionals
I Take a linear form in specific cases

Discriminative classifier:

P(t = k|x) = σ(y(x ;θ))

I Does not rely on class-conditionals
I Less parameters to learn (or optimise)
I Easy to change the feature map φ(x)

Generative versus discriminative classification

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Generative classifiers:

P(t = k |x) ∝ p(x |t = k)P(t = k)

I Require explicit class-conditionals
I Take a linear form in specific cases

Discriminative classifier:

P(t = k|x) = σ(y(x ;θ))

I Does not rely on class-conditionals
I Less parameters to learn (or optimise)
I Easy to change the feature map φ(x)

Generative versus discriminative classification

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Generative classifiers:

P(t = k |x) ∝ p(x |t = k)P(t = k)

I Require explicit class-conditionals
I Take a linear form in specific cases

Discriminative classifier:

P(t = k |x) = σ(y(x ;θ))

I Does not rely on class-conditionals
I Less parameters to learn (or optimise)
I Easy to change the feature map φ(x)

(Binary) logistic regression

Linear discriminant: y(x) = w>φ(x) + b .

Logistic link:

P(t = +1|x) = σ(y(x)) =
1

1 + exp (−y(x))
.

Conditional likelihood:

t|x ∼ Bernoulli (σ (y(x))) = σ (y(x))δ+1(t) (1− σ (y(x)))δ−1(t).

Alternative formulation: P(t|x) = σ (ty(x)) . (?)

(Binary) logistic regression

Linear discriminant: y(x) = w>φ(x) + b .

Logistic link:

P(t = +1|x) = σ(y(x)) =
1

1 + exp (−y(x))
.

Conditional likelihood:

t|x ∼ Bernoulli (σ (y(x))) = σ (y(x))δ+1(t) (1− σ (y(x)))δ−1(t).

Alternative formulation: P(t|x) = σ (ty(x)) . (?)

(Binary) logistic regression

Linear discriminant: y(x) = w>φ(x) + b .

Logistic link:

P(t = +1|x) = σ(y(x)) =
1

1 + exp (−y(x))
.

Conditional likelihood:

t|x ∼ Bernoulli (σ (y(x))) = σ (y(x))δ+1(t) (1− σ (y(x)))δ−1(t).

Alternative formulation: P(t|x) = σ (ty(x)) . (?)

(Binary) logistic regression

Linear discriminant: y(x) = w>φ(x) + b .

Logistic link:

P(t = +1|x) = σ(y(x)) =
1

1 + exp (−y(x))
.

Conditional likelihood:

t|x ∼ Bernoulli (σ (y(x))) = σ (y(x))δ+1(t) (1− σ (y(x)))δ−1(t).

Alternative formulation: P(t|x) = σ (ty(x)) . (?)

How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i)) (1− σ(y(x i))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent and stochastic gradient descent (?)

How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i)) (1− σ(y(x i))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent and stochastic gradient descent (?)

How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i)) (1− σ(y(x i))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent and stochastic gradient descent (?)

How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i)) (1− σ(y(x i))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent

and stochastic gradient descent (?)

How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i)) (1− σ(y(x i))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent and stochastic gradient descent (?)

Classification losses

Perceptron loss:

E(x i) =

{
0 if tiy(x i) > 0,

tiy(x i) if tiy(x i) < 0.

Logistic loss:

E(x i) = ln
(

1 + e−ti y(x i)
)
.

Squared error:

E(xi) =
1

2
(tiy(x i)− 1)2 .

Classification losses

Perceptron loss:

E(x i) =

{
0 if tiy(x i) > 0,

tiy(x i) if tiy(x i) < 0.

Logistic loss:

E(x i) = ln
(

1 + e−ti y(x i)
)
.

Squared error:

E(xi) =
1

2
(tiy(x i)− 1)2 .

Classification losses

Perceptron loss:

E(x i) =

{
0 if tiy(x i) > 0,

tiy(x i) if tiy(x i) < 0.

Logistic loss:

E(x i) = ln
(

1 + e−ti y(x i)
)
.

Squared error:

E(xi) =
1

2
(tiy(x i)− 1)2 .

Classification losses

Perceptron loss:

E(x i) =

{
0 if tiy(x i) > 0,

tiy(x i) if tiy(x i) < 0.

Logistic loss:

E(x i) = ln
(

1 + e−ti y(x i)
)
.

Squared error:

E(xi) =
1

2
(tiy(x i)− 1)2 .

Is the squared error suitable for classification?

(Green: perceptron. Magenta: squared error.)

Other link functions?

Probit regression:

Φ(y(x)) =

∫ y(x)

− inf

Gaussian (0, 1) dz , y(x) = w>x + b.

Latent variable view:

t|z ∼ I (tz > 0), z ∼ Gaussian (y(x), 1) .

Other link functions?

Probit regression:

Φ(y(x)) =

∫ y(x)

− inf

Gaussian (0, 1) dz , y(x) = w>x + b.

Latent variable view:

t|z ∼ I (tz > 0), z ∼ Gaussian (y(x), 1) .

Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k|x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k|x).

Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k |x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k|x).

Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k |x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k |x).

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Summary

Linear classifiers:
I Perceptron
I Naive Bayes
I (Multi-nomial) logistic regression

Linear classifier can be non-linear!

Techniques to learn the parameters

Trade-offs when making decisions

Summary

Linear classifiers:
I Perceptron
I Naive Bayes
I (Multi-nomial) logistic regression

Linear classifier can be non-linear!

Techniques to learn the parameters

Trade-offs when making decisions

Summary

Linear classifiers:
I Perceptron
I Naive Bayes
I (Multi-nomial) logistic regression

Linear classifier can be non-linear!

Techniques to learn the parameters

Trade-offs when making decisions

Summary

Linear classifiers:
I Perceptron
I Naive Bayes
I (Multi-nomial) logistic regression

Linear classifier can be non-linear!

Techniques to learn the parameters

Trade-offs when making decisions

Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises

Exercise 1

Can you propose a Naive Bayes classifier with continuous features? Derive the
maximum likelihood estimates of the parameters.

Exercise 2

Derive the update equations of a generative classifier with discrete binary features.

Exercise 3

What is the form of the decision boundary for a binary classifier with Gaussian
features with different covariance matrices?

Exercise 3?

What are the expressions of the precision and the recall in the multi-class case?

References

J. H. Albert, and S. Chib (1993): Bayesian Analysis of Binary and Polychotomous
Response Data. Journal of the American Statistical Association 88 (422):
669?679.

C. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.

J. Davis and M. Goadrich: The Relationship Between Precision-Recall and ROC
Curves. ICML 2006.

Y. Ng and M. Jordan: On Discriminative vs. Geneartive classifiers: A comparison
of Logistic Regression and Naive Bayes. NIPS 2001.

M. Seeger: Pattern Classification and Machine Learning. Lecture notes EPFL,
2012.

	What is classification?
	Decision theory
	Generative classifiers
	Discriminative classifiers
	Summary
	Exercises

