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A first example: digit classification

MNIST handwritten digit sample

Given an image, can we predict which
digit it is (i.e., which label it has)?

Pre-processed data set of handwritten digits: D = {(x i , ti )|i = 1, . . . , n}.
http://yann.lecun.com/exdb/mnist

Instance or data point i consists in a 28× 28 bitmap image x i

and a label ti ∈ {0, . . . , 9}.
Each image is represented as a 784-dimensional vector of pixels,
quantized to {0, . . . , 255}.
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MNIST handwritten digit sample

Can we learn f : x 7→ f (x) = t?

Pre-processed data set of handwritten digits: D = {(x i , ti )|i = 1, . . . , n}.
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A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f : Rd → {−1,+1} or f : Rd → {0, 1}.

This is a binary classification problem!

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.

Why not nearest neighbours?

fNN(x) = ti ⇐⇒ ‖x − x i‖ 6 ‖x − x j‖, j ∈ {1, . . . , n}.
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A first example: digit classification

We would like to distinguish digit 8 from digit 9:

f (x) = sign(y(x)) =

{
+1 if y(x) > 0,
−1 if y(x) < 0.

Why not a look-up table?

fLU(x) =

{
ti if x = x i , i ∈ {1, . . . , n},

Don′t know if x 6= x i , i ∈ {1, . . . , n}.
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Linear discriminant function (aka linear classifier)

We assume the instances can be separated by a
linear subspace (or hyperplane):

y(x) = w>x + b, fLIN(x) = sign(y(x)),

where w ∈ Rd\{0}, b ∈ R.

The decision boundary is the set {x : y(x) = 0}.
Learning is to find w and b such that ∀i : fLIN(x i ) ≈ ti .
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Relation to nearest neighbour classification?



How can we picture a linear discriminant function?

Vector w is orthogonal to any vector u in the hyperplane: w>u = 0.

Offset vector v 0 = −(b/‖w‖2)w is the projection of the origin.

We restrict weight vectors to be unit norm: {w : ‖w‖ = 1}.
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Feature maps
Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

Let φ : Rd → Rp : x 7→ φ(x). The feature function φ(x) defines a mapping
of input space into a feature space.

We generalise linear classifiers by learning them in the feature space:

y(x) = w>φ(x) + b, fLIN(x) = sign(y(x)).

Example: linear classifier with quadratic features

φ(x) =


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∈ Rd(d+3)/2. y(x) = w>φ(x) + b =

∑
j

wjxj +
∑
j

∑
k6j

wjkxjxk + b
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How do we estimate w?

Perceptron (Rosenblatt, ’62):

Instance i is correctly classified if w>φ(x i )ti > 0.

Perceptron criterion:

EP(w) = −
∑
i∈M

w>φ(x i )ti ,

where M = {i : w>φ(x i )ti < 0}.
The error EP(w) can be minimised by applying to following rule:

w ← w + φ(x i )ti .

Why does this algorithm work?
tiφ(x i )

>(w + tiφ(x i )) = tiφ(x i )
>w + ‖φ(x i )‖2 > tiφ(x i )

>w .

If the data is not linearly separable, then the perceptron will not converge :-(
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How should we handle multi-class problems?
By combining binary classifiers?
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Are there other ways?
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yk(x) = w>k φ(x) + bk , f (x) = arg max
k
{y1(x), . . . , ym(x)}.
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Examples of classification problems

Spam detection

Fraud detection

Document categorisation

Sentiment analysis

Face recognition

Object categorisation

...
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Bayes’ rule

P(t|x) =
p(x |t)P(t)

p(x)
, p(x) =

∑
t

p(x |t)P(t).

P(t) is the class prior

P(t|x) is the class posterior

p(x |t) is the class-conditional density (or likelihood)

P(C1) = P(t = −1),

P(C1|x) = P(t = −1|x),

p(x ,C1) = p(x , t = −1).
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Minimising the classification error

p(x ,C1) = p(x , t = −1)

= p(x |t = −1)P(t = −1).

Let x̂ be the decision threshold: R1 = {x : x < x̂} and R2 = {x : x > x̂}.
The misclassification rate is the combined coloured areas:

P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),

where P(x ∈ R1,C2) =
∫
x∈R1

p(x ,C2)dx .

False positives: blue area. False negatives: green+red area.

Bayes error at x = x0: blue+green area.
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P(error) = P(x ∈ R1,C2) + P(x ∈ R2,C1),
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Example of a Bayes optimal classifier



Precision and recall

t = 1 t = −1
x > x0 TP FP
x < x0 FN TN

The precision is the proportion of positives in the instances classified as being
positive:

P(x) =
TP(x)

TP(x) + FP(x)
,

where TP are the true positives and FP the false positives.

The recall is the proportion of correctly classified positives:

R(x) =
TP(x)

TP(x) + FN(x)
,

where FN are the false negatives.
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Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x . A classifier

f (x) is to predict whether the patient has cancer (t = 1) or not (t = −1). Is the cost of

predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

The expected loss is given by

E(L) =
∑
k

∑
l

∫
x∈Rl

Lklp(x ,Ck)dx .
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How can we make a trade-off?

t = 1 t = −1
x > x̂ TP FP
x < x̂ FN TN

P N

We defined the decision threshold of a linear classifier as follows:

x0 = {x : fLIN(x) = 0}

We can decide to threshold at any another score α:

xα = {x : f (x) = α}

What is the effect of chosing x̂?
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Area under the curve (AUC)

AUC enables us to compare classifiers irrespective of the decision threshold.

Receiver-operating characteristic (ROC):
I Monotonic
I AUC ≈ probability of scoring a positive higher than a negative.

Precision-recall:
I Non-monotonic
I One to one mapping with ROC
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How do we measure the performance in multi-class
classification?

Confusion matrix:

t = 1 t = 2 t = 3
f (x) = 1 c11 c12 c13

f (x) = 2 c21 c22 c23

f (x) = 3 c31 c32 c33

P1 P2 P3

What are the expressions of
precision and recall?
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Generative classifiers

Consider the data set D = {(x i , ti )|i = 1, . . . , n}. We are interested in the
posterior class probability:

P(t = k |x) =

class−conditional density︷ ︸︸ ︷
p(x |t = k)

class prior︷ ︸︸ ︷
P(t = k)

p(x)
, k = {1, . . . ,m}.

Prior: P(t = k) = πk .

Continuous features: p(x |t = k) = Gaussian (µk ,Σk).

Discrete features: p(x |t = k) = Multinomial (µk).

How can we learn the parameters θ = {πk ,µk ,Σk}mk=1?

arg max
θ

ln
∏
i

p(ti |θ) (maximum likelihood estimation)

where p(ti |θ) = Categorical (π1Gaussian (µ1,Σ1) , . . . , πmGaussian (µm,Σm)).
where p(ti |θ) = Categorical (π1Multinomial (µ1) , . . . , πmMultinomial (µm)).
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Definitions

Multivariate Gaussian probability density:

x ∼ Gaussian (µ,Σ) =
1

(2π)D/2|Σ|1/2
e−

1
2 (x−µ)>Σ−1(x−µ).

Multinomial probability distribution:

x ∼ Multinomial (µ) =
(
∑

j xj)!∏
j xj !

d∏
j=1

µ
xj
j .

Categorical probability distribution:

t ∼ Categorical (p) =
m∏

k=1

p
δk (t)
k ,

where δz(·) is the kronecker delta centred at z .



Binary classification

P(t = 1|x) =
p(x |t = 1)P(t = 1)∑
k p(x |t = k)P(t = k)

Sigmoid: σ(z) = 1
1+exp(−z) .

Let α ∈ [0, 1]. The classifier is defined as follows:

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.
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Binary classification with continuous features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Gaussian (µ+1,Σ) ,

P(t = −1) = 1− π, p(x |t = −1) = Gaussian (µ−1,Σ) .

where the classes are assumed to share the same covariance.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti ) (lnπ + lnGaussian (µ+1,Σ))

+
∑
i

δ−1(ti ) (ln(1− π) + lnGaussian (µ−1,Σ)) .

Maximum likelihood solution:

π =
∑

i δ+1(ti )
n , µ+1 = 1

n+1

∑N
i=1 δ+1(ti )x i , µ−1 = 1

n−1

∑N
i=1 δ−1(ti )x i ,

Σ = n+1

n S+1 + n−1

n S−1, S±1 = 1
n±1

∑N
i=1 δ±1(ti )(x i − µ±1)(x i − µ±1)> .
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What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(µ+1 − µ−1)>Σ−1x +−1

2
µ>+1Σ

−1µ+1 +
1

2
µ>−1Σ

−1µ−1 + ln
π

1− π

)
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Binary classification with discrete features

The classifier is defined by the following priors and class-conditionals:

P(t = 1) = π, p(x |t = 1) = Multinomial (µ+1) ,

P(t = −1) = 1− π, p(x |t = −1) = Multinomial (µ−1) .

where the features are assumed to be independent given the class.

The log-likelihood is given by

ln p(t|θ) =
∑
i

δ+1(ti ) (lnπ + lnMultinomial (µ+1))

+
∑
i

δ−1(ti ) (ln(1− π) + lnMultinomial (µ−1)) .

Maximum likelihood solution:

π =
∑

i

∑
j δ+1(ti )xij∑
i

∑
j xij

,

µ+1 =
∑

i δ+1(ti )x i∑
i

∑
j δ+1(ti )xij

, µ−1

∑
i δ−1(ti )x i∑

i

∑
j δ−1(ti )xij

.
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What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t = 1|x) = σ

(
(lnµ+1 − lnµ−1)>x + ln

π

1− π

)

What if an entry of µ±1 is zero? When can this occur?

arg max
θ

ln
∏
i

p(ti |θ) + ln p(θ) (maximum a posteriori estimation)

where p(θ) = Dirichlet (α1):

Parameter α can be interpreted as a pseudo-count. (?)

Adding a prior is equivalent to regularisation.
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Naive Bayes classifier

Generative classifier making the simplifying assumption that features are
independent given the class:

P(t = k |x) =
p(x |t = k)P(t = k)

p(x)
≈
∏d

j=1 p(xj |t = k)P(t = k)

p(x)
.

Number of parameters scales linearly with the number of features!

Document categorisation:

P(t = k) = πk ,

p(x |t = k) = Multinomial (µk) .

Category/theme/topic k is model-
led by a discrete distribution µk

over the vocabulary of size d .

x i represents document i ; it
contains the word counts.
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Maximum likelihood (ML) estimation: summary

The likelihood is the joint probability of observing i.i.d. data:

`(θ; t) = ln p(t;θ) = ln
n∏

i=1

p(ti ;θ).

The goal is to find the parameters that maximise the log-likelihood function:

θ∗ = arg max
θ

`(θ; t).

ML leads to a point estimate of θ and is asymptotically consistent.

The likelihood is unbounded, so ML estimator can overfit!
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Maximum a posteriori (MAP) estimation: summary

Penalise unreasonable values (∼ regularisation) by imposing a prior distribution on
the parameters:

p(θ|X ) ∝ p(X |θ)p(θ).

The goal is to maximise the penalised log-likelihood :

`MAP(θ; t) = `(θ; t) + ln p(θ).

MAP leads to a point estimate of θ and asymptotically agrees with ML
estimate.

MAP is not invariant under reparametrisation!
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Generative versus discriminative classification

f (x) =

{
+1 if P(t = 1|x) > α,
−1 if P(t = 1|x) < α.

Generative classifiers:

P(t = k|x) ∝ p(x |t = k)P(t = k)

I Require explicit class-conditionals
I Take a linear form in specific cases

Discriminative classifier:

P(t = k|x) = σ(y(x ;θ))

I Does not rely on class-conditionals
I Less parameters to learn (or optimise)
I Easy to change the feature map φ(x)
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(Binary) logistic regression

Linear discriminant: y(x) = w>φ(x) + b .

Logistic link:

P(t = +1|x) = σ(y(x)) =
1

1 + exp (−y(x))
.

Conditional likelihood:

t|x ∼ Bernoulli (σ (y(x))) = σ (y(x))δ+1(t) (1− σ (y(x)))δ−1(t).

Alternative formulation: P(t|x) = σ (ty(x)) . (?)
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How do we learn w?

ln p(t|x ; w) =
∑
i

lnBernoulli (σ(y(x i ))) .

1 Iterative reweighted least squares (IRLS):

w ← w +
(
Φ>RΦ

)−1︸ ︷︷ ︸
=H−1

Φ>(σ − t)︸ ︷︷ ︸
=∇w ln p(t|w)

where Φ = (φ(x1)>, . . . ,φ(xn)>)>, Rii = σ(y(x i )) (1− σ(y(x i ))),
σ = (σ(y(x1)), . . . , σ(y(xn)))> and t = (t1, . . . , tn)>.

I Instantiation of Newton-Raphson
I Objective is convex!

2 Alternatives include gradient descent and stochastic gradient descent (?)
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Classification losses

Perceptron loss:

E(x i ) =

{
0 if tiy(x i ) > 0,

tiy(x i ) if tiy(x i ) < 0.

Logistic loss:

E(x i ) = ln
(

1 + e−ti y(x i )
)
.

Squared error:

E(xi ) =
1

2
(tiy(x i )− 1)2 .
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Is the squared error suitable for classification?

(Green: perceptron. Magenta: squared error.)



Other link functions?

Probit regression:

Φ(y(x)) =

∫ y(x)

− inf

Gaussian (0, 1) dz , y(x) = w>x + b.

Latent variable view:

t|z ∼ I (tz > 0), z ∼ Gaussian (y(x), 1) .
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Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k|x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k|x).



Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k |x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k|x).



Multinomial logistic regression

Linear discriminant:

yk(x) = w>k φ(x) + bk , k ∈ {1, . . . ,m}.

Softmax:

P(t = k |x) =
exp (y(xk))∑
l exp (y(x l))

.

Conditional likelihood:

t|x ∼ Categorical (µ) ,

where µk = P(t = k |x).



Outline

1 What is classification?

2 Decision theory

3 Generative classifiers

4 Discriminative classifiers

5 Summary

6 Exercises



Summary

Linear classifiers:
I Perceptron
I Naive Bayes
I (Multi-nomial) logistic regression

Linear classifier can be non-linear!

Techniques to learn the parameters

Trade-offs when making decisions
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Exercise 1

Can you propose a Naive Bayes classifier with continuous features? Derive the
maximum likelihood estimates of the parameters.



Exercise 2

Derive the update equations of a generative classifier with discrete binary features.



Exercise 3

What is the form of the decision boundary for a binary classifier with Gaussian
features with different covariance matrices?



Exercise 3?

What are the expressions of the precision and the recall in the multi-class case?
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