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Q Practical sessions (1 hour)

o Understand what is a classification problem and when it can be applied.
o Being able to reason about new models and derive learning algorithms.
o Being able to learn more by yourself!
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MNIST handwritten digit sample
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Given an image, can we predict which
digit it is (i.e., which label it has)?
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Pre-processed data set of handwritten digits: D = {(x;, t;)|i = 1,...,n}.
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Pre-processed data set of handwritten digits: D = {(x;,t;)|i =1,...,n}.
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o Instance or data point i consists in a 28 x 28 bitmap image x;
and a label t; € {0,...,9}.
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Pre-processed data set of handwritten digits: D = {(x;,t;)|i =1,...,n}.
Qo
o Instance or data point i consists in a 28 x 28 bitmap image x;
and a label t; € {0,...,9}.
o Each image is represented as a 784-dimensional vector of pixels,
quantized to {0,...,255}.


http://yann.lecun.com/exdb/mnist

oINS N
SN YNA
> Q) °p o W o
HVOOVLRI

a3y
a3y
>34
23y
23y
23y
2% 4

annnnh o

MNIST handwritten digit sample

Pre-processed data set of handwritten digits: D = {(x;,t;)|i =1,...,n}.

°

o Instance or data point i consists in a 28 x 28 bitmap image x;
and a label t; € {0,...,9}.

o Each image is represented as a 784-dimensional vector of pixels,
quantized to {0,...,255}.
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We would like to distinguish digit 8 from digit 9:

[ +1 if y(x) >0,
1 -1 i y(x)<o.

o Why not a look-up table?

fu(x) = ti if x=x;,ie{l,...,n},
LUWX) = Don't know if x £ x;,i€{1,...,n}.

@ Why not nearest neighbours?

fn(x) =t = lx=xl <[x=xl,je{l,...,n}



Linear discriminant function (aka linear classifier)
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y(x) = w'x+ b, fun(x) = sign(y(x)),
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Linear discriminant function (aka linear classifier)

A
X We assume the instances can be separated by a
))(( X linear subspace (or hyperplane):
X2
O x)=w x+ b, fux(x) = sign(y(x)),
0-0 y(x) LiN(x) gn(y(x))
O where w € RI\{0}, b € R.

o The decision boundary is the set {x : y(x) = 0}.
o Learning is to find w and b such that Vi : fuin(x;) = t;.



Relation to nearest neighbour classification?

2 = wia]l < e —woall & e —wia]* <l - w?

& faa]|? = 2wl @ + wia | < |2 ® — 2w 20 + [l |

& whia. - [wal?/2 > whie. - [w]?/2

1
& (wq—w_q) e, + 5 (lw_1]* — llw41]?) > 0.



How can we picture a linear discriminant function?
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Figure 2.6: Separating hyperplane in R2. The decision boundary (blue) is defined
by the normal vector w and an offset b € R. g is a point on the hyperplane,
obtained by orthogonal projection of the origin. The plane separates R? into two
halfspaces #11 (w”x +b>0) and H_; (wP=z +b < 0), the decision regions of
the corresponding linear discriminant.
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How can we picture a linear discriminant function?

Figure 2.6: Separating hyperplane in R2. The decision boundary (blue) is defined
by the normal vector w and an offset b € R. g is a point on the hyperplane,
obtained by orthogonal projection of the origin. The plane separates R? into two
halfspaces #11 (w”x +b>0) and H_; (wP=z +b < 0), the decision regions of
the corresponding linear discriminant.

Tu=0.

o Vector w is orthogonal to any vector u in the hyperplane: w
o Offset vector vo = —(b/||w||?)w is the projection of the origin.

o We restrict weight vectors to be unit norm: {w : ||w|| = 1}.
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Feature maps
o Representing digits as vectors of pixels is arbitrary. Perhaps a transformation
would be beneficial?

o Let ¢: RY — RP: x > ¢p(x). The feature function ¢(x) defines a mapping
of input space into a feature space.

o We generalise linear classifiers by learning them in the feature space:

y(x) = w'¢(x) + b, fuin(x) = sign(y(x))-

Example: linear classifier with quadratic features

X1

Xd

X1x1

xX2

dx)= | x| €RID2 o) =wTd(x) + b= wixi+ 3> wixpxk + b
J k<

L Xdxq4 d
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How do we estimate w?

Perceptron (Rosenblatt, '62):
o Instance i is correctly classified if w' ¢(x;)t; > 0.
o Perceptron criterion:

Ep(w) == w'¢(x)t;,
ieEM
where M = {i : w' ¢(x;)t; < 0}.
o The error Ep(w) can be minimised by applying to following rule:
w < w + ¢(x;)t;.

@ Why does this algorithm work?
tip(xi)T(w + tid(x;)) = tip(x;) " w + [[9(x:)|* > tip(x;) T w.

o If the data is not linearly separable, then the perceptron will not converge :-(
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How should we handle multi-class problems?

o By combining binary classifiers?

C
Rs
&3

not C;

not Ca

o Are there other ways?

V(%) = w d(x) + by, f(x) = argmax{yi(x),. ., ym(x)}-
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o Spam detection

Fraud detection
Document categorisation
Sentiment analysis

Face recognition
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Bayes' rule

x|t) (1)

P(tlx) = &1 , o) = 3" p(x|)P(1).

p(x) -

o P(t) is the class prior
o P(t|x) is the class posterior
o p(x|t) is the class-conditional density (or likelihood)

plelcs) Al ek Blcal)
" 4 » P(Cl):P(tzf]_)
E ’ 06 P(C1|X):P(t:—]_‘x)
LI N p(x, C1) = p(x,t = —1).

0 02 04 06 0.8 1 [] 02 04 0.6 0.8 1
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Minimising the classification error

R Ra
o Let % be the decision threshold: Ry = {x : x < £} and Ry = {x : x > £}.
o The misclassification rate is the combined coloured areas:

P(error) = P(x € R1, &) + P(x € Ro, Gi),

where P(x € R1, ©) = [, o, P(x, C2)dx.
o False positives: blue area. False negatives: green+-red area.

o Bayes error at x = xp: blue+green area.



Example of a Bayes optimal classifier

o2 plz|t =0) plx|t=1) gt

Oolasa,-apler)  ° =

b A AL .
a o =T

Figure 5.5: Bayes-optimal classifier and Bayes error for two class-conditional
Cauchy distributions, centered at ag and a;. The optimal rule thresholds at the
midpoint @ = (ag + a1)/2. Since the class prior is P(t = 0) = P(t = 1) = 1/2,
the Bayes error R* is twice the yellow area. Right plot show R* as function of
separation parameter A. The slow decay of R* is due to the very heavy tails of
the Cauchy distributions.
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x>xp TP FP
x<xg FN TN
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o The precision is the proportion of positives in the instances classified as being
positive:

TP(x)
P = =
(x) TP(x) + FP(x)’
where TP are the true positives and FP the false positives.



Precision and recall

t=1 t=-1
x>xp TP FP
x<xg FN N

R Ra

o The precision is the proportion of positives in the instances classified as being
positive:

TP(x)
P =
)= 7500+ PP
where TP are the true positives and FP the false positives

o The recall is the proportion of correctly classified positives

TP(x)
R = ——
(x) TP(x) + FN(x)’
where FN are the false negatives.
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predicting that the patient has cancer while he/she has not the same, as predicting that the
patient has not contracted cancer while he/she has the disease?
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Should we always minimise the misclassification rate?

In a hospital, a tissue sample is taken from a patient, giving rise to an input vector x. A classifier
f(x) is to predict whether the patient has cancer (t = 1) or not (t = —1). Is the cost of
predicting that the patient has cancer while he/she has not the same, as predicting that the

patient has not contracted cancer while he/she has the disease?

Let us define a loss function, which assigns a unique loss to every decision we
could take:

cancer normal
cancer 0 1000
normal 1 0
The expected loss is given by

E(L) = ZZ/ Lk/p X, Ck)

ERy
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o We defined the decision threshold of a linear classifier as follows:
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o We can decide to threshold at any another score a:
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How can we make a trade-off?

t=1 t=-1

R Ra

o We defined the decision threshold of a linear classifier as follows:
xo = {x: fuin(x) = 0}
o We can decide to threshold at any another score a:
Xo = {x: f(x) =a}

@ What is the effect of chosing X7
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o AUC enables us to compare classifiers irrespective of the decision threshold.
o Receiver-operating characteristic (ROC):

Monotonic

AUC = probability of scoring a positive higher than a negative.
o Precision-recall:

Non-monotonic
One to one mapping with ROC
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P, P, P

@ What are the expressions of
precision and recall?

o\ 234 5(97 Bq o Confusion matrix:
©lad4gse789 t=1 t=2 t=3
O] >34 5 b? & 9 fx)=1 C12 ci3
OC)l233¢gs5L7 89 ?(X)ig 1 2 o3
O] 23 qs&7 % G (x) = G31 C32 C33
0/ 234567849

01 2%45617814
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Generative classifiers

Consider the data set D = {(x;, t;)|i = 1,...,n}. We are interested in the
posterior class probability:

class—conditional density class prior
— —_—
pxlt—K)  P(e=k)

P(t = k|x) = : k=1{1,...,m}.

p(x)

o Prior: P(t = k) = m.
o Continuous features: p(x|t = k) = Gaussian (pk, Xk).
o Discrete features: p(x|t = k) = Multinomial (zex).

How can we learn the parameters 8 = {7, i, Zpc 4 ?

arg max |an(t,-|9) (maximum likelihood estimation)
o .
I

where p(t;]@) = Categorical (m Gaussian (1, X1) , . . ., TmGaussian (fm, Xm)).
where p(t;]0) = Categorical (73 Multinomial (p1) , ..., TmMultinomial (fe,,)).



Definitions

Multivariate Gaussian probability density:

1 -
x ~ Gaussian (u, X) = WE*%(X*#)TE Hx—p)

Multinomial probability distribution:

x ~ Multinomial (p) =

Categorical probability distribution:

t ~ Categorical (p) = H pik(f),
k=1

where §,(-) is the kronecker delta centred at z.
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Binary classification

P(t=1|x) = p(x|t =1)P(t =1)

S Pt = KP(E=K)
1

B (x|t=—D)P(t=—1)
L+ Seeneen




Binary classification

p(x|t=1)P(t=1)

P f— 1 =
(=10 = = o(xle = K)P(e = K)
1
[=—1)P(=—1)
L+ e A=)
1

—In _P(It=1)P(t=1)

1 + e px|t 1)P(t: 1)




Binary classification

p(x|t=1)P(t=1) 1 >
2 P(x[t = K)P(t = k)
1 05

Gl=—DP(=—1)
L+ e A=)

1 , i

P(t = 1|x) =

- _n Pt 1)P(t=1) - 0 5

1 + e p(x|t 1)P(t 1)

Sigmoid: o(z) = m.



p(x|t =1)P(t =1) !
22 p(x|t = k)P(t = k)
1 05

(x|t=—1)P(t=—1)
1+ £ p(x|t=1)P(t=1)

1

P(t = 1|x) =

1+e

Sigmoid: o(z) =

Let a € [0,1]. The classifier is defined as follows:

f(x):{ +1 if P(t =1|x) > a,

-1 if P(t=1|x) < a.

-5

0

5

1
Trexp(—2) "




o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Gaussian (@41, 2),
P(t=-1)=1-m, p(x|t = —1) = Gaussian (u_1, 3).

where the classes are assumed to share the same covariance.
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o The is given by
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o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Gaussian (@41, 2),
P(t=-1)=1-m, p(x|t = —1) = Gaussian (u_1, 3).

where the classes are assumed to share the same covariance.
o The is given by

Inp(t|@) = 25+1 ) (In7 + In Gaussian (41, X))

—1—2(5 (In(1 — ) + In Gaussian (p—1, X)) .
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o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Gaussian (@41, 2),
P(t=-1)=1-m, p(x|t = —1) = Gaussian (u_1, 3).

where the classes are assumed to share the same covariance.
o The is given by

Inp(t|@) = 25+1 ) (In7 + In Gaussian (41, X))

—1—2(5 (In(1 — ) + In Gaussian (p—1, X)) .
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o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Gaussian (@41, 2),
P(t=-1)=1-m, p(x|t = —1) = Gaussian (u_1, 3).

where the classes are assumed to share the same covariance.
o The is given by

Inp(t|@) = 25+1 ) (In7 + In Gaussian (41, X))

—1—2(5 (In(1 — ) + In Gaussian (p—1, X)) .

Oq1(ti N ~N ¢
w= it gy = e Yt Sa(t)xi e = 5 20 ()X

="180 4728,



Binary classification with continuous features

o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Gaussian (@41, 2),
P(t=-1)=1-m, p(x|t = —1) = Gaussian (p—1, X).

where the classes are assumed to share the same covariance.
o The log-likelihood is given by

Inp(t|@) = Z&rl ) (In7 + In Gaussian (41, X))

—1—25 (In(1 — 7) + In Gaussian (pu—1, 3)) .

@ Maximum likelihood solution:

5a(t )
m= & ,fl(t) = SN Sa(t)xi, pr = o SV o ()X

N1

T=218, 4228, Suy = 3 S (8) (% — p) (i — pea) T



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

_ 1 _ 1 _
P(t:l|x):0<(u,1fu,1)‘2 lx—i-fipLE 1;1,+1+§;1112 Y 1 +1n 1 WT>
— 7




What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

-~ 1 _ 1 _
P(t:1|x):a<(,u.17'u N> 1x+—§pL§; 1u+1+§l£12 1M_1+In1fﬂ>

= (w'x+b).




o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Multinomial (p41),
P(t=-1)=1-m, p(x|t = —1) = Multinomial (pe—_1) .

where the features are assumed to be independent given the class.
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o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Multinomial (p41),
P(t=-1)=1-m, p(x|t = —1) = Multinomial (pe—_1) .

where the features are assumed to be independent given the class.

o The is given by

Inp(t|6) = Z 0+1(t) (In7 + In Multinomial (g41))

+ 25 ) (In(1 — ) + In Multinomial (pz—1)) .
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2o Z Xij !

20X
H+1 = S5 50



o The classifier is defined by the following priors and class-conditionals:

P(t=1)=m, p(x|t = 1) = Multinomial (p41),
P(t=-1)=1-m, p(x|t = —1) = Multinomial (pe—_1) .

where the features are assumed to be independent given the class.

o The is given by

Inp(t|6) = Z 0+1(t) (In7 + In Multinomial (g41))

+ Z 0-1(t;) (In(1 = ) + In Multinomial (p£—1)) .
°
= 2o 2o 0a(ti)xy
- 2 Zj Xij !
S 60 (8)x; S, 61 (t)x;

Ha1 = S5 6a(exg * H1S 500 ()



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t:1|x):0((|nu‘1fln,u 1)Tx+|n1iﬂ)



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

F’(t:1|x):o‘<(|nu+1fln,u,l)‘x—&—ln1W >

— T

za(w x—l—b).



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

1—m

P(t=1lx)=0 <(|nu+1 ) x+In 2 )

:a(w7x+b).

What if an entry of p; is zero? When can this occur?



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

Pit=1x)=¢ ((Inu_l “lnpo1) x+1n ] L >

— T

za(w x+b).

What if an entry of p41 is zero? When can this occur?
arg max In H p(ti]0) + Inp(0) (maximum a posteriori estimation)
i

where p(0) = Dirichlet (al):



What is the form of the decision boundary?

Plugging the priors and the class-conditionals in the posterior leads to

P(t=1lx)=0c ((In,u,,l — In,u,,l)‘x—ﬁ—ln 1 T >

— T

:a(w x+b).

What if an entry of g1 is zero? When can this occur?
arg max In H p(ti]0) + Inp(0) (maximum a posteriori estimation)
i

where p(0) = Dirichlet (al):
o Parameter o can be interpreted as a pseudo-count. (x)

o Adding a prior is equivalent to regularisation.



o Generative classifier making the simplifying assumption that features are
given the class:

p(x|t = k)P(t = k) _ P(t = k)

Pe=ko=""—0ry — ~ b(x)



o Generative classifier making the simplifying assumption that features are
given the class:

p(x|t = k)P(t = k) _ P(t = k)

PEmk ="~ P(3)

o Number of parameters scales linearly with the number of features!



Naive Bayes classifier

o Generative classifier making the simplifying assumption that features are
independent given the class:
d
Copxt=k)P(t=k) LI plolt = K)P(t = k)
p(x) p(x) '

P(t = k|x)

o Number of parameters scales linearly with the number of features!
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Figure 6.8: The Reuters RCV1 collection is a set of 800,000 documents (news
articles), with about 200 words per document on average. After standard pre-
processing (stop word removal), its dictionary (set of distinct words) is roughly
of size 400,000. A common machine learning problem associated with this data
is to classify documents into groups (for example: politics, business, sports, sci-
ence, movies), which are often organized in a hierarchical fashion.



Naive Bayes classifier

o Generative classifier making the simplifying assumption that features are

independent given the class:

_pxlt=KP(E=k) 117 plolt— KP(E=K)

P(t = K|x) 200

p(x)

o Number of parameters scales linearly with the number of features!
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Figure 6.8: The Reuters RCV1 collection is a set of 800,000 documents (news
articles), with about 200 words per document on average. After standard pre-
processing (stop word removal), its dictionary (set of distinct words) is roughly
of size 400,000. A common machine learning problem associated with this data
is to classify documents into groups (for example: politics, business, sports, sci-
ence, movies), which are often organized in a hierarchical fashion.

Document categorisation:

P(t = k) = Tk,
p(x|t = k) = Multinomial (zex) .



Naive Bayes classifier

o Generative classifier making the simplifying assumption that features are
independent given the class:

_ p(xlt=K)P(t=k) _ [0, plglt = K)P(t = k)
B p(x) p(x)

P(t = k|x)

o Number of parameters scales linearly with the number of features!
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articles), with about 200 words per document on average. After standard pre-
processing (stop word removal), its dictionary (set of distinct words) is roughly
of size 400,000. A common machine learning problem associated with this data
is to classify documents into groups (for example: politics, business, sports, sci-
ence, movies), which are often organized in a hierarchical fashion.




o Generative classifier making the simplifying assumption that features are
given the class:

x|t = = P(t =k
P(t = klx) = P pk()x’)’(t N — (t=h)

o Number of parameters scales linearly with the number of features!

REUTERS)
P(t = k) = Tk,
p(x|t = k) = Multinomial (zex) .

Yo are are: e > e

Gon us

o Category/theme/topic k is model-
led by a discrete distribution e
over the vocabulary of size d.

Figure 6.8: The Reuters RCV1 collection is a set of 800,000 documents (news

articles), with about 200 words per document on average. After standard pre-
processing (stop word removal), its dictionary (set of distinct words) is roughly @ Xx; represents document /; it
of size 400,000. A common machine learning problem associated with this data

is to classify documents into groups (for example: politics, business, sports, sci- contains the Word counts.

ence, movies), which are often organized in a hierarchical fashion.



Maximum likelihood (ML) estimation: summary

The likelihood is the joint probability of observing i.i.d. data:

0(0; t) = Inp(t; 0) |an(t,,0)



The likelihood is the joint probability of observing i.i.d. data:

0(0; t) = Inp(t; 0) |an (t;; 0).

The goal is to find the parameters that maximise the log-likelihood function:

0" = argmax ¢(0; t).
0

o ML leads to a point estimate of 8 and is asymptotically consistent.
o The likelihood is unbounded, so ML estimator can overfit!



Maximum a posteriori (MAP) estimation: summary

Penalise unreasonable values (~ regularisation) by imposing a prior distribution on
the parameters:

p(01X) o< p(X|6)p(6).



Penalise unreasonable values (~ regularisation) by imposing a prior distribution on
the parameters:

p(6]X) o p(X|6)p(6).
The goal is to maximise the penalised log-likelihood :

{nap(6; t) = £(6; t) +In p(6).

o MAP leads to a point estimate of 8 and asymptotically agrees with ML
estimate.

o MAP is not invariant under reparametrisation!



Outline

@ Discriminative classifiers



Generative versus discriminative classification

[ +1 i P(t=1[x) > «,
f(x)_{ ~1 if P(t=1[x) < a.



Generative versus discriminative classification

41 i P(t=1lx) >«
Flx) = { —1 if P(t=1]x) < a.

o Generative classifiers:
P(t = k|x) x p(x|t = k)P(t = k)

Require explicit class-conditionals
Take a linear form in specific cases



_ +1 if P(t=1]x) > a,
Flx) = { —1 if P(t=1]x) < a.

o Generative classifiers:
P(t = k|x) x p(x|t = k)P(t = k)

Require explicit class-conditionals
Take a linear form in specific cases

o Discriminative classifier:
P(t = k|x) = o(y(x: 0))

Does not rely on class-conditionals
Less parameters to learn (or optimise)
Easy to change the feature map ¢(x)



(Binary) logistic regression
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o Linear discriminant: y(x) = w'¢(x)+ b .



(Binary) logistic regression
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o Linear discriminant: y(x) = w'¢(x)+ b .

o Logistic link:

P(t = +1]x) = o(y(x))

_ 1
C lTtep(—y(x)



(Binary) logistic regression

P>

05

-5 0 5

o Linear discriminant: y(x) = w'¢(x)+ b .
o Logistic link:

1

P(t =411 = o)) = T S0y

o Conditional likelihood:

t|x ~ Bernoulli (o (y(x))) = o (y(x))" 7 (1 — o (y(x)))’ ).



(Binary) logistic regression

P>

05

-5 0 5

Linear discriminant: y(x) = w'¢(x) + b .
Logistic link:

(4]

(4]

1

P(t =411 = o)) = T S0y

o Conditional likelihood:
t|x ~ Bernoulli (o (y(x)))= o (y(x))ﬁ“(t) (1— 0o (y(x)))’®,

o Alternative formulation: P(t|x) = o (ty(x)). (%)



How do we learn w?

Inp(t|x; w) = Z In Bernoulli (a(y(x;))) -



Inp(t|x; w) = Z In Bernoulli (a(y(x;))) -

1
Q lterative reweighted least squares (IRLS):

ww+ (®TRE) D (0 —t)
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where @ = (p(x1)",...,0(x,)") T, Ri = o(y(xi)) (1 = a(y(x))).
& = (V1)) o (k)T and £ (trror )
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1
Q lterative reweighted least squares (IRLS):
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Instantiation of Newton-Raphson

Objective is convex!
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Instantiation of Newton-Raphson

Objective is convex!

Q Alternatives include gradient descent



Inp(t|x; w) = Z In Bernoulli (a(y(x;))) -

1
Q lterative reweighted least squares (IRLS):

ww+ (®TRE) D (0 —t)

_ =V Inp(t|w)

where & = (p(x1) ", ..., ¢(x,,T)T)T, Ri = o(y(x/)) (rl —o(y(x:))),
o= (o(y(x1)),...,0(y(xn))) " and t = (t1,...,ta) .

Instantiation of Newton-Raphson

Objective is convex!

Q Alternatives include gradient descent and



Classification losses
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—— Perceptron error|
—— Squared error
4 — Logistic error
3
8
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Classification losses

—— Perceptron error|
—— Squared error

— Logistic error

o Perceptron loss:

E(xi) = {

0
tiy(xi)

if tiy(x;) > 0,
if tiy(x;) <O0.



Classification losses

—— Perceptron error|
—— Squared error

— Logistic error

o Perceptron loss:

A 0 if tiy(xi)) >0,
Eba) = { tiy(xi) if tiy(x;) <O.

o Logistic loss:

E(x;)=1In (1 + e_t”’("")) .



Classification losses

o Perceptron loss:

. —_— F;erceptrz;n error|
——Squared Forv(x:
4 —Lo‘:‘gl;izgﬁ:eerrr(r)orr E(X,‘) — 0 lf t/y(x,) >0,
tiy(xi) if tiy(x;) <O.

e o Logistic loss:
&

i E(x;)=1In (1 + e_t"Y("")) .

;

@ Squared error:

- 2 - 1
4 -3 2 1 \ 0 1 2 3 E(x) = E(t;y(X,')—l)z.



Is the squared error suitable for classification?

-6
-8 -8
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

(Green: perceptron. Magenta: squared error.)



Other link functions?

0.5

y(x)
d(y(x)) = / Canssian (0,1)dz, y(x) =w'x + b,



Other link functions?

0.5

o Probit regression:

y(x)
d(y(x)) = / . Caussian (0,1) dz,  y(x) = w' x + b.

o Latent variable view:

tlz ~ I(tz > 0), z ~ Gaussian (y(x),1).



o Linear discriminant:

Yi(x) = wj ¢
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o Linear discriminant:
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o Linear discriminant:

vi(x) = w/ ¢(x)+ b, ke {l,...,m}.

O1la34s5b789

oOlazdygse789 °

O] +2d4566b9 §9

0)23¢546789 P(t = klx) = op (y(xi)
D)1234S67%9 >orexp (y(x))
0/ 2345672939

01 2%4561 819

o Conditional likelihood:

t|x ~ Categorical (u),

where
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© Summary



o Linear classifiers:
Perceptron
Naive Bayes
(Multi-nomial) logistic regression




o Linear classifiers:

Perceptron
Naive Bayes
(Multi-nomial) logistic regression

o Linear classifier can be non-linear!



o Linear classifiers:

Perceptron
Naive Bayes
(Multi-nomial) logistic regression

o Linear classifier can be non-linear!

o Techniques to learn the parameters



o Linear classifiers:

Perceptron
Naive Bayes
(Multi-nomial) logistic regression

o Linear classifier can be non-linear!
o Techniques to learn the parameters

o Trade-offs when making decisions



Outline

© Exercises



Can you propose a Naive Bayes classifier with continuous features? Derive the
maximum likelihood estimates of the parameters.



Derive the update equations of a generative classifier with discrete binary features.



What is the form of the decision boundary for a binary classifier with Gaussian
features with different covariance matrices?



What are the expressions of the precision and the recall in the multi-class case?
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