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A methodological framework for inverse problems

Linear Models: convolution (image restoration), projection (tomography),
mixtures (source separation), Laplace and Fourier transform (NMR, MRI)

Inversion: instability, non-unicity or existence of the solution
−→ Ill-posed problem

Regularization: add constraints/hypothesis on the seek solution

I Bayesian inference: p(z|x) ∝ p(x|z)p(z)
I Penalized criterion minimization: F (z) = L(z, x) + βR(z)
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Overview: Part 1- Introduction to Bayesian tools

I Introduction
I Statistical inference

I Learning and decision
I Maximum likelihood

I Bayesian set up
I prior, posterior, etc.

I Bayesian inference strategies
I Point estimators
I Fully Bayesian treatment

I Prior distributions
I Conjugate priors and exponential family
I Noninformative and Jeffreys’ priors

I Tractability of posteriors
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Overview: Part 2- Probabilistic graphical models

I Directed graphs: Bayesian networks

I Conditional independence and Markov properties

I Undirected graphs: Markov random fields

I Inference and learning

I Illustration: image segmentation
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Introduction
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Illustration: Audio-Visual Scene Analysis

I Estimate the number of audio-visual objects

I Localize and track every object

I Determine auditory activity and visibility
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Observed Data

Right camera image: Left camera image:

Left microphone signal:

Right microphone signal:
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Visual Features Extraction

An image pair produces a set of visual observations
f = {fm}Mm=1 ∈ R3;
f = (u, v, d): u, v - image coordinates, d - disparity
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Auditory Features Extraction

Left Ear

Right Ear

Left Ear

Right Ear

ITD = interaural time difference

An ITD detection algorithm [H. Christensen, 2007] procudes for a
10ms interval of audio signals one auditory observation gk ∈ R
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Audio-Visual Generative Model
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Why statistical modelling in Audio-Visual Scene Analysis ?
I Observations are strongly affected by noise: detector errors, occlusions,

reverberations, ambient sounds,

can be accounted for with some probability distributions.

I P (fm | Am = n; sn) = N (fm; F(sn),Σn);
I P (gk | Bk = n; sn) = N (gk; G(sn),Γn);

I Dynamically changing environment:

can be accounted for with some prior knowledge, eg. on motion cues,
trajectories are continuous, smooth, etc...
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Statistical Model formulation

I s = {s1, . . . , sn, . . . , sN} are tying parameters

I Simultaneous clustering in auditory and visual observation
spaces

I Model parameters: Determine N and s1, . . . , sN

θ = {s1, . . . , sN ,Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN , π1, . . . , πN+1, λ1, . . . , λN+1}
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Real Data Results
Meeting scenario

I Estimated speaker locations and their auditory activity for a
quasi-stationary scene

I Error rates for auditory activity detection: ‘missed target’ =
0.16, ‘false alarm’ = 0.14

I Localization error: within 5cm
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Real Data Results
Simple tracking scenario

I Simple dynamic scene - results on the previous frame are used
to initialize the model for the next frame

I Error rates for auditory activity detection: ‘missed target’ =
0.13, ‘false alarm’ = 0.43

I Localization error: within 10cm
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Real Data Results
Cocktail party scenario

I Complex dynamic scene - may fail!

I Explicit dynamic model is required!
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Illustration: MR Brain scan segmentation
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Tissue segmentation

Constrain with an atlas
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Statistical inference
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Statistical inference

From a given set of observation x = (x1, . . . , xN ), learn a model
that best describes the data

I Probabilistic parametric model:
x = (x1, . . . , xN ) generated from a probability distribution f(x|θ)

x = (x1, . . . , xN ) ∼ f(x|θ)

associated likelihood: l(θ|x) = f(x|θ) viewed as a function of θ

I Learning: estimating θ
e.g. that maximizes l(θ|x) (Maximum likelihood inference)
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Decision

Once a model is learned, decide about:

I The occurence of an ”event”,

I Classify,

I Or find the value of a variable, etc.

Example 1: Linear model

Assume x = Kz + ε

z = clean signal, z ∼ f(z|θ)

ε = noise, ε ∼ f(ε|φ)

x = noisy observed signal

Goal: obtain an estimate for z (ẑ)
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Decision

Example 2: Classification

e.g. 2 groups of objects (people)

θ1 −→ f(x|θ1) −→ x ∈ g1

θ2 −→ f(x|θ2) −→ x ∈ g2

Training data: observations in g1 and in g2 −→ θ̂1, θ̂2

Goal: given xnew, decide to which group it belongs

( ie. compute p(g|xnew, θ̂1, θ̂2))
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Maximum likelihood estimation
I We observe N realizations x1, . . . , xN of a variable X

I Decide on a parametric model for X: f(x|θ)
I Estimate θ by maximizing l(θ|x) or log l(θ|x)

Example 1: Linear Gaussian model z = Kx+ ε and ε ∼ N (µε,Σε)

log f(z|θ) = logN (Kx+ µε,Σε) ∝ −(z −Kx− µε)TΣ−1
ε (z −Kx− µε)

x̂ML = arg min
x

(z −Kx− µε)TΣ−1
ε (z −Kx− µε)

Normal equations: (KTΣ−1
ε K)x̂ML = KTΣ−1

ε (z − µε)

I Least squares: µε = 0 and Σε = σ2Id

=⇒ x̂ML = arg min
x
||z −Kx||22 = x̂LS

I Weighted least squares: µε = 0 and Σε = Diag(σ2
1 , . . . , σ

2
N )

=⇒ x̂ML = arg min
x

∑
n

(zn − [Kx]n)2

σ2
n

= x̂WLS
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Maximum likelihood estimation

Example 2: Man-Woman classification problem

5 subjects in each class were asked if they like football and statistics

Women g1 Men g2

football 1 1 0 0 0 1 1 1 1 1
statistics 1 0 1 0 1 0 1 0 0 1

ratio Positive Negative Positive Negative
answers answers answers answers

football 2/5=0.4 3/5=0.6 5/5=1 0/5=0
statistics 3/5=0.6 2/5=0.4 2/5=0.4 3/5=0.6
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Observations and notation

I N = 10 responses xn =

[
x1n

x2n

]
∈ {0, 1}2 (2 questions)

x = {x1, . . . , xN}

I N = 10 group assignments gn ∈ {Woman,Man}(= {1, 2})

g = {g1, . . . , gN}

xg1 = {xn, gn = 1} =

{[
1
1

]
,

[
1
0

]
,

[
0
1

]
,

[
0
0

]
,

[
0
1

]}
xg2 = {xn, gn = 2} =

{[
1
0

]
,

[
1
1

]
,

[
1
0

]
,

[
1
0

]
,

[
1
1

]}
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Model

I Independence: f(g) =
N∏
n=1

f(gn)

I f(gn = woman) = f(gn = man) = 0.5

I Conditional independence: f(x|g) =
N∏
n=1

f(xn|gn)

I Independence of the two questions: f(xn|gn) = f(x1n|gn) f(x2n|gn)

I ∀n = 1 . . . N, i = {1, 2}, g = {1, 2}, Independent Bernouilli distributions
(θgi ∈ [0, 1]):

f(xin|gn = g) =


θgi if xin = 1
1− θgi if xin = 0
0 otherwise

or equivalently f(xin|gn = g) = (θgi )xin (1− θgi )1−xin

(θgi = 0.5 −→ the coin is not biased)
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Likelihood for each group

I Learning task: Estimate (θg1 , θ
g
2) given xg (g = Woman,Man)

I Likelihood function:

f(xg|θg) =
∏

n, gn=g

f(x1n|g) f(x2n|g)

I Log-likelihood:

log f(xg|θg) =
∑

n, gn=g

∑
i=1,2

xin log θgi + (1− xin) log(1− θgi )

I Maximization: θgi =

∑
n,gn=g

xin

Ng
(mean, frequencies of positive answers)

θ1 =

[
0.4
0.6

]
, θ2 =

[
1

0.4

]
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Decision: Naive Bayes classifier

Sum-rule: P (B) = P (B,A) + P (B,Ac)

Product-rule: P (A,B) = P (B|A)P (A)

It follows Bayes’ theorem: P (A|B) = P (B|A)P (A)/P (B)

with normalization P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)

Goal: Classify a person with x =

[
1
1

]
ie. g =??

I Bayes’ rule : f(g|x) = f(x|g)f(g)
f(x)

= f(x|g)f(g)∑
g′ f(g′)f(x|g′)

I Assuming f(woman) = f(man) = 0.5,

f(woman|x) =
0.4× 0.6

0.4× 0.6 + 1× 0.4
= 0.375

f(man|x) =
1× 0.4

0.4× 0.6 + 1× 0.4
= 0.625 = 1− 0.375
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Decision: Naive Bayes classifier

Goal: classify a person with x =

[
0
1

]

f(woman|x) =
0.6× 0.6

0.6× 0.6 + 0× 0.4
= 1

f(man|x) =
0× 0.4

0.6× 0.6 + 0× 0.4
= 0

I Conclusion: if you don’t like football and like statistics, you are almost
surely a woman

I Overfitting effect to the small training set

I Priors over the parameters can avoid overfitting =⇒ Bayesian framework
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Bayesian set up
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Bayesian concepts

I Uncertainty on the parameters θ of a model modeled through a
probability distribution on θ, called prior distribution

The prior encoded the information available a priori, before observing x

I Inference based on the distribution of θ conditional on x, f(θ|x), called
posterior distribution
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Impact

I From unknown parameters to random

I Actualization of the information on θ by extracting the
information on θ contained in the observations x

I Allows incorporation of imperfect information in the decision
process

I Unique mathematical way to condition upon the observations
(conditional perspective)

I Penalization factor
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Three basic quantities in Bayesian inference

I Prior distribution f(θ)

I likelihood f(x|θ)
I Posterior distribution f(θ|x)

Forward generative model:

f(θ) −→ θ −→ f(x|θ) −→ x

−→ involves the prior and the likelihood

Inference is an inversion problem:

x −→ f(θ|x) −→ θ̂

−→ involves the posterior distribution
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Classification example
Assume a Beta prior over the Bernouilli parameters: θgi ∈ [0, 1]

f(θgi ) = Beta(α, β) = B(α, β)−1θgi
α−1(1− θgi )β−1

E[θgi ] = α/(α+β), Mode[θgi ] = (α−1)/(α+β−2)

Compute the posterior distribution of θgi :

f(θgi |x
g) =

f(xg|θgi )f(θgi )

f(xg)
∝ f(xg|θgi )f(θgi )

log f(θgi |x
g) = cst+ (Agi − 1) log θgi + (Bgi − 1) log(1− θgi )

with Agi =
∑
n,gn=g xin + α and Bgi =

∑
n,gn=g(1− xin) + β

so that posterior distribution:

f(θgi |x
g) ∝ θgi

A
g
i−1(1− θgi )B

g
i −1

= Beta(Agi , B
g
i )

Florence Forbes Introduction to statistical methods in signal and image processing



Classification example

Women g1 Men g2

football 1 1 0 0 0 1 1 1 1 1
statistics 1 0 1 0 1 0 1 0 0 1

Example: α = β = 2 =⇒ A1
1 = α+ 2 = 4, B1

1 = β + 3 = 5

↓ B(4, 5)

↖ B(2, 2)
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Bayesian inference strategies
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Point estimators
Goal: provide an estimation of θ

The two most common Bayesian estimators are:

I Maximum a posteriori (MAP) estimator

θ̂MAP = arg max
θ
f(θ|x)

= arg max
θ
f(x|θ)f(θ)

= arg max
θ

log f(x|θ) + log f(θ)

Note: if f(θ) = constant then θ̂MAP = θ̂MLE

I Posterior Mean Estimator

θ̂PM = Eθ[θ|x] =

∫
θf(θ|x)dθ

Note: f(θ|x) requires the normalizing term f(x) =
∫
f(x|θ)f(θ)dθ.

θ̂MAP usually easier to obtain, it involves optimization rather than integration
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Posterior mean and Bayesian MSE

The Bayesian Mean Square Error (MSE) is

Eθ,X [||θ̂ − θ||22] =

∫ ∫
||θ̂(x)− θ||22 f(θ, x) dθ dx

Minimum Mean Square Error (MMSE) estimator:

Definition: θ̂MMSE = arg min
θ̂
Eθ,X [||θ̂ − θ||22]

Solution: θ̂MMSE = Eθ[θ|X] = θ̂PM

since Eθ,X [||θ̂ − θ||22] = EX [Eθ[||θ̂ − θ||22|X]]

and Eθ[||θ̂ − θ||22|X] is minimum when θ̂ = Eθ[θ|X]
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MAP and 0-1 Loss

The MSE quadratic cost (loss) can be replaced by a 0-1 cost

Eθ,X [1− δθ(θ̂)]

where 1− δθ(θ̂) = 0 if θ̂ = θ (no loss) and 1 otherwise (max loss)

minEθ,X [1− δθ(θ̂)] = maxEX [Eθ[δθ(θ̂)|X]]

and Eθ[δθ(θ̂)|X] = p(θ = θ̂|X) which is max at the MAP
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Linear Minimum MSE

Assume E[θ] = E[X] = 0 and consider an estimator of the form θ̂ = ATX

Goal: find matrix A that minimizes the Bayesian MSE

MSE(A) = Eθ,X [||ATX − θ||22]

= Eθ,X [trace ((ATX − θ)(ATX − θ)T )]

= trace (Eθ,X [(ATX − θ)(ATX − θ)T ])

= trace (E[θθT ]−ATE[XθT ]− E[θXT ]A+ATE[XXT ]A)

= trace (Σθ −ATΣxθ − ΣθxA+ATΣxA)

∂

∂A
MSE(A) = −2Σxθ + 2ΣxA = 0

Â = Σ−1
x Σxθ Wiener-Hopf equation

θ̂LMMSE = ΣθxΣ−1
x X Wiener filter

(θ̂LMMSE = ΣθxΣ−1
x (X − µx) + µθ in the non centered case)
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Linear Minimum MSE: Linear model example

Assume x = Kθ + ε where θ ∼ N (0, σ2
θI) and ε ∼ N (0, σ2

ε I) are independent

Then x ∼ N (0, σ2
θKK

T + σ2
ε I) and

Σx = σ2
θKK

T + σ2
ε I

Σθx = E[XθT ] = E[KθθT + εθT ] = KΣθ = σ2
θK

θ̂LMMSE = σ2
θK

T (σ2
θKK

T + σ2
ε I)−1X = KT (KKT +

σ2
ε

σ2
θ

I)−1X

Note: when SNR increases,
σ2
ε

σ2
θ

→ 0, θ̂LMMSE → θ̂MLE = (KKT )−1KTX
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Classification example

MMSE estimator: Since f(θgi |x
g) is a Beta distribution

E[θgi |x
g] =

∑
n,gn=g xin + α

α+ β +Ng

With α = β = 2 (mode and mean at 0.5), we get

θ1 =

[
4/9
5/9

]
and θ2 =

[
7/9
4/9

]
Then for x =

[
0
1

]
, it comes f(man|x) = 8/33 = 0.242

MAP estimator: using the mode of the posterior we get instead :

θ1 =

[
3/7
4/7

]
and θ2 =

[
6/7
3/7

]
and for x =

[
0
1

]
, it comes f(man|x) = 3/19 = 0.158
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Predictive distributions

Use the full posterior rather than a point estimate.

Other distributions of interest are:

Prior predictive (marginal):

Before we observe the data, what do we expect the distribution of
observations to be?

f(x) =

∫
f(x|θ)f(θ) dθ

I What we would predict for x given no data

I Useful for assessing whether choice of prior distribution does
capture prior beliefs.
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Predictive distributions

Posterior predictive

What is the predictive distribution of a new observation xnew given
the current data x?

f(xnew|x) =

∫
f(xnew, θ|x) dθ

=

∫
f(xnew|θ)f(θ|x)dθ

Use the assumption that xnew is independent of x given θ.
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Classification example

In each group, the posterior predictive is:

f(xnew|xg) =

∫
f(xnew|θg)f(θg|xg)dθg = f(xnew1 |xg1)f(xnew2 |xg2)

f(xnewi |xgi ) =

∫
f(xnewi |θgi )f(θgi |x

g
i )dθ

g
i

=
B(xnewi +Agi , 1− x

new
i +Bgi )

B(Agi , B
g
i )

Then using Bayes’ rule:

f(gnew|xnew,x,g) ∝ f(xnew|xgnew)f(gnew)

∝ f(xnew1 |xg
new

1 )f(xnew2 |xg
new

2 )× 0.5

For x =

[
0
1

]
, it comes f(man|x) = 8/33 = 0.242
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Classification example: all results for f(man|x = [0, 1]T )

Estimator f(man|x)

Maximum likelihood 0

Bayesian MMSE 0.242

Bayesian MAP 0.158

Fully Bayesian 0.242
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Prior distributions
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From prior information to prior distributions

I All computations depends on the prior choice

I The prior is a tool summarizing available information as well
as uncertainty related with this information

I The prior distribution is the key to Bayesian inference but the
available prior information is usually not precise enough to
lead to an exact determination

Different strategies are possible:

I Conjugate priors

I Noninformative priors

I Jeffreys prior

I Hierarchical modelling, etc.
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Conjugate priors: a starting point

Specific parametric family with convenient analytical properties

Definition: A family F of probability distributions on θ is
conjugate for a likelihood function f(x|θ) if, for every π ∈ F , the
posterior distribution f(θ|x) ∝ f(x|θ)π(θ) also belongs to F .

Main interest is when F is parametric: computing the posterior
distribution reduces then to an updating of the corresponding
parameters of the prior.

I The prior ”structure” on θ is propagated to the posterior
(actualisation)

I Tractability and simplicity

I First approximations to adequate priors
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Conjugate priors: Gaussian case
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Exponential families

Conjugate priors are usually associated with exponential families of
distributions.

Definition: C, h are positive functions, R, T are functions in Rk

The family of distributions

f(x|θ) = C(θ)h(x) exp(R(θ)T (x))

is called an exponential family of dimension k.

When

f(x|θ) = C(θ)h(x) exp(θ x) = h(x) exp(θ x−Ψ(θ))

the family is said to be natural.
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Exponential families

Interesting analytical properties :

I Sufficient statistics of constant dimension exist

I Include common distributions (normal, binomial, Poisson,
Wishart, etc.)

I Availability of the moments:

EX [X|θ] = ∇Ψ(θ), cov(Xi, Xj) = ∂2Ψ
∂θi∂θj

(θ).

I Allow for conjugate priors
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Conjugate distributions for exponential families

If f(x|θ) = h(x) exp(θ x−Ψ(θ)) then

f(θ|µ, λ) = K(µ, λ) exp(θµ− λΨ(θ))

where K(µ, λ) is the normalizing constant, is conjugate for
f(x|θ).

The posterior is then f(θ|µ+ x, λ+ 1).

It follows an ”automatic” way to derive prior from f(x|θ) BUT
µ, λ have still to be specified.
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Linearity of the posterior mean

f(x|θ) in the natural exponential family: f(x|θ) = h(x) exp(θ x−Ψ(θ))

EX [X] = m(θ) = ∇Ψ(θ)

f(θ) has a conjugate prior: f(θ) ∝ exp(µ x− λΨ(θ))

Eθ[m(θ)] =

∫
m(θ)f(θ)dθ =

µ

λ

If x1, . . . xN i.i.d f(x|θ) then

f(θ|x1, . . . , xN ) ∝ f(θ|x1)f(x2|θ) . . . f(xN |θ) = f(θ|µ+

N∑
n=1

xn, λ+N)

.

Eθ[m(θ)|x1, . . . , xn] =
µ+

∑N
n=1 xn

λ+N
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Common conjugate priors

f(x|θ) f(θ) f(θ|x)

Normal Normal Normal

N (θ, σ2) N (µ, τ2) N (σ
2µ+τ2x
σ2+τ2 , ( 1

σ2 + 1
τ2 )−1)

Poisson Gamma Gamma
P(θ) G(α, β) G(α+ x, β + 1)

Gamma Gamma Gamma
G(ν, θ) G(α, β) G(α+ ν, β + x)

Binomial Beta Beta
Bin(n, θ) B(α, β) B(α+ x, β + n− x)

Multinomial Dirichlet Dirichlet
M(θ1, . . . , θK) D(α1, . . . , αK) D(α1 + x1, . . . , αK + xK)

Normal Gamma Gamma
N (µ, 1

θ ) G(α, β) G(α+ 1/2, β + (x− µ)2/2)
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Non informative priors

How to encode absence of prior knowledge?

Is there such a thing as a default prior when prior information is
missing?

In the absence of prior information, prior distributions solely
derived from the sample distribution f(x|θ)
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Uniform priors (Laplace’s priors)

Equiprobability of elementary events: the same likelihood to each
value of θ

θ ∈ {θ1, . . . , θp} −→ f(θi) =
1

p

Extensions to continuous spaces:

f(θ) ∝ 1 ( = constant)

Examples:

Location parameters: f(x|θ) = f(x− θ) −→ f(θ) ∝ 1

Scale parameters: f(x|θ) = 1
θf(xθ ) −→ f(θ) ∝ 1

θ (f(log θ) ∝ 1)
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Some drawbacks

Lack of invariance through reparameterization: θ −→ η = g(θ)

f(θ) ∝ 1 −→ f(η) ∝
∣∣∣∣dg−1(η)

dη

∣∣∣∣ 6= constant (Jacobian formula)

Information is not missing anymore !!

May generate improper posterior:

x ∼ N (θ, σ2) with f(θ, σ2) ∝ 1

Then

f(θ, σ2|x) ∝ f(x|θ) ∝ σ−1 exp(
(x− θ2)2

2σ2
)

=⇒ f(σ2|x) ∝ 1 is improper, paradoxes occur

=⇒ Invariant priors

=⇒ Jeffreys’ priors as an alternative
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The Jeffreys’ priors

Based on Fisher information

Univariate case:

I(θ) = EX

[(
∂ log f(X|θ)

∂θ

)2
]

= −EX
[
∂2 log f(X|θ)

∂θ2

]

Multivariate case:

I(θ)ij = −EX
[
∂2 log f(X|θ)

∂θi∂θj

]

The Jeffreys’ prior distribution is f(θ) ∝ |I(θ)|1/2

where |I(θ)| is the determinant of the Fisher Information matrix

Exponential family: if f(x|θ) = h(x) exp(θ x−Ψ(θ)) then

I(θ) = ∇2Ψ(θ) and f(θ) ∝
(
∂2Ψ(θ)

∂θ2i

)1/2

Florence Forbes Introduction to statistical methods in signal and image processing



Key feature: Reparameterization invariance

Assume f(θ) ∝ |I(θ)|1/2 and η = g(θ) for a 1-to-1 mapping g

f(η) = f(θ)

∣∣∣∣∂θ∂η
∣∣∣∣ ∝

√
|I(θ)|

(
∂θ

∂η

)2

∝

√√√√EX

[(
∂ log f(X|θ)

∂θ

)2

(
∂θ

∂η
)2

]

∝

√√√√EX

[(
∂ log f(X|θ)

∂η

)2
]

∝ |I(η)|1/2
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Other features

I Information based: I(θ) corresponds to the amount of
information brought by the model on θ.
Noninformative: Minimize the effect of the prior which is in
accordance with the model.

I Violates the likelihood principle

I Usually improper

I May lead to incoherences in multidimensional case

I Have been generalized into reference priors (Berger and
Bernardo) by distinguishing between nuisance and interest
parameters
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Example: x ∼ N (µ, σ)

I θ = (µ, σ) unknown: f(θ) ∝ 1/σ2

because I(θ) = EX

[(
1/σ2 2(x− µ)/σ3

2(x− µ)/σ3 3(x− µ)2/σ4 − 1/σ2

)]
=

(
1/σ2 0

0 2/σ2

)

I θ = µ, σ fixed: f(µ) ∝ 1

I θ = σ, µ fixed: f(σ) ∝ 1/σ

I µ and σ a priori independent: f(θ) = f(µ)f(σ) ∝ 1/σ
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Hierarchical modelling

Consider a conjugate prior for f(x|θ): f1(θ|λ)

f1(θ|λ) may be too restrictive and require specification of λ.

λ unknown −→ add a noninformative prior on λ:

λ ∼ f2(λ)

θ|λ ∼ f1(θ|λ)

x|θ ∼ f(x|θ)

The prior on θ is then f(θ) =
∫
f1(θ|λ)f2(λ) dλ

I not conjugate anymore

I heavier tails (eg. Student distributions or Gaussian scale
mixtures)

I Computationaly flexible
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Posterior distributions
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Computing posterior distributions

Posteriors are not always tractable...

Observed data: x = {x1, . . . , xN} eg. a discretized signal

Hidden variables: z = {z1, . . . , zM}. eg. a segmentation or a clean version of x

Add prior knowledge on z but if the dependence structure in z is too complex
(eg an image), f(z|x) can’t be obtained analytically

Solution: ”Approximate” the dependence structure

I Sampling methods (Gibbs sampler, MCMC)

I Approximations (Laplace, Variational Bayes, EP)
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Conclusion

I Maximum likelihood for large training data. Risk of overfitting for small
data set.

I Bayesian framework to incorporate prior information (eg temporal
dynamics, spatial relationships) and prevent overfitting

I MMSE and MAP provide point estimates that use prior information

I For fully Bayesian treatment, use predictive distributions

I If posterior distributions are not tractable, use sampling methods (eg
MCMC) or approximate inference (eg Variational Bayes)
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