#### Lorenzo Audibert







# **R&D : CHIFFRES CLÉS**



553 millions

d'euros de budget en 2014

**70 %** de l'activité en appui à la performance des métiers du Groupe

### 15 départements

(compétences, partenariats et maîtrise d'œuvre)

# 14 laboratoires communs de recherche

#### Partenaire de 6 fonds de capital-risque

dans le domaine des technologies propres

# 10 centres de recherche

dont

#### **3** En France

#### 7 A l'international

(Allemagne, Royaume-Uni, Italie, Pologne, Chine, USA, Singapour) **30 %** de l'activité pour anticiper et préparer l'avenir



# LES PARTENAIRES stratégiques DE LA R&D

### Une logique de co-développement et de partage de compétences

#### AMÉRIQUE



- Partenaires académiques internationaux
- Partenaires industriels
- Associations

#### AUTRES FORMES DE RECHERCHE COLLABORATIVE

#### Projets européens

KIC (Communautés de la Connaissance et de l'Innovation) : Climat, Inno Energy

Associations industrielles européennes : Nugénia, EASE, E2BA, SEDC, ETI

 Plates-formes technologiques & Initiatives Industrielles Européennes : CO2 émission, Réseaux Intelligents, Nucléaire, Sûreté Industrielle, Construction, Eolien

> Energy European Research Alliance





Exploration des nouveaux usages de l'électricité et de développement de solutions innovantes liées aux Technologies de l'Information et de la Communication (TIC) : La maison Multi énergies

EDF Lab les Renardières

Élaborer et intégrer des innovations majeures dans la conception et la réalisation des systèmes de contrôlecommande des centrales nucléaires : **CLUSTER CONNEXION** 

EDF Lab Chatou

Développer des algorithmes destinés à l'effacement des clients industriels : le laboratoire d' « agrégation de données pour l'effacement des clients industriels », **AGILE** 

EDF Lab les Renardières



# Détection, localisation et quantification de déplacements par capteurs à fibre optique

Edouard Buchoud, Valeriu Vrabie, Sylvain Blairon, Jérôme Mars













Etude de cas

Amélioration du pas de mesure d'un capteur

Quantification de déplacement

Conclusions et perspectives



### Introduction

- Contexte
- Les capteurs à fibre optique
- Objectifs de la thèse
- Etude de cas

Amélioration du pas de mesure d'un capteur

Quantification de déplacement

Conclusions et perspectives



# Suivi de la santé des structures

#### Parc d'ouvrages génie civil d'EDF en France



### **Objectifs**

- Exploiter de manière sûre les ouvrages
- Optimiser la maintenance



# Suivi de la santé des structures

### Les défauts pathologiques à identifier



### Besoin exprimé par les Maîtres d'Ouvrages



# Suivi de la santé des structures



# Principe de mesure d'un capteur réparti



| Phénomène<br>de diffusion | Base de<br>mesure <i>(w)</i> | Portée de<br>l'appareil |
|---------------------------|------------------------------|-------------------------|
| Rayleigh                  | 1 cm                         | < 70 m                  |
| Brillouin                 | 1 m                          | > 25 km                 |



### Mesure d'un capteur réparti Brillouin







#### Dépendance de la fréquence Brillouin

$$v_{B1}(x) = v_{B0}(x) + C_T \cdot \Delta T_{0 \to 1}(x) + C_{\varepsilon} \cdot \mathcal{E}_{0 \to 1}(x)$$

Coefficient de calibrage C<sub> $\varepsilon$ </sub> = 0.05 MHz/µ $\epsilon$  et C<sub>T</sub> = 1 MHz/°C (1550 nm, FO standard)

#### Déformation apparente (µm/m)

$$\mathcal{E}'_{0 \to 1}(x) = \frac{V_{B1}(x) - V_{B0}(x)}{C_{\varepsilon}}$$

Bao et al., 1995









### Etude de cas : création de fontis

- Apparition d'un tassement vertical
- Influence de la chaine de mesure

Amélioration du pas de mesure d'un capteur

Quantification de déplacement

Conclusions et perspectives



# Présentation de l'expérience

### Objectifs

Créer de manière contrôlée une cavité souterraine

- Identifier une signature en déformation typique d'un tassement vertical
- Quantifier le tassement vertical

### Création de cavité souterraine



#### Instrumentation

- 3 câbles industriels notés de A C
- 2 interrogateurs : Rayleigh (cm) et Brillouin (m)
- 2 capteurs ponctuels de déplacements de références (DS)
- 7 abaissements de la plaque de 0,2 mm à 2,9 cm

Blairon et al., 2011



### Signature en déformation d'un tassement vertical



#### Mesure de déformation de référence : profil Rayleigh



### Influence de la chaine de mesure





### Influence de la chaine de mesure

#### **Explication - Formulation**

 $\boldsymbol{\varepsilon}_{FO}(\boldsymbol{x}) = \boldsymbol{\varepsilon}_{str}(\boldsymbol{x}) \otimes FTM_{cable}(\boldsymbol{x}) \otimes \Pi_{\text{interrogateur}}(\boldsymbol{x})$ 

Déformation dans la fibre optique fournie par le capteur

Déformation subie par la structure

Fonction de transfert mécanique du câble

Influence de la base de mesure de l'interrogateur

Hénault et al., 2012

#### **Problématiques**

- Reconstruire le profil de fréquence Brillouin avec un pas de mesure centimétrique
- Définir une relation entre la déformation et les déplacements dans la structure





Etude de cas : création de fontis

### L'amélioration du pas de mesure d'un capteur

- Modélisation de la chaîne de mesure
- Méthode de reconstruction du profil

La quantification de déplacement

Conclusions et perspectives



# Phénomène de distorsion



#### Etat de l'art

Une déformation importante dans la base de mesure *w* implique une distorsion du spectre Brillouin

Ravet et al., 2007





### Les solutions existantes

| Solutions                          | Performances                                                           | Inconvénients                     |     |
|------------------------------------|------------------------------------------------------------------------|-----------------------------------|-----|
| Principes de<br>mesures différents | 1 cm<br>25 km                                                          | €€€                               |     |
| Post-traitement                    | Amélioration de la résolution spatiale                                 | Paramètres<br>avancés non fournis |     |
| 1.                                 | Modéliser le spectre<br>Brillouin<br>Méthode d'estimation<br>du profil | réquence Brillouin (GHz)          |     |
| V <sub>B0</sub><br>fréquence (GHz) | v                                                                      | Base de mesur                     | e w |

Ravet *et al.*, 2009 Yamauchi *et al.*, 2013

Gain



X

### Modélisation de la chaine de mesure





# Modèle de la chaîne de mesure





### Inversion

| 64 | he |   |   |
|----|----|---|---|
| eι |    | Ι | E |
|    |    |   |   |

Problème direct  $G = SW(v_B) + \epsilon$ 

Fonction de coût  $J(v_B) = ||G - SW(v_B)||^2$ 

- Paramétrisation de v<sub>B</sub> avec Δx' choisi
- Problème mal posé car plusieurs solutions possibles -Tikhonov, 1963

#### Régularisation

Hypothèse : le profil v<sub>B</sub>(x) est continu

Fonction de coût

$$\mathcal{C}(\boldsymbol{v}_B) = \boldsymbol{J}(\boldsymbol{v}_B) + \boldsymbol{\lambda}.\,\boldsymbol{\phi}\,(\boldsymbol{v}_B)$$

Avec 
$$\boldsymbol{\phi}(\boldsymbol{v}_B) = \left\| \frac{\partial \boldsymbol{v}_B}{\partial \boldsymbol{x}} \right\|_2^2$$

λ, le coefficient de régularisation à déterminer
Lawson & Hanson, 1995





# Choix du coefficient de régularisation

#### Méthode empirique

- Définition de bornes
- Intervalle régulier
- Obtention du λ optimal pour Δx' donné

Kédularisation  $\lambda$  optimal  $J(v_B)$ Adéquation aux

**Application sur les données** 



Etat initial + Brillouin : 40 cm Estimation : 5 cm Etat déformé + Brillouin : 40 cm Estimation : 5 cm

Buchoud et al., 2014

#### edf

# Application sur le cas d'étude





### Conclusion sur l'amélioration du pas de mesure

#### Méthodes

- Proposition d'un modèle de la chaine d'acquisition
- Adaptation des méthodes de séparation de sources
- Développement des algorithmes de reconstruction de profil

#### **Données simulées**

- Comparaison des différentes méthodes
- Etude de l'influence des paramètres importants

#### **Données réelles**

- Diminuer le pas de mesure d'un facteur 8 : de 40 cm à 5 cm
- Améliorer la résolution en déformation





Etude de cas

Amélioration du pas de mesure d'un capteur

### Quantification de tassements verticaux

- Problématique
- Relation entre la déformation et le déplacement
- Procédé de quantification de déplacements

Conclusions et perspectives



### **Objectifs**



### **Méthode**





# Lien entre les composantes du déplacement



**Relation entre déplacement** vertical et longitudinal

$$u_x(x,z) = -\frac{n \cdot x}{\Delta z} \cdot u_z(x,z)$$

$$u_z(x,z) = f(x,z)$$

*f* : modèle mathématique *n* : lié aux propriétés du système câble / sol Δz: distance cavité / surface Mair et al., 1993

#### Les paramètres importants des modèles empiriques

- : type gaussien
- s<sub>max</sub>: tassement vertical maximal
- : la largeur du profil au point d'inflexion

# Lien entre la déformation et le tassement vertical



Klar et al., 2014



# Lien entre la déformation et le tassement vertical



### **Conditions d'application**

 $N \ge 2$  profondeurs d'observations

#### Paramètre lié au sol / câble n

- Liée à la cohésion du sol et la FTM des câbles
- Estimable par optimisation globale

$$i_x(z_{FO}) = \alpha . z_c + \beta . (z_c - z_{FO})$$
$$z_c = \frac{i_x(z_{FO}) + \beta . z_{FO}}{\alpha + \beta}$$

### Lien entre $i_x$ et $z_c$

 $i_x$  dépend de la forme du tassement et de la profondeur de la cavité



# Procédé d'estimation de la profondeur de la cavité



# Application sur le cas d'étude

### **Estimation déplacements**





### Influence de la chaîne de mesure

#### Câble à fibre optique



Interrogateurs



# Conclusion sur la quantification de déplacements

### Modèle géomécanique

- Proposition d'un nouveau modèle empirique
- Proposition d'une méthode pour la quantification
- Définition des conditions d'application de la méthode de quantification

#### **Données réelles**

- Détection / localisation de tassements verticaux de l'ordre de 0,1 mm
- Estimation de déplacements verticaux



# **Conclusion générale**

• Définition de la chaine de traitements des données issues d'un capteur à fibre optique de déformation

- Développement / tests / validation des modules de cette chaîne
- Spécifications industrielles pour l'application des modules
  - Bobine amorce adaptée pour la mesure du spectre de référence
  - Capteurs de température ponctuels et distribués sur site
  - Plusieurs profondeurs d'observation
- Estimation d'une mesure de déplacement interprétable par le Maître d'ouvrage



# **Applications**

**Ouvrages hydrauliques en terre** : 3 km de câble à fibre optique pour la déformation





Ouvrages en béton : 3 km de câble à fibre optique pour la déformation

Appliquer les méthodes développées sur des ouvrages en béton :

- maquette 1/3 bâtiment réacteur
- EPR Flamanville





# CND par courant de Foucault

Zixian Jiang, Houssem Haddar (INRIA) Alexandre Girard, Lorenzo Audibert (EDF)





CedF



### Contexte

### Colmatage des plaques entretoises





Dépôt conducteur en pied de tube





### Contexte



**2DF** 

### **Problématique**

Peut on reconstruire les défauts à partir de ces mesures?

- A priori non, si on veut connaitre la forme, les paramètres des matériaux...
- On souhaite reconstruire les volumes occupés par les dépôts.
  - Problématique de reconstruction de forme
  - Problème de modélisation pour le cuivre forte conductivité et faible épaisseur

# Modèle physique

Approximation des CF.

 $\operatorname{curl} \boldsymbol{H} + (\mathbf{i}\omega\boldsymbol{\epsilon} - \sigma)\boldsymbol{E} = \boldsymbol{J},$  $\operatorname{curl} \boldsymbol{E} - \mathbf{i}\omega\mu\boldsymbol{H} = 0.$ 



$$\begin{pmatrix} -\frac{\partial}{\partial z} \left(\frac{1}{\mu} \frac{\partial u}{\partial z}\right) - \frac{\partial}{\partial r} \left(\frac{1}{\mu r} \frac{\partial}{\partial r} (ru)\right) - \mathrm{i}\omega\sigma u = \mathrm{i}\omega J_{\theta} \\ u \to 0 \qquad (r^2 + z^2 \to \infty). \\ \int_{B_{r_*, z_*}} \left(\frac{1}{\mu r} \nabla w \cdot \nabla \bar{\varphi} - \frac{\mathrm{i}\omega\sigma}{r} w \bar{\varphi}\right) \mathrm{d}r \,\mathrm{d}z + \int_{\Gamma_{\pm}} \frac{1}{\mu^{\pm}} \mathcal{T}^{\pm}(w/r) \bar{\varphi} \,\mathrm{d}s = \int_{B_{r_*, z_*}} \mathrm{i}\omega J \bar{\varphi} \,\mathrm{d}r \,\mathrm{d}z.$$



$$\Delta Z_{kl} = \frac{1}{I^2} \int_{\partial \Omega_d^{3D}} (\boldsymbol{E}_l^0 \times \boldsymbol{H}_k - \boldsymbol{E}_k \times \boldsymbol{H}_l^0) \cdot n \, \mathrm{d}S.$$
$$Z_{FA} = \frac{\mathrm{i}}{2} (\Delta Z_{11} + \Delta Z_{21}), \qquad Z_{F3} = \frac{\mathrm{i}}{2} (\Delta Z_{11} - \Delta Z_{22}).$$

 $E_{\theta}$  by  $u, \mathbb{R}^2_+ = \{(r, z) : r \in \mathbb{R}_+, z \in \mathbb{R}\}.$ 





### Partie réelle



### Partie Imaginaire



47/13 – Traitement d'images pour le rechargement de combustible – 08/11/2011

### **Problème inverse**



### Avec les mesures:

$$Z_{FA} = \frac{\mathrm{i}}{2} (\Delta Z_{11} + \Delta Z_{21}), \qquad Z_{F3} = \frac{\mathrm{i}}{2} (\Delta Z_{11} - \Delta Z_{22}).$$
$$\Delta Z_{kl} = \frac{2\pi}{\mathrm{i}\omega I^2} \int_{\Omega_d} \left\{ \left(\frac{1}{\mu} - \frac{1}{\mu^0}\right) \frac{\nabla w_k \cdot \nabla w_l^0}{r} - \mathrm{i}\omega(\sigma - \sigma^0) \frac{w_k w_l^0}{r} \right\} \,\mathrm{d}r \,\mathrm{d}z.$$

Retrouver la forme  $\Omega_d$ 

$$\mathcal{J}(\mathbf{\Omega}_{d}) = \int_{z_{\min}}^{z_{\max}} |Z(\mathbf{\Omega}_{d}; \zeta) - Z_{meas}(\zeta)|^2 \,\mathrm{d}\zeta$$

# **Optimisation de forme**



### Critère:

$$\mathcal{J}(\Omega_d) = \int_{z_{\min}}^{z_{\max}} |Z(\Omega_d; \zeta) - Z_{meas}(\zeta)|^2 \, \mathrm{d}\zeta. \qquad \qquad \triangle Z_{kl} = \frac{2\pi}{\mathrm{i}\omega I^2} \int_{\Omega_d} \left\{ \left(\frac{1}{\mu} - \frac{1}{\mu^0}\right) \frac{\nabla w_k \cdot \nabla w_l^0}{r} - \mathrm{i}\omega(\sigma - \sigma^0) \frac{w_k w_l^0}{r} \right\} \, \mathrm{d}r \, \mathrm{d}z.$$

Dérivation par rapport à la forme

$$w((\mathrm{Id} + \theta)\Omega; r, z) = w(\Omega; r, z) + w'(\theta; r, z) + o(\theta)$$



# ... Dérivée de forme

$$g_{kl} = \int_{z_{\min}}^{z_{\max}} \Re \left\{ \overline{(Z(\Omega_d; \zeta) - Z_{meas}(\zeta))} \frac{1}{r} \left( \left[ \frac{1}{\mu} \right] \nabla_\tau w_k \cdot \nabla_\tau (\overline{p_l} - w_l^0) - [\mu] (\mu^{-1} \partial_n w_k) \left( \frac{1}{\mu^0} (\partial_n \overline{p_l})_+ - \frac{1}{\mu^0} \partial_n w_l^0 \right) - \mathrm{i}\omega[\sigma] w_k (\overline{p_l} - w_l^0) \right) \Big|_{\zeta} \right\} \mathrm{d}\zeta$$

Formule :

$$\mathcal{J}'(\Omega_d)(\theta) = \frac{2\pi}{\omega I^2} \int_{\Gamma} (n \cdot \theta) g \, \mathrm{d}s,$$

Ne depend que de la composante normale

Linéaire en θ

Après beaucoup de calcul ... ne dépend que d'un calcul de modèle direct (calcul de p)

Direction de descente :

$$\theta|_{\Gamma} = -\gamma g n$$
  
 $\mathcal{J}'(\Omega_d)(\theta) = -\gamma \frac{2\pi}{\omega I^2} \int_{\Gamma} |g|^2 \, \mathrm{d}s \le 0$ 

01

Mise à jour :

$$\Omega_d \to (\mathrm{Id} + \theta)\Omega_d$$



# Régularisation

Pour des recherches de forme quelconque le problème est toujours mal posé :

$$\int_{\Gamma} \left( \lambda \cdot \psi + \alpha \nabla_{\tau} \lambda \cdot \nabla_{\tau} \psi \right) \, \mathrm{d}s = -\int_{\Gamma} g n \cdot \psi \, \mathrm{d}s$$

Équivalent à un Tikhonov sur le gradient



### **Reconstruction**

Reconstruction (Vidéo)

### Problèmatique du cuivre

Cuivre : dépôt très fin et très conducteur



$$\sigma_c = 5.8 \times 10^7 S \cdot m^{-1}$$

$$f_{\delta}(z) = 10^{-6}m$$

Maillage trop gros



### Modèle asymptotique

• On remplace la fine couche par un modèle de transmission sur la frontière  $\Delta Z_{kl}(f_{\delta}) = -\frac{2\pi}{2} \int \sigma_{c} f_{\delta}(s) u_{b}^{\delta}(r_{t_{0}}, s) u_{b}^{0}(r_{t_{0}}, s) r_{t_{0}} ds + \mathcal{O}(\delta)$ 



$$\begin{split} \mathcal{I}_{kl}(\boldsymbol{f}_{\delta}) &= -\frac{2\pi}{I^2} \int_{\Gamma_{t_2}} \sigma_c \boldsymbol{f}_{\delta}(s) u_k^{\delta}(\boldsymbol{r}_{t_2}, s) u_l^0(\boldsymbol{r}_{t_2}, s) \boldsymbol{r}_{t_2} \, \mathrm{d}s + \mathcal{O}(\delta) \\ &= -\frac{2\pi}{I^2} \int_{\Gamma_{t_2}} \sigma_c \bigg\{ \big( f_{\delta}(s) - \frac{\boldsymbol{f}_{\delta}(s)^2}{2\boldsymbol{r}_{t_2}} - \frac{\mathrm{i}\omega\sigma_c\mu_c f_{\delta}(s)^3}{6} \big) \langle u_k^{\delta} \rangle u_l^0 \boldsymbol{r}_{t_2} \\ &+ \frac{f_{\delta}(s)^2}{2} \mu_c \lambda_k u_l^0 + \big( \frac{f_{\delta}(s)^2}{2} - \frac{\mathrm{i}\omega\sigma_c\mu_c f_{\delta}(s)^4}{8} \big) \mu_v \langle u_k^{\delta} \rangle \lambda_l^0 \bigg\} \, \mathrm{d}s + \mathcal{O}(\delta^2). \end{split}$$

$$\mathcal{Z}_{1,0} \quad \begin{cases} u_+^{\delta} = u_-^{\delta} \\ \frac{1}{\mu_v} \partial_r (r u_+^{\delta}) = \frac{1}{\mu_t} \partial_r (r u_-^{\delta}) - \mathrm{i} \omega \sigma_1 d(z) r_{t_2} u_-^{\delta}. \end{cases}$$

$$(\mathcal{Z}_{1,1}) \quad \begin{cases} [u^{\delta}] = \frac{\mathrm{i}\omega\sigma_{1}\mu_{c}d(z)^{2}}{2}\delta\langle u^{\delta}\rangle + \alpha\mathrm{i}\omega\sigma_{1}\mu_{c}^{2}d(z)^{3}\delta^{2}\langle \mu^{-1}\partial_{r}(ru^{\delta})\rangle, \\ \left[\mu^{-1}\partial_{r}(ru^{\delta})\right] = -\mathrm{i}\omega\sigma_{1}r_{t_{2}}d(z)\langle u^{\delta}\rangle \\ + \left(\frac{\mathrm{i}\omega\sigma_{1}d(z)^{2}}{2} - \frac{\omega^{2}\sigma_{1}^{2}\mu_{c}r_{t_{2}}d(z)^{3}}{6}\right)\delta\langle u^{\delta}\rangle - \frac{\mathrm{i}\omega\sigma_{1}\mu_{c}d(z)^{2}}{2}\delta\langle \mu^{-1}\partial_{r}(ru^{\delta})\rangle. \end{cases}$$

### Reconstruction

### Reconstruction (dérivée de forme)



### **Perspectives**

3D pour le colmatage

Interaction fissure / cuivre

Validation sur Maquette









### Elément de bibliographie

- Thèse de Zixian Jiang :https://tel.archives-ouvertes.fr/pastel-00943613/
- Slides sur la dérivée de forme http://www.cmap.polytechnique.fr/~allaire/course\_map562.html



### **Questions?**



