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EVT = Going beyond the data range

What is the probability of observing intensities above an high threshold ?
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Hauteurs de crête (Lille, 1895-2002)

March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of excesses above

the threshold un = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.
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An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Typical question in multivariate EVT
What is the probability of observing data in the blue box ?
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Siméon Denis Poisson (1781-1840)
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Hauteurs de crête (Lille, 1895-2002)

Counting excesses
As a sum of random binary events, the variable Nn that counts the number of
events above the threshold un has mean n Pr(X > un)

Poisson’s theorem 1 in 1837
If un such that

lim
n→∞

n Pr(X > un) = λ ∈ (0,∞).

then Nn follows approximately a Poisson variable N.

1. Give HW
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Poisson and maxima

Counting = max

Pr(Mn ≤ un) = Pr(Nn = 0) with Mn = max(X1, . . . ,Xn)

Poisson’s at work

lim
n→∞

Pr(Mn ≤ un) = lim
n→∞

Pr(Nn = 0) = Pr(N = 0) = exp(−λ)
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Equivalences

Maxima

Counting
exceedancesTail behavior

High
quantiles

lundi 31 janvier 2011
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An univariate summary

Maxima

Counting
exceedancesTail behavior

High
quantiles

GEV

PoissonGPD

lundi 31 janvier 2011
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Limits of the univariate approach

Independence or conditional independence assumptions

Observed BHM with CI assumption
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Figure 6: Comparison between one realization of the observed field and one realization of the different
models analyzed: (a) observed field; (b) conditional independence model; (c) max-stable hierarchical model
without adjustment; and (d) max-stable hierarchical model with adjustment. The same seed was used for
all the simulations.

The benefit of the max-stable hierarchical model over the conditional independence model is that the

max-stable model is able to account for local dependence. Given only fifty locations in the region, the model

seems to be able to detect the true pattern of local dependence. The 95% credible intervals for the elements

of Σ are (5.39, 8.76), (−1.28, 0.67), (5.58, 8.37) for σ11, σ12, and σ22 respectively, which include the true

values 6, 0, and 6. The fitted max-stable model provides a mechanism for producing realistic draws from the

spatial process. As Figure 6 shows, a draw from the posterior distribution of the conditional independence

model would be inappropriate and unrealistic for spatial phenomena such as rainfall or temperature which

would produce a much smoother surface.

These results are obtained from a (near) perfect model simulation; that is, the max-stable hierarchical

model fitted to the data was nearly identical to that from which the data were simulated. Nevertheless,

this simulation exercise shows that the adjusted max-stable hierarchical model is able both to flexibly model

marginal behavior that captures regional spatial affects and to capture local dependence via the max-stable

process model. In the next section we show that it also seems to perform well on real data.

5 Application

We analyze data on maximum daily rainfall amounts for the years 1962–2008 at 51 sites in the Plateau

region of Switzerland; see Figure 7. The area under study is relatively flat, the altitudes of the sites varying

22

Ribatet, Cooley and Davison (2010)
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Why is Multivariate EVT needed ?

Compute confidence intervals

Calculating probabilities of joint extreme events

Clustering of regions

Extrapolation of extremes

Downscaling of extremes

Trading time for space (for small data sets)

etc
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A fundamental question 2 for iid bivariate vector (Xi ,Yi )

Suppose that we have unit Fréchet margins at the limit

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x) = lim
n→∞

P(max(Y1, . . . ,Yn)/an ≤ x) = exp(−x−1)

with an such that
P(X > an) = 1/n

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =??

2. L. de Hann, S. Resnick
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lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x) = lim
n→∞

P(max(Y1, . . . ,Yn)/an ≤ x) = exp(−x−1)

with an such that
P(X > an) = 1/n

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =??

2. L. de Hann, S. Resnick



Motivation Basics MRV Max-stable MEV PAM Spectral

Why is the solution so ugly ?

If

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = G(x , y)

then

G(x , y) = exp
„
−
Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

«
where H(.) such that

R 1
0 w dH(w) = 1
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Still counting

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = P(Nn(A) = 0)

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Still counting

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = P(Nn(A) = 0)

Poisson again
If

lim
n→∞

E(Nn(A)) = Λ(A),

then
lim

n→∞
P(Nn(A) = 0) = P(N(A) = 0) = exp(−Λ(A))

One of the main question

What are the properties of Λ(A) ?
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Back to univariate case : Fréchet margins

Poisson condition

lim
n→∞

nP(X/an ∈ Ax ) = Λx (Ax )

with
Λx (Ax ) = x−1, for Ax = [x ,∞)
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Special cases

The independent case

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =

exp(−x−1−y−1)

Hence

x−1 + y−1 = Λx (Ax ) + Λy (Ay ) = Λ(A)

The general case

Λ(A) ≤ Λx (Ax ) + Λy (Ay )
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Special cases

The dependent case Xi = Yi

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =

exp(−max(1/x , 1/y))

Hence,
max(1/x , 1/y) = max(Λx (Ax ), Λx (Ay )) = Λ(A)

The general case

max(Λx (Ax ), Λx (Ay )) ≤ Λ(A)

max(Λx (Ax ), Λx (Ay )) ≤ Λ(A) ≤ Λx (Ax ) + Λy (Ay )
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Scaling property

Univariate case with Λx (Ax ) = x−1

Λx (tAx ) = t−1Λx (Ax )

Bivariate case

Λ(tA) = t−1Λ(A)?
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Going back to maxima

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

= P(MX ≤ x ,MY ≤ y)

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Going back to maxima

P(MX ≤ x ,MY ≤ y) = exp(−Λ(A))

Scaling

Λ(tA) = t−1Λ(A)

is equivalent to

Max-stability

P t (MX ≤ t x ,MY ≤ t y) = (exp(−Λ(tA)))t = exp(−tΛ(tA))

= exp(−Λ(A))

= P(MX ≤ x ,MY ≤ y)
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Scaling property : an essential property of inference

t A

A

Area with data points

researchers in probability have extended the notion of Poisson random variables to a wider

class called Poisson process. This generalization allows to count random events according to

the size of a set of interest, say A. This set can be a d-dimensional object and therefore this

concept will simplify the transition from univariate EVT to multivariate EVT. A Poisson

process is characterized by the following two conditions

P [N(A) = m] =
Λm(A) exp(−Λ(A))

m!
, and (5)

P [N(A) = i & N(B) = j] = P [N(A) = i]× P [N(B) = j], if A ∩B = ∅ . (6)

Equation (6) indicates that if the sets A and B are disjoints, then N(A) the random number

of points in A is independent of N(B). Equation (5) is just another version of the Poisson

definition (1) but now the intensity depends on the set A and its measure Λ(A) = E(N(A)).

For example, Equation (4) can be expressed with these new notations as

lim
n→∞

nP (X/an ∈ A) = Λ(A), with A = (x,∞) and Λ(A) = x−α. (7)

Working with this set notation enables us to emphasize the main ingredient of EVT. By

noticing that for any positive real t, we can write from (7) that

Λ(tA) = t−αΛ(A). (8)

Coming back to the tail behavior described by (2), it is interesting to define the threshold

an that is exceeded in average once, i.e. such that

lim
n→∞

n F (an) = 1.
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Interpreting the scaling property Λ(tA) = t−1Λ(A) with ||y|| = y1 + y2

1

1

t

t

B

that y ∈ B if y1 + · · · + yd = 1. The definition of the set S is far from arbitrary. It brings to

the fore a surprising property of max-stable processes.

Before applying the scaling property (13) to the set S, we remark that for any t > 0,

tS = {tx : x/||x|| ∈ B and ||x|| > 1},

= {y : y/||y|| ∈ B and ||y|| > t}, with y = tx.

Hence, the mean measure of the set tS can be written as

Λ ({y : y/||y|| ∈ B and ||y|| > t}) = t−1Λ∗ (B)

where Λ∗(.) is the mean measure restricted to the unit sphere. There is a decoupling between

the strength of the event (the norm being greater than t) and the locations on the unit sphere

(the measure of the set B). In probability, having a product means an independence. Here

having the product t−1×Λ∗ (B) makes the measure on the unit sphere Λ∗(.) independent of

the measure that characterizes the norm ||y||. To visualize this phenomenon, one can look

at Figure ?? in the 2D case. toto If one wants to count the mean number of points occurring

in the grey set, it is sufficient to determine how many points go through the interval B.

Références

Embrechts, P., Klüppelberg, C., and Mikosch, T. : Modelling Extremal Events for Insurance

and Finance, volume 33 of Applications of Mathematics, Springer-Verlag, Berlin, 1997.
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Interpreting the scaling property Λ(tA) = t−1Λ(A)

A special case

A = {z = (x , y) : z/||z|| ∈ B and ||z|| > 1}

where ||z|| = x + y and B any set belonging to the unit sphere

A surprising property

tA = {tz : z/||z|| ∈ B and ||z|| > 1},
= {u : u/||u|| ∈ B and ||u|| > t}, with u = tz.

This implies

Λ ({u : u/||u|| ∈ B and ||u|| > t}) = t−1H (B)

where H(.) is the mean measure restricted to the unit sphere and often called
the spectral measure.

Independence between the strength of event ||z|| = x + y and the location on
the unit simplex



Motivation Basics MRV Max-stable MEV PAM Spectral

Interpreting the scaling property Λ(tA) = t−1Λ(A)

A special case

A = {z = (x , y) : z/||z|| ∈ B and ||z|| > 1}

where ||z|| = x + y and B any set belonging to the unit sphere

A surprising property

tA = {tz : z/||z|| ∈ B and ||z|| > 1},
= {u : u/||u|| ∈ B and ||u|| > t}, with u = tz.

This implies

Λ ({u : u/||u|| ∈ B and ||u|| > t}) = t−1H (B)

where H(.) is the mean measure restricted to the unit sphere and often called
the spectral measure.

Independence between the strength of event ||z|| = x + y and the location on
the unit simplex



Motivation Basics MRV Max-stable MEV PAM Spectral

Polar coordinates

2D
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

3D
r = (u + v + w),
θ1 = u

r , θ2 = v
r , θ3 = w

r
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2D Polar coordinates

2D : INDEPENDENT CASE
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

0.5

0.5

2D : COMPLETE DEPENDENCE
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

1.0
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Again, back to maxima

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Back to maxima

How to express A in

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

Changing coordinates : r = u + v and w = u/(u + v)

(u, v) /∈ A ⇔ u < x and v < y ,

⇔ r < x/w and r < y/(1− w),

⇔ r < min(x/w , y/(1− w))

Computing Λ(A)

Λ(A) =

Z
w∈[0,1]

Z
r>min(x/w,y/(1−w))

r−2dH(w)

=

Z
w∈[0,1]

max(w/x , (1− w)/y)dH(w)
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Rewriting the counting rate in function of H(dw)

Λ(A) =

Z 1

0
max

„
w
x
,

1− w
y

«
H(dw)

Scaling property checked

Λ(tA) = t−1Λ(tA)
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Max-stable vector

If

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = G(x , y)

then

− log G(x , y) =

Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

where H(.) such that
R 1

0 w dH(w) = 1
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Max-stable vector properties

G(x , y) = exp
»
−
Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

–
and H(.) such that

R 1
0 w dH(w) = 1

Max-stability

Gt (tx , ty) = G(x , y), for any t > 0

Marginals : unit-Fréchet

G(x ,∞) = G(∞, x) = exp(−1/x)
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A multivariate summary

Maxima

Counting
exceedancesTail behavior

High
quantiles

Max-stability

Scaling propertyRegularly varying

Gt(tz) = G(z), for any

Λ(tAz) = t−1 Λ(Az).
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A quick summary about the basics

Learned lessons

Multivariate maxima can be handled with Poisson counting processes

“Polar coordinates” allows to see the independence between the strength
of the event and the dependence structure that lives on the simplex

The dependence structure has not explicit expressions (in contrast to the
margins and to the Gaussian case)

Max-stable property = scaling property for the Poisson intensity

Conceptually easy to go from the bivariate to the multivariate case



Motivation Basics MRV Max-stable MEV PAM Spectral

Remaining questions

How to make the inference of the dependence structure ?

How can we use this dependence structure ?
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Inference

Strategies for either the marginal behavior or the dependence

Parametric : (+) Reduce dimensionality & easy to deal with covariates (-)
impose a parametric form, model selection needed

Non-parametric : (+) General without strong assumptions, (-) no practical
for large dimension (curse of dimensionality), difficult to insert covariates

Techniques

Maximizing the likelihood : (+) easy to integrate covariates (-) impose a
parametric form, no straightforward for large dimension

Bayesian inference : (+) easy to insert expert knowledge, (-) no
straightforward for large dimension (slow)

Methods of moments : (+) fast and simple to understand, can be
non-parametric (-) no straightforward to have covariates
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Hourly precipitation in France, 1992-2011 (Olivier Mestre)
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Our game plan to handle extremes from this big rainfall dataset

Spatial scale
Large (country) Local (region)

Problem Dimension reduction Spectral density
in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses

Method Clustering algorithms Mixture of
for maxima Dirichlet

Without imposing a given parametric structure
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Clustering of maxima (joint work with E. Bernard, M. Vrac and O. Mestre)

Task 1
Clustering 92 grid points into around 10-20 climatologically homogeneous
groups wrt spatial dependence
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Clusterings

Challenges

Comparing apples and oranges

An average of maxima (centroid of a cluster) is not a maximum

variances have to be finite

Difficult interpretation of clusters

Questions

How to find an appropriate metric for maxima ?

How to create cluster centroids that are maxima ?
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A central question (assuming that P [M(x) < v ] = P [M(y) < u] = exp(−1/u))

P [M(x) < u, M(y) < v ] = exp

[
−
∫ 1

0
max

(
w
u

,
1− w

v

)
dH(w)

]
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θ = Extremal coefficient

P [M(x) < u, M(y) < u] = (P [M(x) < u])θ

Interpretation
Independence⇒ θ = 2

M(x) = M(y)⇒ θ = 1

Similar to correlation coefficients for Gaussian but ...

No characterization of the full bivariate dependence
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A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

d(x , y) =
1
2

E |F y (M(y))− F x (M(x))|

If M(x) and M(y) bivariate GEV, then

extremal coefficient =
1 + 2d(x , y)

1− 2d(x , y)
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Clusterings

Questions

How to find an appropriate metric for maxima ?

How to create cluster centroids that are maxima ?
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Partitioning Around Medoids (PAM) (Kaufman, L. and Rousseeuw, P.J. (1987))
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PAM : Choose K initial mediods
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PAM : Assign each point to each closest mediod
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PAM : Recompute each mediod as the gravity center of each cluster
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PAM : continue if a mediod has been moved
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PAM : Assign each point to each closest mediod
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PAM : Recompute each mediod as the gravity center of each cluster
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!! !"#$%&'()*+,-"(.-/0)+

1234567887+!57992!27:8+

" +

si =
bi − ai

max(ai, bi)
ai

bi

i

ai � bi, si ≈ 1 →Well classified
ai ∼ bi, si ≈ 0 → Neutral
ai � bi, si ≈ −1 → Badly classified
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Sil. coeff. for K= 15

Average silhouette width :  0.09

median
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Applying the kmeans algorithm to maxima (15 clusters)
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Summary on clustering of maxima

Classical clustering algorithms (kmeans) are not in compliance with EVT

Madogram provides a convenient distance that is marginal free and very
fast to compute

PAM applied with mado preserves maxima and gives interpretable
results

R package available on my web site
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Our game plan to handle extremes from this rainfall dataset

Spatial scale
Large (country) Local (region)

Problem Dimension reduction Spectral density
in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses

Method Clustering algorithms Mixture of
for maxima Dirichlet
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Back to the cluster
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Bayesian Dirichlet mixture model for multivariate excesses (joint work with A.
Sabourin)

Meteo-France data
Wet hourly events at the regional scale (temporally declustered)
of moderate dimensions (from 2 to 8)

Task 2
Assessing the dependence among rainfall excesses
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Multivariate Extreme Value Theory (de Haan, Resnick and others)

Maxima

Counting
exceedancesTail behavior

High
quantiles

Max-stability

Scaling propertyRegularly varying

Gt(tz) = G(z), for any

Λ(tAz) = t−1 Λ(Az).



Motivation Basics MRV Max-stable MEV PAM Spectral

Defining radius and angular points

Example with d = 3 and X = (X1,X2,X3) such that P(Xi < x) = e
−1
x

Simplex S3 =
˘

w = (w1,w2,w3) :
3X

i=1

wi = 1, wi ≥ 0
¯
.
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Mathematical constraints on the distribution of the angular points H

P (W ∈ B,R > r) ∼
r→∞

1
r

H(B)

Features of H

H can be non-parametric

The gravity center of H has to be centered on the simplex

∀i ∈ {1, . . . , d},
R

Sd
wi dH(w) = 1

d
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A few references on Bayesian non-parametric and semi-parametric spectral
inference

M.-O. Boldi and A. C. Davison.
A mixture model for multivariate extremes.
JRSS : Series B (Statistical Methodology), 69(2) :217–229, 2007.

S. Guillotte, F. Perron, and J. Segers.
Non-parametric bayesian inference on bivariate extremes.
JRSS : Series B (Statistical Methodology), 2011.

A. Sabourin and P. Naveau.
Bayesian Drichlet mixture model for multivariate extremes.
Computational Statistics & Data Analysis, 2014.

P.J. Green.
Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination.
Biometrika, 82(4) :711, 1995.

Roberts, G.O. and Rosenthal, J.S.
Harris recurrence of Metropolis-within-Gibbs and trans-dimensional
Markov chains
The Annals of Applied Probability,16,4,2123 :2139, 2006.
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (1/3, 1/3, 1/3) and ν = 9
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (1/3, 1/3, 1/3) and ν = 9
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (.15, .35, .05) and ν = 9

But this one is not centered ! !
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Mixture of Dirichlet distribution

Boldi and Davision, 2007

h(µ,p,ν)(w) =
kX

m=1

pm diri(w | µ · ,m, νm)

with µ = µ · ,1:k , ν = ν1:k , p = p1:k

Constraint on (µ, p)

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Mixture of Dirichlet distribution

Boldi and Davision, 2007

h(µ,p,ν)(w) =
kX

m=1

pm diri(w | µ · ,m, νm)

with µ = µ · ,1:k , ν = ν1:k , p = p1:k

Constraint on (µ, p)

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Inference of Dirichlet density mixtures

Boldi and Davison (2007)

Prior of [µ|p ] defined on the set

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )

Sequential inference : first p, then µ one coordinate after the other

- skewed, not interpretable, slow sampling

- Difficult inference in dimension > 3
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Inference of Dirichlet density mixtures

How to build priors for (p,µ) such that

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Unconstrained Bayesian modeling for
Θ =

‘∞
k=1 Θk ; Θk =

˘
(Sd )k−1 × [0, 1)k−1 × (0,∞]k−1¯

Prior

k ∼ Truncated geometric

µ.,m|(µ.,1:m−1, e1:m−1) ∼ Dirichlet

em|(µ.,1:m, e1:m−1) ∼ Beta

νm ∼ logN

Posterior sampling : MCMC reversible jumps
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Summary of the Bayesian scheme

λ, kmax
πk

k

χµ, emean.max, χe

πγ

mν , σν , νmin, νmax

πν
µ · , 1:k−1, e1:k−1

f

µ · , 1:k, p1:k ν1:k

w ∈
◦
Sd

1
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Summary of the Bayesian schemes

Boldi and Davison (2012) Our approach

Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized version (right panel),
with four parallel chains in each model. Grey lines: Evolution of �g, hθt( j)�. Black, solid lines: cumulative mean. Dashed line: true value �g, h0�.
Dotted lines: true value +/- 1 theoretical standard deviation δnonPar

n of the empirical mean estimate with n = 100 points.

#{stationary} HW1 HW2 HW3 HW4 RG r1 r2 r3 r4 r5

M-DM 3 0.05 0.06 0.01 0.07 1.07 0.27 0.65 0.03 0.17 0.04
BD 1 0.01 0.07 2.10−5 0.03 ‘NA’ 0.45 0.45 0.18 0.42 0.81

Table 1: Simulated five dimensional data: convergence statistics for the output of the M-DM algorithm (first line) and the original version from
Boldi and Davison (2007) (second line). First column: number of chains retained by the Heidelberger and Welches test. Columns 2-5 :minimum
p-values (over the five test functions) of the Heidelberger and Welches’ statistics applied to each chain. Column 6: Gelman ratio. Columns 7-19:
accuracy of the estimate: ratio statistics defined by (18) for five test functions.

original parametrization is that posterior credible intervals are difficult to estimate. As an example, Figure 6 displays,
for the two parametrizations, the estimated posterior mean of the bi-variate angular density for the coordinates pair
(2, 5), obtained by marginalization of the five-variate estimated density. The posterior credible band corresponds to
the point-wise 0.05− 0.95 quantiles of the density. In both cases, the estimates are obtained from the last 120.103 iter-
ations of a chain that which stationarity was not rejected (for a 0.05 p-value) by the Heidelberger test. The estimated
credible band with the original algorithm is much thinner than it is with the re-parametrized one. As a consequence,
the true density is out of the interval for a large proportion of angular points in (0, 1).

7.3. Case study: Leeds data set

This data set gathers daily maximum concentrations of five air pollutants: particulate matter (PM10), nitrogen
oxide (NO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Following Cooley et al. (2010), marginal
distributions are estimated by fitting a generalized Pareto distribution to the upper 0.7 quantile and using the empirical
distribution for the remaining observations. Marginal transformation into unit Fréchet is then performed by probability
integral mapping. The 100 largest observations (for the L1 norm) over the 498 non missing five-variate observations
are retained for model inference.

For those extremes, the convergence is slow. This may be due to the weak dependence at asymptotic levels found
by Heffernan and Tawn (2004). Eight chains of 106 iterations each were generated. Discarding half of the iterations
and setting the minimum p-value to 0.01, 4 (resp. 5 chains ) cannot be rejected by the stationarity test with the
re-parametrized algorithm (resp. with the original one). For those chains, the Gelman ratio is 1.08 (resp. 1.75).

16
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Simulation example with d = 5 and k = 3

= =
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Back to our excesses of the “Lyon” cluster

Stations 68, 70, 1
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Coming back to Leeds
Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Coming back to Leeds556 A. Sabourin, P. Naveau / Computational Statistics and Data Analysis 71 (2014) 542–567

Table 3
Convergence assessment on Leeds air quality data set, with the same statistics as in Table 1.

J � hw RG r̄ (rmin, rmax)

Re-parametrized 2 0.19 1.11 0.64 (0.05, 1.09)
Original 4 0.19 1.66 0.77 (0.12, 1.39)

Fig. 6. Five dimensional Leeds data set: posterior predictive density. Black lines: projections of the predictive angular density defined on the four-
dimensional simplex S5 onto the two-dimensional faces. Gray dots: projections of the 100 points with greatest L1 norm.

the em’s was set to 0.9. (instead of, respectively, 1–10−6 and 0.99). As for the MCMC tuning parameters, the recentring
parameters �split

µ for split-moves and �e for e-moves are respectively set to 0.3 and 0.4 (instead of 0.5 and 0.2). Results are
gathered in Table 3. Here, the error ratio are computed using the empirical estimates ĝnonP as a reference. Again, mixing
remains acceptable in the re-parametrized DM model, provided the run length is long enough, contrary to the original
version. Fig. 6 shows the projection of the predictive density on three out of the ten two-dimensional simplex faces. This
example allows to verify that our estimates are close to those found by Boldi and Davison (2007) using a non-Bayesian EM
algorithm. Again, themean estimates obtainedwith the originalMCMCalgorithmare very similar but the posterior 0.05–0.95
quantiles are thinner (not shown).

7.4. Prior influence

In this section, the influence of the prior specification is investigated. The re-parametrized model is fitted on the same
simulated five-dimensional data set as in Section 7.2, with different values for the hyper-parameters λ, σν, χµ, χe defined
in Section 3.2. Also, we verify that defining the prior distribution of ( µ, e) jointly, as in Section 3.2, leads to a substantially
more reliable inference than when the µ · , j’s and the ej’s are a priori mutually independent. An alternative prior for ( µ, e)
is thus defined so that all the mean vectors (resp. eccentricities) are independent and uniformly distributed on the simplex
(resp. the segment [0, emax]). For this simplified prior, the shape hyper-parameter σν is varied in the same way as in the
preceding setting.

The default hyper-parameter values are set to

λ = 5, kmax = 15,
mν = log(60), σ 2

ν = log(1 + 52), log(νmin) = −2, log(νmax) = 5000,

χe = 1.1, emean·max = 0.99 emax = 1 − 10−6 χµ = 1.1.

Starting from this, the hyper-parameters λ, σν, χµ, χe are perturbed, one at a time, see Fig. 7 for details. For each hyper-
parameters value, four chains are run in parallel, with a burn-in period of 80 × 103 followed by another period of 80 × 103

iterations. The same Dirichlet test functions as in Section 7.2 are chosen. Goodness-of-fit is assessed in terms of the average
error ratio r̄DM = 1

5

�5
�=1 r

DM(g�) (left panel of Fig. 7) and mixing is checked via the multivariate Gelman ratio (right panel)
computed on the stationary chains only. On both panels, lower values indicate better properties.

When µ and e are a priori dependent, as in Section 3.2, convergence and goodness-of-fit are rather robust to hyper-
parameters specification: First, the hyper-parameterλ ruling the number of components has a limited impact, only the value
λ = 1 (which penalizes sharply the number of mixture components) damages the goodness-of-fit. The number of mixture
components does not explode for large values of λ (Fig. 8), which matches the findings of Boldi and Davison (2007) with the
original algorithm. The scores are also approximately constant over the studied range of the other hyper-parameters (Fig. 7).
Only the large value χµ = 8 damages the mixing properties of the algorithm. The only case of instability is observed with
the simplified version of the prior on (µ, e), for which the mixing properties are generally poor. Note that the third Gelman
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Take home messages

Conclusions

Clustering of weekly maxima with PAM is fast and gives spatially
coherent structures

Bayesian semi-parametric mixture can handle moderate dimensions and
provide credibility intervals

Going further

Anne Sabourin = a Bayesian semi-parametric mixture for censored data
with an application to paleo-flood data
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Take home messages part II

Extremes here means very rare

It is possible to estimate the
dependence between bivariate
extremes

Multivariate EVT may help
characterizing extremes
dependencies in space or time

Modeling trade off between
parametric and non-parametric
approaches
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Different results from different Monte Carlo chains ?

Stations 68, 70, 42
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Simulation example with d = 3 and k = 3

Simulated points with true density Predictive density
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New parametrisation Ex : k = 4 and d = 3

0

γm : ”Equilibrium” centers built from µ.,m+1, . . . ,µ.,k .

γm =
kX

j=m+1

pj

pm+1 + · · ·+ pk
µ.,j
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New parametrisation Ex : k = 4 and d = 3

0

I1

µ1

1

µ.,1, e1 ⇒ γ1 :
γ0 γ1

γ0 I1
= e1 ;

⇒ p1
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New parametrisation Ex : k = 4 and d = 3

0

I1

1 I2

µ

µ

1

2
2

µ.,2, e2 ⇒ γ2 :
γ1 γ2

γ1 I2
= e2 ;

⇒ p2
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New parametrisation Ex : k = 4 and d = 3

0

I1

1 I22

I3

µ

µ

µ

1

2

3

µ4

µ.,3, e3 ⇒ γ3 :
γ2 γ3

γ2 I3
= e3 ; µ.,4 = γ3.

⇒ p3, p4
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New parametrisation Ex : k = 4 and d = 3

0

I1

1 I22

I3

µ

µ

µ

1

2

3

µ4

Parametrisation of h with θ = (µ.,1:k−1, e1:k−1, ν1:k )

(µ.,1:k−1, e1:k−1) gives (µ.,1:k , p1:k )
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