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Un peu tout et n'importe quoi

o Heterogeneous in quality,
quantity, nature.

@ Sparse under the surface

o Continuously increasing
number.
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Une quantité d'observation en constante augmentation

Number of satellite data products monitored at ECMWF
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Currently NWP centers receive 300 million observations from 130 sources daily.
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Et les corrélations spatiales (et temporelles)

o Both measurement and representativity errors
o For satellite data both are correlated in space (and time, and between channels, and

e measurement: same device, preprocessing
o Note: representativity error are always correlated

o Number of observation is increasing, therefore R is getting larger.

o Computing issue: for 3D/4DVar, we need its inverse (actually Inverse X vector)
o Storage issue: even if sparse, its inverse is not.

Storing and inverting R is generally out of reach, so people try to get rid of the
correlation by
o (Almost) ignoring the problem i.e. keeping R diagonal but with inflated variances
@ Removing/altering part of the signal (subsampling or superobbing)

@ Modelling R as an operator and/or change of variable.

R=W'R,., W~ W32 W
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Image Assimilation: introduction
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@ Image Assimilation: introduction
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Image Assimilation: introduction

Original motivations
From geostationary satellites

Geostationnary satellites cover Satellite images potential

@ Multiscale information on the
movement (global and local).

S @ The images contains lagrangian
e @y um| | | tracers.

En e
-

@ The information is borne by the
discontinuities in the field of the

P S R S S U images (fronts, vortices).
@ High-resolution observations i <l T T
@ Quasi-global covering
@ Spatially consistent
@ Very expensive to acquire

April 28, 2008, 14H00

Current use in NWP systems
@ qualitative interpretation

@ as pseudo-observations (AMVs)

@ as point-wise radiances - - ,
April 29, 2008, 02H00  April 28, 2008, 08h00

Motivation: include image sequence type information directly into
the data assimilation schemes

A. Vidard (Correlated observation errors)



Image Assimilation: introduction

Satellite images

From Polar-orbiting Satellites

Fancy movie about Salinity buildup Nice movie about SMOS measures

SMOS trajectory (animations stolen from ESA website)

Image (sequence): Observation structured in space (and time)
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European Space Agency (ESA)

ESA

Salinity_Buildup_H264.mp4
Media File (video/mp4)


SMOS_SwathFlyby.mpg
Media File (video/mpeg)


Difficulties

Partial and composite images

Total Precipitable Water (source CIRA) Tigerbunny (source D. Langley)
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Difficulties

Partial and composite images
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sst_slow.mp4
Media File (video/mp4)


Image Assimilation: introduction

Difficulties
Non exhaustive list:

o The state variables of the numerical models may not be directly measured by
satellites.

@ The physical processes that are observed are not always taken into account in the
model.

o Satellite images can be of relatively poor quality, this is mostly true for ocean
surface images, which are very often partially occulted by clouds. Moreover they are
most of the time composite images

@ The luminance level may vary during an image sequence

@ The massive amount of data makes it difficult to handle such observations.

@ Images are bidimensionnal information whereas physical processes of geophysical
fluids are three dimensional.

@ The pertinent informations coming from an image are mainly brought by its
discontinuities or high gradients. Unfortunately, numerical models have a tendency
to smooth these discontinuities out.

@ What can be observe is only apparent motion (beware of aliasing).
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Image Assimilation: introduction
Elementary level and structured level

Interpretation levels of images

o Elementary level: value at each pixel

o Large quantity of information

o Strong dependance from acquisition conditions and
measuring uncertainties

Eroaw

S Surface Tarmpantiera [5G ) Calorophyll ( mg /=)
) snEn W

(image MODIS, source NASA)
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Image Assimilation: introduction

Interpretation levels of images
Elementary level and structured level

o Elementary level: value at each pixel

o Structured (global) level: spacial organization of
pixels

o Weak dependance from acquisition conditions and
measuring uncertainties (but not representativeness)

o Dominated by the global dynamics
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Image Assimilation: introduction

Interpretation levels of images

Elementary level and structured level

o Elementary level: value at each pixel
o Large quantity of information

o Strong dependance from acquisition conditions and
measuring uncertainties

o Structured (global) level: spacial organization of
pixels
o Weak dependance from acquisition conditions and
measuring uncertainties (but not representativeness)

o Dominated by the global dynamics

= Two possible level of interpretation for the images
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Image Assimilation: introduction

Data assimilation requirements and specific issues

We need:

Meteosat 9 IR10.8 20080525 0 UTC

@ Observation operator

o Pseudo-observations (AMVs, Optical flow)

o Use of proxies (e.g. Lyapunov
vectors/exponents).

o Contour tracking (Snakes, Levelset,
bogus,...).

o Create a synthetic image from model output.

@ Discrepancy measure

L? norm (comparing pixels)

H'® semi-norm (comparing gradients)
multi-scale decomposition

H_l, W>

@ Error statistics description

o Observation errors are correlated
o The number of observation is large Obs and Model
(source ECMWF)
Specific issues:

@ Occlusions and coasts (ocean)

@ 2D representation of a 3D observed process (atmosphere)
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Image Assimilation: introduction

Data assimilation requirements and specific issues

We need:

20080525 0 UTC

@ Observation operator

o Pseudo-observations (AMVs, Optical flow)

o Use of proxies (e.g. Lyapunov
vectors/exponents).

o Contour tracking (Snakes, Levelset,
bogus,...).

o Create a synthetic image from model output.

@ Discrepancy measure

L% norm (comparing pixels)

H® semi-norm (comparing gradients)
multi-scale decomposition

H_l, W>

@ Error statistics description

o Observation errors are correlated
o The number of observation is large Obs and Model
(source ECMWF)
Specific issues:

@ Occlusions and coasts (ocean)

@ 2D representation of a 3D observed process (atmosphere)
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Image Assimilation: introduction

Variational data assimilation

Goal : Look for the optimal initial condition,xg, defined as the minimum of the
following cost function :

0= Glx =tz 453 [HMems () = 57

i |

departure from background | isfit to observations

2 Ty—1
B : background error covariance matrix HXHK =x K 'x
R : observations error covariance matrix

For images: Assuming we can derive a synthetic image g;, from model output, we can
define the distance in different space:

o In the pixel space: Jo(x3) = D (g, — 127 1I%,,
@ In the gradient space: Jo(x§) = Z;g IV aqe, — VI* |z

o In a wavelet space : Jo(x5) = Z:g |Waq, — WI;;”SH%W where W stands
for a wavelet transform.

A. Vidard (Correlated observation errors) y \ — 26""of April 2015 13 / 36



QOutline

© Observation errors representation
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Some thoughts about R

@ Both measurement and representativity errors
o for images both are correlated in space (and time, and between channels, and ...).

e measurement: same device, preprocessing
o Note: representativity error are always correlated

@ Image-type observations are large, therefore R is big.

o Computing issue: for 3D/4DVar, we need its inverse (actually Inverse X vector)
o Storage issue: even if sparse, its inverse is not.
o thinning does not make much sense

@ however, images are dense in space, meaning we can use the same tricks as for B

Idea for today’s presentation: use the sparseness of multi scale decomposition to try to
keep the diagonal approximation for R alive (still accounting for some spatial correlation)
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Observation errors representation

Some thoughts about R

@ Both measurement and representativity errors
o for images both are correlated in space (and time, and between channels, and ...).

e measurement: same device, preprocessing
o Note: representativity error are always correlated

@ Image-type observations are large, therefore R is big.
o Computing issue: for 3D/4DVar, we need its inverse (actually Inverse X vector)
o Storage issue: even if sparse, its inverse is not.
o thinning does not make much sense

@ however, images are dense in space, meaning we can use the same tricks as for B

Idea for today’'s presentation: use the sparseness of multi scale decomposition to try to
keep the diagonal approximation for R alive (still accounting for some spatial correlation)

Remark:
In the following we assume additive gaussian noise while it is often assumed

multiplicative
o If lognormal, we are safe (Fletcher and Zupanski, 2006)
o If anything else (e.g. I-distribution) go back to Bayes' theorem and scratch your
head.
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Observation errors representation

Wavelets

Let V; the approximation space of a given signal at scale j. One define W, as the
orthogonal complement of V; :

Vin=V,PWw
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Observation errors representation

Wavelets

Let V; the approximation space of a given signal at scale j. One define W, as the
orthogonal complement of V; :
Via = VP W

-PW; f(x)
[P = [Purca] o s o

Py, _nf(x)

Vj+1 can be decomposed as:

Py, ZCJ Nkdink(X) DY drktbe(x)

r=j—N--j k

Approximation in v;_y Details in w,
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Observation errors representation

V41 can be decomposed as:

+1f(X)_ ZCJ Nk Dj— Nk(X + Z Zdrkwrk(x)

r=j—=N-j k
Approximation in v;_y Details in w,
Details J Details J-1

Original Satellite Image

Details J-2 Approximation J-2
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Observation errors representation

Wavelet representation

ergmal Wavelet Wavel
image - avelet
decomposition -
tati coefficients
representation R
P distribution (log)
2|02 os
-
e "
o & o )
ot | op s
.
o} D)
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Observation errors representation

Effect of noise in the wavelet space

Noise free image Uncorrelated noise Correlated noise
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Observation errors representation

Effect of noise in the wavelet space

Noise free image Uncorrelated noise Correlated noise
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Observation errors representation

Effect of noise in the wavelet space

Noise free image Uncorrelated noise Correlated noise
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Observation errors representation

Effect of noise in the wavelet space

Noise free image Uncorrelated noise Correlated noise




Observation errors representation

Correlation matrices
Assuming Gaussian statistics

Cpix Cwav

Significant correlation: Haar

o Between details coefficients at same scale,
o Between details coefficients at different scales,

o Between details and approximation coefficients.
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Observation errors representation

Correlation matrices
Assuming Gaussian statistics

Cpix Cwav

Significant correlation: Daubechies

o Between details coefficients at same scale,
o Between details coefficients at different scales,
o Between details and approximation coefficients,

o Between coefficients corresponding to image boundaries
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Observation errors representation

Diagonal Approximation for Ry,

Grid Curvelets

True correlation

Wavelets Fourier
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© Numerical results
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Numerical results

General framework
Context and motivations: drift of a vortex [Flér and Eames, 2002]

Coriolis Turntable - LEGI, Grenoble

Isolated vortex simulation =
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Numerical results

Direct Image (Sequence) Assimilation

J.-B. Flér and
|. Eames, 2002
shallow-water Oru — udsu + voyu — fv + gdch+D(u) = 0
model for (M) q Oiv + udyv + vOyv + fu+gdyh+D(v) = 0
(u,v,h) 0ch + dx(hu) + 8, (hv) — 0
T =1 : pixel
Observation: y = 7 (image) T = W : multi-scale decomposition

T =V : gradient

Observation operator: 9:q + ud.q+ vOyq — vTAq =0

Passive tracer advection q(0) =f(0) : initial image
g represents a synthetic image (1, v) ifies (M)
u, v . verifies
Hz(x) = T(a)
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Numerical results

Assimilation process

Cost function

«o 1 /7
J(x) = 5 Il x —x"|3-1 + 5/ | Hz[x(t)] —y ||2R;1 dt
0

image - model discrepancy

Optimisation
o Background at rest (x* = (0,0, hmean)")

o Usual B2 change of variable with correlation built using Weaver and Courtier
(2001) approach and.

@ Progressive (or quasi-static) minimisation technique [Luong et al.(1998), Pires et al.
(1996)]

@ Minimizer: M1QN3 [Gilbert and Lemarechal]

@ twin experiments...
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Numerical results

Impact of error statistics

Figure : Signal to Noise Ratio of (from left to right) 26.8 dB, 20.8 dB and 14.8 dB.

Covariance matrices R are huge and need to be inverted their diagonal restriction are used in
practice. In the pixel space and the gradient space this restriction leads to a matrix proportional
to the identity:

Rs?! = Diag(R) = 01, RS = Diag(RE™) = 5%lap.

For wavelets we can use the diagonal restriction of the true covariance matrix in the wavelet

space. )
R{% = Diag(Rw) # 0°lp

Peyresq, 25" — 26'"of April 2015
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Numerical results

Impact of error statistics

Figure : Signal to Noise Ratio of (from left to right) 26.8 dB, 20.8 dB and 14.8 dB.

Pixel Grad Wavelets  Curvelets
14.8 dB 50.8% 33.3% 9.1% 9.7%
20.8 dB 25.6% 17.3% 7.5% 9.2%
26.8 dB 15.1% 11.8% 7.0% 9.7%
Perfect o
data 7.6%

Table : Mean over 10 experiments of the residual error(in percent).
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Numerical results

Results

Wavelet

True velocities Pixel Gradient .
Daubechies
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© Occultations
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Managing occultations

passing cloud

Many images may suffer from occultation, as for example ocean colour masked by a

1*'\‘*'1* ‘! 1':-,'-.

|‘h

‘e
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Occultations

Managing occultations

Many images may suffer from occultation, as for example ocean colour masked by a
passing cloud.
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Nuage_9.mp4
Media File (video/mp4)


Occultations

Managing occultations

Partially observed vector

v 000N

. Observed gridpoint
. Masked gridpoint
Partially observed
- wavelet coefficients
o) SO00000 CO00888ees

Observation vector Observation vector
in grid space in a wavelet basis

Figure : Working in a wavelet space when the image is partially observed lead to work in larger
space (but bearing the same information).

in grid space, it is quite easy to handle

|| H(X) - yseen ||$?5€€ﬂ

gri
Where H includes a projection (masking).
But in Wavelet space it is more tricky

@ naive approach: mask out the synthetic observation and take it as normal image.

@ not so naive approach: account for the information content of each wav_coefficients
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Occultations

Managing occultations (2)

The more holes, the less Emmental cheese. . .

wavelet decomposition:
I = Shlp ~ 2n)J[p]

Conflicting issues: &0 = S alp — 2010/ Pl

@ missing data = no error

some attempt to account for missing data:

—_ ~2 2 2
— deflate error statistics &4y = (74, + @d; Tmean) X !
@ missing data = more discontinuity in the signal where = g%C[p — 2n]
. . xy, = |———————

— perturbed small scale coefficients 4 TS g0 p — 2n]|
— inflate error statistics o o

19 number of observed grid point

11 weighted number of observed grid point
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Managing occultations (2)

The more holes, the less Emmental cheese. . .

wavelet decomposition:

I = S hlp — 2n)dl[p]

Conflicting issues: ¢ = S alp — 2010/ o]
o missing data — Nno error some a2ttempt tg account fOér missing data:
— deflate error statistics 54 = (04, + @d; T mean) X !
@ missing data = more discontinuity in the signal where 5 g%C[p — 2n]

ag. =

— perturbed small scale coefficients i s 1gocep — 2n)|

— inflate error statistics

110 number of observed grid point
I+ weighted number of observed grid point

normalized RMS error in meridional velocity

1.2 T T T T T T

Pixel - =+
Wavelet
Wavelet Modified
Pixel No Cloud
Wavelet No Cloud

Cloud size
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Occultations
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True v-velocity

Cloud size=9

Occultations

clear sky
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-M“ 'f')'x

Wavelet std Wavelet Modified
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© Some perspectives

A. Vidard (Correlated observation errors)



Some perspectives

Perspective 1: finer representation or more exotic correlation structure

Curvelet decomposition: more adapted to curve discontinuities

@ Multi-scale multi orientation transform

7
@ Decomposition: C(f) = Z(f,@,—,/,kﬁpj,/,k
Jskil
J: scale; I: orientation; k: position. Curvelet atom

@ Fast Discrete Curvelet Transf.: O(nlog n)

@ Adjoint of the decomposition = pseudo-inverse
decomposition (reconstruction)

(E. J. Candgs and D. L. Donoho, 2004), (L. Demanet 2006), www.curvelet.org Curvelets Wavelets

NE O

Anisotropic correlation representation from left to right: original, wavelets, curvelets and improved curvelets

Curvelets are more difficult (and expensive) to handle but can produce more fancy- correlation

A. Vidard (Correlated observation errors) y \ — 26" of April 2015 35 /36



Some perspectives

Perspective 2: Multiscale? Oh wait !

The multi-scale aspect can be used for
extracting structure from images

y = 7 o T (image)

with 7 a thresholding operator

(1. Souopgui’'s PhD thesis)

— 1st synth image
It can also be used in a sort of H H
. — Observation
multi-scale framework for the H

minimisation.

Lets increment it
12 T T T T T
Wavelet + MultiResolution ===

Wavelet =3¢—

S0 N |
1 y

02t L
Damn! the cost function increases
4 B -+ v - My increment must be too large...

() Original image (b) Strong threshold (¢) Strong scale by scale
threshold

60 80 100 120 140 160 180
Observation time
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Perspective 3: Optimal Transport

Wasserstein distance

After a feeble attempt to use optical flow output as a metric, we are looking into
Wasserstein distances :

WEpo,p1) = inf / IM(x) — x|2p0(x) dx

where (E) is the following non linear constraint
(E) = det(VM(x))p1(M(x)) = po(x)

A A e
| A ol

Issues (currently addressed in the Tommi project):

We need to differentiate this if we want to compute a gradient.

It is quite expensive to compute.

Other distances may also be well suited (K", ...)

The mass may not be se same in the observation and its model equivalent
Have to deal with obstacle (coasts)

1 1
I = 5l = yll+ Sl =<l
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