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Data assimilation
Principle

Forecast is produced by integration of a model from an initial state

Control parameters
(Initial state ...)

xa ∈ Rn

Model
M

Simulation/
Forecast
xf ∈ Rn

Assimilation
process

A
nalyzed

State A priori
knowledges
B ∈ Rn×n

R ∈ Rp×p

Physical
observations

yi ∈ Rp

Information sources:

Model ⇒ system state

wind
pressure
. . .

Observations

a priori knowledge

First Guess and background
error statistics
Observation error statistics
. . .

Data Assimilation combines in a consistent manner all the available information
(model, observations, a priori knowledge) in order to retrieve the ’optimal’ initial
state.
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Data assimilation, the science of compromises

Numerous possible aims:

Forecast: estimation of the present state (initial condition)

Model tuning: parameter estimation

Inverse modeling: estimation of some input fields

Data analysis: re-analysis (model = interpolation operator)

OSSE: optimization of observing systems

. . .
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Data assimilation, the science of compromises

Its application to Earth sciences generally raises a number of difficulties, some of them being
rather specific:

non linearities

huge dimensions

poor knowledge of error statistics

non reproducibility (each experiment is unique)

operational forecast (computations must be performed in a limited time)
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Objectives for the lectures

introduce data assimilation from several points of view

give an overview of the main methods

detail the basic ones and highlight their pros and cons

introduce some current research problems
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Outline

1 A simple example

2 Generalisation: variational approach

3 Generalization: statistical approach
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A simple example

Model problem: least squares approach

Two different available measurements of a single quantity. Which estimation for its true value ?
−→ least squares approach

Example 2 obs y1 = 19◦C and y2 = 21◦C of the (unknown) present temperature x .

Let J(x) = 1
2

[
(x − y1)2 + (x − y2)2

]
Minx J(x) −→ x̂ =

y1 + y2

2
= 20◦C
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A simple example

Model problem: least squares approach

Observation operator If 6= units: y1 = 66.2◦F and y2 = 69.8◦F

Let H(x) =
9

5
x + 32

Let J(x) =
1

2

[
(H(x)− y1)2 + (H(x)− y2)2

]
Minx J(x) −→ x̂ = 20◦C

Drawback # 1: if observation units are inhomogeneous
y1 = 66.2◦F and y2 = 21◦C

J(x) =
1

2

[
(H(x)− y1)2 + (x − y2)2

]
−→ x̂ = 19.47◦C !!

Drawback # 2: if observation accuracies are inhomogeneous

If y1 is twice more accurate than y2, one should obtain x̂ =
2y1 + y2

3
= 19.67◦C −→ J

should be J(x) =
1

2

[(
x − y1

1/2

)2

+

(
x − y2

1

)2
]
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A simple example

Model problem: statistical approach

Reformulation in a probabilistic framework:

the goal is to estimate a scalar value x

yi is a realization of a random variable Yi

One is looking for an estimator (i.e. a r.v.) X̂ that is

linear: X̂ = α1Y1 + α2Y2 (in order to be simple)

unbiased: E(X̂ ) = x (it seems reasonable)

of minimal variance: Var(X̂ ) minimum (optimal accuracy)

−→ BLUE (Best Linear Unbiased Estimator)
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A simple example

Model problem: statistical approach

Let Yi = x + εi with

Hypotheses

E(εi ) = 0 (i = 1, 2) unbiased measurement devices

Var(εi ) = σ2
i (i = 1, 2) known accuracies

Cov(ε1, ε2) = 0 independent measurement errors

Then, since X̂ = α1Y1 + α2Y2 = (α1 + α2)x + α1ε1 + α2ε2 :

E(X̂ ) = (α1 + α2)x + α1E(ε1) + α2E(ε2) =⇒ α1 + α2 = 1

Var(X̂ ) = E
[
(X̂ − x)2

]
= E

[
(α1ε1 + α2ε2)2

]
= α2

1σ
2
1 + (1− α1)2σ2

2

∂

∂α1
= 0 =⇒ α1 =

σ2
2

σ2
1 + σ2

2

(variance minimum)
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A simple example

Model problem: statistical approach

In summary:

BLUE

X̂ =

1

σ2
1

Y1 +
1

σ2
2

Y2

1

σ2
1

+
1

σ2
2

Its accuracy:
[
Var(X̂ )

]−1
=

1

σ2
1

+
1

σ2
2

accuracies are added

go to general case

Remarks:
The hypothesis Cov(ε1, ε2) = 0 is not compulsory at all.

Cov(ε1, ε2) = c −→ αi =
σ2
j −c

σ2
1 +σ2

2−2c

Statistical hypotheses on the two first moments of ε1, ε2 lead to statistical results on the

two first moments of X̂ .
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A simple example

Model problem: statistical approach

Variational equivalence

This is equivalent to the problem:

Minimize J(x) =
1

2

[
(x − y1)2

σ2
1

+
(x − y2)2

σ2
2

]

Remarks:

This answers the previous problems of sensitivity to inhomogeneous units and insensitivity
to inhomogeneous accuracies

This gives a rationale for choosing the norm for defining J

J′′(x̂)︸ ︷︷ ︸
convexity

=
1

σ2
1

+
1

σ2
2

= [Var(x̂)]−1︸ ︷︷ ︸
accuracy
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A simple example

Model problem

Alternative formulation: background + observation

If one considers that y1 is a prior (or background) estimate xb for x , and y2 = y is an
independent observation, then:

J(x) =
1

2

(x − xb)2

σ2
b︸ ︷︷ ︸

Jb

+
1

2

(x − y)2

σ2
o︸ ︷︷ ︸

Jo

and

x̂ =

1

σ2
b

xb +
1

σ2
o

y

1

σ2
b

+
1

σ2
o

= xb +
σ2
b

σ2
b + σ2

o︸ ︷︷ ︸
gain

(y − xb)︸ ︷︷ ︸
innovation
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Generalisation: variational approach

Outline

1 A simple example

2 Generalisation: variational approach

3 Generalization: statistical approach
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Generalisation: variational approach

Definitions and notations:

italic capitals : non linear operators (M, H, ...);
bold capitals: linear operator or matrices (M, R, ...);
bold small caps: vectors (xb, yo , ....)

Assimilation window: time window over which the data will be considered all at once

First guess or background: prior estimation of the control vector (xb)

Analysis: estimation of the control vector after data assimilation (xa)

Increment: correction to the control vector (xa − xb)

Innovation vector: misfit to the observation (d = yo − H(x))

In this part, we sometime consider a time evolving system described by a set of non linear
PDE (aka the model M) {

xti =Mti−1,ti (xti−1 ), i = 1,N
x0 = xb
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Generalisation: variational approach

Origin: Bayes theory

assuming the system state and the observation are random variable we want to maximise
the probability of xa knowing the observations. , i.e.:

P(X = x|Y = yo) = PX |Y (x|yo)

thanks to the Bayes theorem, we know:

PX |Y (x|yo) =
PY |X (yo |x)PX (x)

PY (yo)

PY |X (yo |x): likelihood function

PX (x): prior distribution

PX |Y (x|yo): posterior distribution

The marginal PY (yo) does not depend on the choice of x, so maximising PX |Y (x|yo) is
equivalent to maximising PY |X (yo |x)PX (x).
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Generalisation: variational approach

Origin: Bayes theory

If we assume that

yo = H(x) + ε and x = xb + ν

with

ε ∼ N(0,R) and ν ∼ N(0,B), ε and ν uncorrelated

therefore

yo |x ∼ N(H(x),R) and x ∼ N(xb,B)

then

PY |X (yo |x) = (2πm|R|)1/2exp

[
−1

2
(yo − H(x))TR−1(yo − H(x))

]
and

PX (x) = (2πn|B|)1/2exp

[
−1

2
(x− xb)TB−1(x− xb)

]
finally

PX |Y (x|yo) ∝ exp

[
−1

2
(yo − H(x))TR−1(yo − H(x))

]
exp

[
−1

2
(x− xb)TB−1(x− xb)

]
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Generalisation: variational approach

3D-Var

by taking minus the log we obtains the so-called 3D-Var cost function:

J(x) = −log
(
exp

[
−1

2
(yo − H(x))TR−1(yo − H(x))

]
exp

[
−1

2
(x− xb)TB−1(x− xb)

])
=

1

2
(yo − H(x))TR−1(yo − H(x)) +

1

2
(x− xb)TB−1(x− xb)

and maximizing PX |Y (x|yo) is equivalent to minimizing J(x)
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Generalisation: variational approach

If the problem is time dependent

Observations are distributed in time: y = y(t)

The observation cost function becomes:

Jo(x) =
1

2

N∑
i=0

‖Hi (x(ti ))− y(ti )‖2
o

There is a model describing the evolution of x: xti = Mti−1,ti (xti−1 ) with x(t = 0) = x0.
Then J is often no longer minimized w.r.t. x, but w.r.t. x0 only, or to some other
parameters.

Jo(x0) =
1

2

N∑
i=0

‖Hi (x(ti ))− y(ti )‖2
o =

1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o
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Generalisation: variational approach

If the problem is time dependent

J(x0) =
1

2
‖x0 − xb0‖2

b︸ ︷︷ ︸
background term Jb

+
1

2

N∑
i=0

‖Hi (x(ti ))− y(ti )‖2
o︸ ︷︷ ︸

observation term Jo
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Generalisation: variational approach

Uniqueness of the minimum?
Linear case

J(x0) = Jb(x0) + Jo(x0) =
1

2
‖x0 − xb‖2

b +
1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o

If H and M are linear then Jo is quadratic.

However it generally does not have a unique minimum, since the number of observations is
generally less than the size of x0 (the problem is underdetermined: p < n).

Example: let (xt1, x
t
2) = (1, 1) and y = 1.1 an observation of 1

2
(x1 + x2).

Jo (x1, x2) =
1

2

(
x1 + x2

2
− 1.1

)2

A. Vidard (Introduction to data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 22 / 49



Generalisation: variational approach

Uniqueness of the minimum?
Linear case

J(x0) = Jb(x0) + Jo(x0) =
1

2
‖x0 − xb‖2

b +
1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o

If H and M are linear then Jo is quadratic.

However it generally does not have a unique minimum, since the number of observations is
generally less than the size of x0 (the problem is underdetermined: p < n).

Example: let (xt1, x
t
2) = (1, 1) and y = 1.1 an observation of 1

2
(x1 + x2).

Jo (x1, x2) =
1

2

(
x1 + x2

2
− 1.1

)2

A. Vidard (Introduction to data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 22 / 49



Generalisation: variational approach

Uniqueness of the minimum?
Linear case

J(x0) = Jb(x0) + Jo(x0) =
1

2
‖x0 − xb‖2

b +
1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o

If H and M are linear then Jo is quadratic.

However it generally does not have a unique minimum, since the number of observations is
generally less than the size of x0 (the problem is underdetermined).

Adding Jb makes the problem of minimizing J = Jo + Jb well posed.

Example: let (xt1, x
t
2) = (1, 1) and y = 1.1 an observation of 1

2
(x1 + x2).

Let (xb1 , x
b
2 ) = (0.9, 1.05)

J(x1, x2) =
1

2

(
x1 + x2

2
− 1.1

)2

︸ ︷︷ ︸
Jo

+
1

2

[
(x1 − 0.9)2 + (x2 − 1.05)2

]
︸ ︷︷ ︸

Jb
−→ (x∗1 , x

∗
2 ) = (0.94166..., 1.09166...)
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Generalisation: variational approach

Uniqueness of the minimum?
Non linear case

J(x0) = Jb(x0) + Jo(x0) =
1

2
‖x0 − xb‖2

b +
1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o

If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx

dt
= α(y − x)

dy

dt
= βx − y − xz

dz

dt
= −γz + xy

Jo(y0) =
1

2

N∑
i=0

(x(ti )− xobs(ti ))2 dt
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Non linear case
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If H and/or M are nonlinear then Jo is no longer quadratic.

Adding Jb makes it “more quadratic” (Jb is a regularization term), but J = Jo + Jb may
however have several local minima.
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Generalisation: variational approach

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let M a p × n matrix, with rank n, and b ∈ IRp . (hence p ≥ n)

Let J(x) = ‖Mx− b‖2 = (Mx− b)T (Mx− b).

J is minimum for x̂ = M+b , where M+ = (MTM)−1MT

(generalized, or Moore-Penrose, inverse).

Corollary: with a generalized norm

Let N a p × p symmetric definite positive matrix.

Let J1(x) = ‖Mx− b‖2
N = (Mx− b)TN (Mx− b).

J1 is minimum for x̂ = (MTNM)−1MTNb.
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Generalisation: variational approach

Link with data assimilation

In the case of a linear, time independent, data assimilation problem:

Jo(x) =
1

2
‖Hx− y‖2

o =
1

2
(Hx− y)TR−1(Hx− y)

Optimal estimation in the linear case: Jo only

min
x∈IRn

Jo(x) −→ x̂ = (HTR−1H)−1HTR−1 y

go to statistical approach
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Generalisation: variational approach

Link with data assimilation

With the formalism “background value + new observations”:

J(x) = Jb(x) + Jo(x)

=
1

2
‖x− xb‖2

b +
1

2
‖H(x)− y‖2

o

=
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y)

= (Mx− b)TN (Mx− b) = ‖Mx− b‖2
N

with M =

(
In
H

)
b =

(
xb
y

)
N =

(
B−1 0
0 R−1

)

Optimal estimation in the linear case: Jb + Jo

x̂ = xb + (B−1 + HTR−1H)−1HTR−1︸ ︷︷ ︸
gain matrix

(y −Hxb)︸ ︷︷ ︸
innovation vector

Remark: The gain matrix also reads BHT (HBHT + R)−1

(Sherman-Morrison-Woodbury formula) go to statistical approach

A. Vidard (Introduction to data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 28 / 49



Generalisation: variational approach

Link with data assimilation

With the formalism “background value + new observations”:

J(x) = Jb(x) + Jo(x)

=
1

2
‖x− xb‖2

b +
1

2
‖H(x)− y‖2

o

=
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y)

= (Mx− b)TN (Mx− b) = ‖Mx− b‖2
N

with M =

(
In
H

)
b =

(
xb
y

)
N =

(
B−1 0
0 R−1

)

Optimal estimation in the linear case: Jb + Jo

x̂ = xb + (B−1 + HTR−1H)−1HTR−1︸ ︷︷ ︸
gain matrix

(y −Hxb)︸ ︷︷ ︸
innovation vector

Remark: The gain matrix also reads BHT (HBHT + R)−1

(Sherman-Morrison-Woodbury formula) go to statistical approach

A. Vidard (Introduction to data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 28 / 49



Generalization: statistical approach

Outline

1 A simple example

2 Generalisation: variational approach

3 Generalization: statistical approach
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Generalization: statistical approach

Generalization: statistical approach

To be estimated: x =

 x1

...
xn

 ∈ IRn Observations: y =

 y1

...
yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Statistical framework:

y is a realization of a random vector Y

One is looking for the BLUE, i.e. a r.v. X̂ that is

linear: X̂ = AY with size(A) = (n, p)

unbiased: E(X̂) = x

of minimal variance:

Var(X̂) =
n∑

i=1

Var(X̂i ) = Tr(Cov(X̂)) minimum
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Generalization: statistical approach

Generalization: statistical approach

Hypotheses

Linear observation operator: H(x) = Hx

Let Y = Hx + ε with ε random vector in IRp

E(ε) = 0 unbiased measurement devices
Cov(ε) = E(εεT ) = R known accuracies and covariances

BLUE:

linear: X̂ = AY with A(n, p)

unbiased: E(X̂) = E(AHx + Aε) = AHx + AE(ε) = AHx

So: E(X̂) = x⇐⇒ AH = In.

Remark: AH = In =⇒ ker H = {0} =⇒ rank(H) = n

Since size(H) = (p, n), this implies n ≤ p (again !)
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Generalization: statistical approach

BLUE:

minimal variance: min Tr(Cov(X̂))

X̂ = AY = AHx + Aε = x + Aε

Cov(X̂) = E
(

[X̂− E(X̂)][X̂− E(X̂)]T
)

= AE(εεT )AT = ARAT

Find A that minimizes Tr(ARAT ) under the constraint AH = In

Gauss-Markov theorem

A = (HTR−1H)−1HTR−1

This also leads to Cov(X̂) = (HTR−1H)−1
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Generalization: statistical approach

Link with the variational approach

Statistical approach: BLUE

X̂ = (HTR−1H)−1HTR−1Y with Cov(X̂) = (HTR−1H)−1

go to variational approach

Variational approach in the linear case

Jo(x) =
1

2
‖Hx− y‖2

o =
1

2
(Hx− y)TR−1(Hx− y)

min
x∈IRn

Jo(x) −→ x̂ = (HTR−1H)−1HTR−1 y

Remarks

The statistical approach rationalizes the choice of the norm in the variational approach.[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= HTR−1H = Hess(Jo)︸ ︷︷ ︸
convexity
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Generalization: statistical approach

Statistical approach: formalism “background value + new observations”

Z =

(
Xb

Y

)
←− background
←− new observations

Let Xb = x + εb and Y = Hx + εo

Hypotheses:

E(εb) = 0 unbiased background

E(εo) = 0 unbiased measurement devices

Cov(εb, εo) = 0 independent background and observation errors

Cov(εb) = B et Cov(εo) = R known accuracies and covariances

This is again the general BLUE framework, with

Z =

(
Xb

Y

)
=

(
In
H

)
x +

(
εb
εo

)
and Cov(ε) =

(
B 0
0 R

)
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Generalization: statistical approach

Statistical approach: formalism “background value + new observations”

Statistical approach: BLUE

X̂ = Xb + (B−1 + HTR−1H)−1HTR−1︸ ︷︷ ︸
gain matrix

(Y −HXb)︸ ︷︷ ︸
innovation vector

with
[
Cov(X̂)

]−1
= B−1 + HTR−1H accuracies are added

go to model problem
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Generalization: statistical approach

Link with the variational approach

Statistical approach: BLUE

X̂ = Xb + (B−1 + HTR−1H)−1HTR−1(Y − HXb)

with Cov(X̂) = (B−1 + HTR−1H)−1
go to variational approach

Variational approach in the linear case

J(x) =
1

2
‖x− xb‖2

b +
1

2
‖H(x)− y‖2

o

=
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y)

min
x∈IRn

J(x) −→ x̂ = xb + (B−1 + HTR−1H)−1HTR−1 (y − Hxb)

Same remarks as previously

The statistical approach rationalizes the choice of the norms for Jo and Jb in the variational approach.[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= B−1 + HTR−1H = Hess(J)︸ ︷︷ ︸
convexity
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Generalization: statistical approach
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Generalization: statistical approach

Link with the variational approach
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Generalization: statistical approach

If the problem is time dependent

Dynamical system: xt(tk+1) = M(tk , tk+1)xt(tk ) + e(tk )

xt(tk ) true state at time tk

M(tk , tk+1) model assumed linear between tk and tk+1

e(tk ) model error at time tk

At every observation time tk , we have an observation yk and a model forecast xf (tk ). The BLUE
can be applied:
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Generalization: statistical approach

If the problem is time dependent

xt(tk+1) = M(tk , tk+1) xt(tk) + e(tk)

Hypotheses

e(tk) is unbiased, with covariance matrix Qk

e(tk) and e(tl) are independent (k 6= l)

Unbiased observation yk , with error covariance matrix Rk

e(tk) and analysis error xa(tk)− xt(tk) are independent
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Generalization: statistical approach

If the problem is time dependent

Kalman filter (Kalman and Bucy, 1961)

Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xf (tk+1) = M(tk , tk+1) xa(tk ) Forecast
Pf (tk+1) = M(tk , tk+1)Pa(tk )MT (tk , tk+1) + Qk

xa(tk+1) = xf (tk+1) + Kk+1

[
yk+1 −Hk+1x

f (tk+1)
]

BLUE

Kk+1 = Pf (tk+1)HT
k+1

[
Hk+1P

f (tk+1)HT
k+1 + Rk+1

]−1

Pa(tk+1) = Pf (tk+1)− Kk+1Hk+1P
f (tk+1)

where exponents f and a stand respectively for forecast and analysis.
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Generalization: statistical approach

If the problem is time dependent

Equivalence with the variational approach

If Hk and M(tk , tk+1) are linear, and if the model is perfect (ek = 0), then the Kalman filter and
the variational method minimizing

J(x) =
1

2
(x− x0)TP−1

0 (x− x0) +
1

2

N∑
k=0

(HkM(t0, tk )x− yk )TR−1
k (HkM(t0, tk )x− yk )

lead to the same solution at t = tN .
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Generalization: statistical approach

In summary
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Generalization: statistical approach

In summary

variational approach least squares minimization (non dimensional terms)

no particular hypothesis
either for stationary or time dependent problems
If M and H are linear, the cost function is quadratic: a unique solution if
p ≥ n
Adding a background term ensures this property.
If things are non linear, the approach is still valid. Possibly several minima

statistical approach
hypotheses on the first two moments
time independent + H linear + p ≥ n: BLUE (first two moments)
time dependent + M and H linear: Kalman filter (based on the BLUE)

hypotheses on the pdfs: Bayesian approach (pdf) + ML or MAP estimator
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Generalization: statistical approach

In summary

The statistical approach gives a rationale for the choice of the norms, and gives an estimation of
the uncertainty.

time independent problems if H is linear, the variational and the statistical approaches lead to
the same solution (provided ‖.‖b is based on B−1 and ‖.‖o is based on R−1)

time dependent problems if H and M are linear, if the model is perfect, both approaches lead to
the same solution at final time.

4D-Var Kalman filter
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Generalization: statistical approach

Common main methodological difficulties

Non linearities: J non quadratic / what about Kalman filter ?

Huge dimensions [x] = O(106 − 109): minimization of J / management of huge matrices

Poorly known error statistics: choice of the norms / B,R,Q

Scientific computing issues (data management, code efficiency, parallelization...)

−→ NEXT LECTURE
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Generalization: statistical approach

Further generalisation

Considering an imperfect model (e.g. xt = Mt−1,t(xt) + ηt with ηt ∼ N(0,Qt) leads to

J(x0, . . . , xN) =
1

2

N∑
t=1

(yot − Ht(xt))TR−1
t (yot − Ht(xt)) +

1

2
(x0 − xb)TB−1(x0 − xb)

+
N∑
t=1

(xt −Mt−1,t(xt−1))TQ−1
t (xt −Mt−1,t(xt−1))
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Generalization: statistical approach

If we note the model state trajectory:

x = (x0, x1, ..., xN−1, xN)T

N being the number of time steps per assimilation window, the full variational data
assimilation scheme can be defined by the minimization of :

cost function

J(x) =

Jb︷ ︸︸ ︷
1

2
(x− xb)TB−1(x− xb) +

Jo︷ ︸︸ ︷
1

2
(y − H(x))TR−1(y − H(x)) +

Jq︷ ︸︸ ︷
1

2
F (x)TQ−1F (x)

Where B and R are the background and observation error correlation matrices
respectively, y is the observation vector, and H the observation operator, and F
represents the remaining theoretical knowledge after background information has been
accounted for (basically the model).

Fi (x) = xi −Mi (xi−1)
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Generalization: statistical approach

Further generalisation: weak constraint 4D-Var

cost function

J(x) =

Jb︷ ︸︸ ︷
1

2
(x− xb)TB−1(x− xb) +

Jo︷ ︸︸ ︷
1

2
(y − H(x))TR−1(y − H(x)) +

Jq︷ ︸︸ ︷
1

2
F (x)TQ−1F (x)

The meaning of this cost function is that we seek for a state trajectory x that is
satisfying the background error statistics (Jb), that is not far from the observation (Jo)
and that it follows (weakly) the model equations (Jq)

In practice this algorithm is not doable for large time dependent problems. The size of x
(the size of the state vector times the number of time step of the assimilation window)
becomes huge and the definition and handling of B is more than problematic

Therefore, in practice, additional hypothesis or approximations have to be made in order
to implement variational data assimilation.
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Generalization: statistical approach

Back to 4D-Var:

In the so-called 4D-Var algorithm, the assumption is now that the model is perfect,
meaning x is fully determined by the initial condition x0 (e.g. Jq = 0). It is also called
strong constraint 4D-Var, meaning that the model is a strong constrain of the
minimization process.

The cost function is then
J(x0) = Jb(x0) + Jo(x0) (1)

where the background term Jb is the same as before:

Jb(x0) =
1

2
(x0 − xb0)TB−1(x0 − xb0)

The background xb0 , as x0, is one possible state vector at initial time i = 0.
The observation term Jo is a bit more complex:

Jo(x0) =
1

2

n∑
i=0

(yoi − Hi (xi ))TR−1
i (yoi − Hi (xi ))
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Generalization: statistical approach

4D-Var:
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